/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "CpuOperationUtils.h"
#include "OperationResolver.h"
#include "Operations.h"
#include "Utils.h"
#include "tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h"
#include "Tracing.h"
namespace android {
namespace nn {
namespace conv_2d {
constexpr char kOperationName[] = "CONV_2D";
constexpr uint32_t kInputTensor = 0;
constexpr uint32_t kFilterTensor = 1;
constexpr uint32_t kBiasTensor = 2;
constexpr uint32_t kNumOutputs = 1;
constexpr uint32_t kOutputTensor = 0;
namespace {
// If possible we will use this static buffer for the tensor.
constexpr size_t kStaticBufferSize = 1605632;
char static_scratch_buffer[kStaticBufferSize];
// executionMutex is used to protect concurrent access of the static_scratch_buffer
// and other non-threadsafe resources like gemmlowp::GemmContext.
// std::mutex is safe for pthreads on Android.
std::mutex executionMutex;
struct Conv2dParam {
int32_t padding_left, padding_right;
int32_t padding_top, padding_bottom;
int32_t stride_width, stride_height;
int32_t dilation_width_factor = 1, dilation_height_factor = 1;
int32_t activation;
bool useNchw = false;
bool initialize(const IOperationExecutionContext* context) {
uint32_t inCount = context->getNumInputs();
int32_t padding_implicit = 0;
bool useImplicitPadding = false;
if ((inCount >= 8 && context->getInputType(7) == OperandType::BOOL) || inCount == 7) {
padding_implicit = context->getInputValue<int32_t>(3);
stride_width = context->getInputValue<int32_t>(4);
stride_height = context->getInputValue<int32_t>(5);
activation = context->getInputValue<int32_t>(6);
if (inCount >= 8) {
useNchw = context->getInputValue<bool>(7);
}
if (inCount == 10) {
dilation_width_factor = context->getInputValue<int32_t>(8);
dilation_height_factor = context->getInputValue<int32_t>(9);
}
useImplicitPadding = true;
} else if (inCount >= 10 && context->getInputType(7) == OperandType::INT32) {
padding_left = context->getInputValue<int32_t>(3);
padding_right = context->getInputValue<int32_t>(4);
padding_top = context->getInputValue<int32_t>(5);
padding_bottom = context->getInputValue<int32_t>(6);
stride_width = context->getInputValue<int32_t>(7);
stride_height = context->getInputValue<int32_t>(8);
activation = context->getInputValue<int32_t>(9);
if (inCount >= 11) {
useNchw = context->getInputValue<bool>(10);
}
if (inCount == 13) {
dilation_width_factor = context->getInputValue<int32_t>(11);
dilation_height_factor = context->getInputValue<int32_t>(12);
}
} else {
NN_RET_CHECK_FAIL() << "Unsupported input spec for operation " << kOperationName;
}
if (useImplicitPadding) {
Shape inputShape = context->getInputShape(kInputTensor);
Shape filterShape = context->getInputShape(kFilterTensor);
int32_t input_width = getSizeOfDimension(inputShape, useNchw ? 3 : 2);
int32_t input_height = getSizeOfDimension(inputShape, useNchw ? 2 : 1);
int32_t filter_width = getSizeOfDimension(filterShape, 2);
int32_t filter_height = getSizeOfDimension(filterShape, 1);
calculateExplicitPadding(input_width, stride_width, dilation_width_factor, filter_width,
padding_implicit, &padding_left, &padding_right);
calculateExplicitPadding(input_height, stride_height, dilation_height_factor,
filter_height, padding_implicit, &padding_top,
&padding_bottom);
}
NN_RET_CHECK_GE(padding_left, 0);
NN_RET_CHECK_GE(padding_right, 0);
NN_RET_CHECK_GE(padding_top, 0);
NN_RET_CHECK_GE(padding_bottom, 0);
NN_RET_CHECK_GT(stride_width, 0);
NN_RET_CHECK_GT(stride_height, 0);
NN_RET_CHECK_GT(dilation_width_factor, 0);
NN_RET_CHECK_GT(dilation_height_factor, 0);
NN_RET_CHECK_GE(activation, 0);
return true;
}
};
#define ANDROID_NN_CONV_PARAMETERS(Type) \
uint32_t height = getSizeOfDimension(inputShape, 1); \
uint32_t width = getSizeOfDimension(inputShape, 2); \
uint32_t filterHeight = getSizeOfDimension(filterShape, 1); \
uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \
uint32_t outHeight = getSizeOfDimension(outputShape, 1); \
uint32_t outWidth = getSizeOfDimension(outputShape, 2); \
uint32_t inDepth = getSizeOfDimension(inputShape, 3); \
\
uint32_t paddingHeight = (uint32_t)padding_top; \
uint32_t paddingWidth = (uint32_t)padding_left; \
\
tflite::Dims<4> im2colDim; \
im2colDim.sizes[3] = (int)getSizeOfDimension(outputShape, 0); \
im2colDim.sizes[2] = (int)getSizeOfDimension(outputShape, 1); \
im2colDim.sizes[1] = (int)getSizeOfDimension(outputShape, 2); \
im2colDim.sizes[0] = (int)inDepth * filterHeight * filterWidth; \
\
im2colDim.strides[0] = 1; \
for (int i=1; i<4; i++) { \
im2colDim.strides[i] = im2colDim.strides[i-1] * im2colDim.sizes[i-1]; \
} \
\
Type* im2colData = nullptr; \
uint64_t im2colByteSize = sizeof(Type); \
std::unique_ptr<Type[]> im2colGuard; \
for (int i=0; i<4; i++) { \
im2colByteSize *= im2colDim.sizes[i]; \
} \
/* http://b/77982879, tflite::optimized_ops::Conv uses int for offsets */ \
if (im2colByteSize >= 0x7fffffff) { \
LOG(ERROR) << "Conv size is too large, not enough memory"; \
return false; \
} \
if (im2colByteSize <= kStaticBufferSize) { \
im2colData = reinterpret_cast<Type *>(static_scratch_buffer); \
} else { \
im2colData = new (std::nothrow) Type[im2colByteSize / sizeof(Type)]; \
if (im2colData == nullptr) { \
LOG(ERROR) << "Conv size is too large, not enough memory"; \
return false; \
} \
im2colGuard.reset(im2colData); \
}
bool convNhwc(const float* inputData, const Shape& inputShape, const float* filterData,
const Shape& filterShape, const float* biasData, const Shape& biasShape,
int32_t padding_left, int32_t padding_right, int32_t padding_top,
int32_t padding_bottom, int32_t stride_width, int32_t stride_height,
int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation,
float* outputData, const Shape& outputShape) {
NNTRACE_TRANS("convFloat32");
ANDROID_NN_CONV_PARAMETERS(float)
float output_activation_min, output_activation_max;
CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max);
// Prevent concurrent executions that may access the scratch buffer.
std::unique_lock<std::mutex> lock(executionMutex);
NNTRACE_COMP_SWITCH("optimized_ops::Conv");
tflite::optimized_ops::Conv(inputData, convertShapeToDims(inputShape), filterData,
convertShapeToDims(filterShape), biasData,
convertShapeToDims(biasShape), stride_width, stride_height,
dilation_width_factor, dilation_height_factor, paddingWidth,
paddingHeight, output_activation_min, output_activation_max,
outputData, convertShapeToDims(outputShape), im2colData, im2colDim);
return true;
}
bool convNhwc(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData,
const Shape& filterShape, const int32_t* biasData, const Shape& biasShape,
int32_t padding_left, int32_t padding_right, int32_t padding_top,
int32_t padding_bottom, int32_t stride_width, int32_t stride_height,
int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation,
uint8_t* outputData, const Shape& outputShape) {
NNTRACE_TRANS("convQuant8");
ANDROID_NN_CONV_PARAMETERS(uint8_t)
int32_t inputOffset = -inputShape.offset;
int32_t filterOffset = -filterShape.offset;
int32_t outputOffset = outputShape.offset;
double real_multiplier = 0.0;
int32_t output_multiplier = 0;
int32_t output_shift = 0;
int32_t output_activation_min = 0;
int32_t output_activation_max = 0;
NN_RET_CHECK(GetQuantizedConvolutionMultipler(inputShape, filterShape, biasShape, outputShape,
&real_multiplier));
int exponent;
NN_RET_CHECK(QuantizeMultiplier(real_multiplier, &output_multiplier, &exponent));
output_shift = -exponent;
CalculateActivationRangeUint8(activation, outputShape, &output_activation_min,
&output_activation_max);
static gemmlowp::GemmContext gemm_context;
// Prevent concurrent executions that may access the scratch buffer and
// gemm_context.
std::unique_lock<std::mutex> lock(executionMutex);
// Alow gemmlowp automatically decide how many threads to use.
gemm_context.set_max_num_threads(0);
NNTRACE_COMP_SWITCH("optimized_ops::Conv");
tflite::optimized_ops::Conv(
inputData, convertShapeToDims(inputShape), inputOffset, filterData,
convertShapeToDims(filterShape), filterOffset, biasData, convertShapeToDims(biasShape),
stride_width, stride_height, dilation_width_factor, dilation_height_factor,
paddingWidth, paddingHeight, outputOffset, output_multiplier, output_shift,
output_activation_min, output_activation_max, outputData,
convertShapeToDims(outputShape), im2colData, im2colDim, &gemm_context);
return true;
}
bool convNhwc(const _Float16* inputData, const Shape& inputShape, const _Float16* filterData,
const Shape& filterShape, const _Float16* biasData, const Shape& biasShape,
int32_t padding_left, int32_t padding_right, int32_t padding_top,
int32_t padding_bottom, int32_t stride_width, int32_t stride_height,
int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation,
_Float16* outputData, const Shape& outputShape) {
NNTRACE_TRANS("convFloat16");
std::vector<float> inputData_float32(getNumberOfElements(inputShape));
std::vector<float> filterData_float32(getNumberOfElements(filterShape));
std::vector<float> biasData_float32(getNumberOfElements(biasShape));
std::vector<float> outputData_float32(getNumberOfElements(outputShape));
convertFloat16ToFloat32(inputData, &inputData_float32);
convertFloat16ToFloat32(filterData, &filterData_float32);
convertFloat16ToFloat32(biasData, &biasData_float32);
convNhwc(inputData_float32.data(), inputShape, filterData_float32.data(), filterShape,
biasData_float32.data(), biasShape, padding_left, padding_right, padding_top,
padding_bottom, stride_width, stride_height, dilation_width_factor,
dilation_height_factor, activation, outputData_float32.data(), outputShape);
convertFloat32ToFloat16(outputData_float32, outputData);
return true;
}
template <typename T_Input, typename T_Filter, typename T_Bias>
bool conv(const T_Input* inputData, const Shape& inputShape, const T_Filter* filterData,
const Shape& filterShape, const T_Bias* biasData, const Shape& biasShape,
int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height, int32_t dilation_width_factor,
int32_t dilation_height_factor, int32_t activation, bool useNchw, T_Input* outputData,
const Shape& outputShape) {
InputWithLayout<T_Input> input(useNchw);
OutputWithLayout<T_Input> output(useNchw);
NN_RET_CHECK(input.initialize(inputData, inputShape));
NN_RET_CHECK(output.initialize(outputData, outputShape));
NN_RET_CHECK(convNhwc(input.getNhwcBuffer(), input.getNhwcShape(), filterData, filterShape,
biasData, biasShape, padding_left, padding_right, padding_top,
padding_bottom, stride_width, stride_height, dilation_width_factor,
dilation_height_factor, activation, output.getNhwcBuffer(),
output.getNhwcShape()));
NN_RET_CHECK(output.commit());
return true;
}
bool convQuant8PerChannelNhwc(const uint8_t* inputData, const Shape& inputShape,
const int8_t* filterData, const Shape& filterShape,
const float* filterScales, const int32_t* biasData,
const Shape& biasShape, int32_t paddingLeft, int32_t paddingRight,
int32_t paddingTop, int32_t paddingBottom, int32_t strideWidth,
int32_t strideHeight, int32_t dilationWidthFactor,
int32_t dilationHeightFactor, int32_t activation, uint8_t* outputData,
const Shape& outputShape) {
NNTRACE_TRANS("convQuant8PerChannel");
uint32_t numBatches = getSizeOfDimension(inputShape, 0);
uint32_t inputHeight = getSizeOfDimension(inputShape, 1);
uint32_t inputWidth = getSizeOfDimension(inputShape, 2);
uint32_t inputDepth = getSizeOfDimension(inputShape, 3);
uint32_t filterHeight = getSizeOfDimension(filterShape, 1);
uint32_t filterWidth = getSizeOfDimension(filterShape, 2);
uint32_t filterDepth = getSizeOfDimension(filterShape, 3);
uint32_t outputHeight = getSizeOfDimension(outputShape, 1);
uint32_t outputWidth = getSizeOfDimension(outputShape, 2);
uint32_t outputDepth = getSizeOfDimension(outputShape, 3);
int32_t inputOffset = -inputShape.offset;
int32_t outputOffset = outputShape.offset;
auto realMultiplier = std::vector<double>(outputDepth, .0f);
auto outputMultiplier = std::vector<int32_t>(outputDepth, 0);
auto outputShift = std::vector<int32_t>(outputDepth, .0f);
for (int i = 0; i < outputDepth; ++i) {
Shape filterChannelShape = filterShape;
filterChannelShape.scale = filterScales[i];
Shape biasChannelShape = biasShape;
biasChannelShape.scale = filterScales[i] * inputShape.scale;
NN_RET_CHECK(GetQuantizedConvolutionMultipler(
inputShape, filterChannelShape, biasChannelShape, outputShape, &realMultiplier[i]));
int exponent;
NN_RET_CHECK(QuantizeMultiplier(realMultiplier[i], &outputMultiplier[i], &exponent));
outputShift[i] = -exponent;
}
int32_t output_activation_min = 0, output_activation_max = 0;
CalculateActivationRangeUint8(activation, outputShape, &output_activation_min,
&output_activation_max);
const uint8_t* inputBase = inputData;
uint8_t* outPtr = outputData;
for (uint32_t b = 0; b < numBatches; b++) {
for (uint32_t h = 0; h < outputHeight; h++) {
for (uint32_t w = 0; w < outputWidth; w++) {
const int8_t* filterBase = filterData;
for (uint32_t d = 0; d < outputDepth; d++) {
int32_t wInputOrigin = static_cast<int32_t>(w) * strideWidth - paddingLeft;
int32_t hInputOrigin = static_cast<int32_t>(h) * strideHeight - paddingTop;
int32_t sum = 0.0f;
for (uint32_t i = 0; i < filterHeight; i++) {
for (uint32_t j = 0; j < filterWidth; j++) {
for (uint32_t k = 0; k < filterDepth; k++) {
int32_t hInput = hInputOrigin +
dilationHeightFactor * static_cast<int32_t>(i);
int32_t wInput = wInputOrigin +
dilationWidthFactor * static_cast<int32_t>(j);
uint32_t dInput = k;
if (hInput >= 0 && hInput < static_cast<int32_t>(inputHeight) &&
wInput >= 0 && wInput < static_cast<int32_t>(inputWidth)) {
uint32_t filterIndex =
i * filterWidth * filterDepth + j * filterDepth + k;
uint32_t inputIndex = hInput * inputWidth * inputDepth +
wInput * inputDepth + dInput;
sum += (static_cast<int32_t>(filterBase[filterIndex])) *
(static_cast<int32_t>(inputBase[inputIndex]) +
inputOffset);
}
}
}
}
sum += biasData[d];
sum = tflite::MultiplyByQuantizedMultiplier(sum, outputMultiplier[d],
-outputShift[d]);
sum += outputOffset;
sum = std::max(std::min(sum, output_activation_max), output_activation_min);
outPtr[d] = static_cast<uint8_t>(sum);
filterBase += filterHeight * filterWidth * filterDepth;
}
outPtr += outputDepth;
}
}
inputBase += inputHeight * inputWidth * inputDepth;
}
return true;
}
bool convQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape,
const int8_t* filterData, const Shape& filterShape,
const float* filterScales, const int32_t* biasData,
const Shape& biasShape, int32_t paddingLeft, int32_t paddingRight,
int32_t paddingTop, int32_t paddingBottom, int32_t strideWidth,
int32_t strideHeight, int32_t dilationWidthFactor,
int32_t dilationHeightFactor, int32_t activation, bool useNchw,
uint8_t* outputData, const Shape& outputShape) {
InputWithLayout<uint8_t> input(useNchw);
OutputWithLayout<uint8_t> output(useNchw);
NN_RET_CHECK(input.initialize(inputData, inputShape));
NN_RET_CHECK(output.initialize(outputData, outputShape));
NN_RET_CHECK(convQuant8PerChannelNhwc(
input.getNhwcBuffer(), input.getNhwcShape(), filterData, filterShape, filterScales,
biasData, biasShape, paddingLeft, paddingRight, paddingTop, paddingBottom, strideWidth,
strideHeight, dilationWidthFactor, dilationHeightFactor, activation,
output.getNhwcBuffer(), output.getNhwcShape()));
NN_RET_CHECK(output.commit());
return true;
}
#undef ANDROID_NN_CONV_PARAMETERS
} // namespace
bool validate(const IOperationValidationContext* context) {
NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
auto inputCount = context->getNumInputs();
auto inputType = context->getInputType(kInputTensor);
auto filterType = context->getInputType(kFilterTensor);
std::vector<OperandType> inExpectedTypes;
if (inputType == OperandType::TENSOR_FLOAT32) {
inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32,
OperandType::TENSOR_FLOAT32, OperandType::INT32,
OperandType::INT32, OperandType::INT32,
OperandType::INT32};
} else if (inputType == OperandType::TENSOR_FLOAT16) {
inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16,
OperandType::TENSOR_FLOAT16, OperandType::INT32,
OperandType::INT32, OperandType::INT32,
OperandType::INT32};
} else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
if (filterType == OperandType::TENSOR_QUANT8_ASYMM ||
filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM,
filterType,
OperandType::TENSOR_INT32,
OperandType::INT32,
OperandType::INT32,
OperandType::INT32,
OperandType::INT32};
if (filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
NN_RET_CHECK_EQ(
context->getInputExtraParams(kFilterTensor).channelQuant().channelDim, 0)
<< "Unsupported filter tensor channel dimension for operation "
<< kOperationName;
}
} else {
NN_RET_CHECK_FAIL() << "Unsupported filter tensor type for operation "
<< kOperationName;
}
} else {
NN_RET_CHECK_FAIL() << "Unsupported input tensor type for operation " << kOperationName;
}
// NeuralNetworks.h specifies that ANEURALNETWORKS_CONV_2D's output must
// meet "outputScale > inputScale * filterScale" for the operand type
// ANEURALNETWORKS_TENSOR_QUANT8_ASYMM before API level 29. For other
// operand types (e.g., ANEURALNETWORKS_TENSOR_FLOAT32), this constraint
// does not apply, so by default the constraint is met.
bool meetsQuantizedScaleConstraintBeforeV1_2 = true;
if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
const float inputScale = context->getInputShape(kInputTensor).scale;
const float filterScale = context->getInputShape(kFilterTensor).scale;
const float outputScale = context->getInputShape(kOutputTensor).scale;
meetsQuantizedScaleConstraintBeforeV1_2 = (outputScale > inputScale * filterScale);
}
bool withExplicitPadding = false;
bool withLayout = false;
bool withDilation = false;
if (inputCount >= 8) {
if (context->getInputType(7) == OperandType::INT32 && inputCount >= 10) {
std::vector<OperandType> explicitScalarTypes(3, OperandType::INT32);
inExpectedTypes.insert(inExpectedTypes.end(), explicitScalarTypes.begin(),
explicitScalarTypes.end());
withExplicitPadding = true;
}
int inputOffset = withExplicitPadding ? 3 : 0;
if (inputCount >= 8 + inputOffset) {
inExpectedTypes.push_back(OperandType::BOOL);
withLayout = true;
}
NN_RET_CHECK_NE(inputCount, 9 + inputOffset)
<< "Provided only one dilation factor value, two values are requred for operation "
<< kOperationName;
if (inputCount == 10 + inputOffset) {
inExpectedTypes.push_back(OperandType::INT32);
inExpectedTypes.push_back(OperandType::INT32);
withDilation = true;
}
}
if (filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL || withLayout || withDilation ||
!meetsQuantizedScaleConstraintBeforeV1_2) {
NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
} else {
NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
}
return validateInputTypes(context, inExpectedTypes) &&
validateOutputTypes(context, {inputType});
}
bool prepare(IOperationExecutionContext* context) {
Shape input = context->getInputShape(kInputTensor);
Shape filter = context->getInputShape(kFilterTensor);
Shape bias = context->getInputShape(kBiasTensor);
if (filter.type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
NN_RET_CHECK(input.type == OperandType::TENSOR_QUANT8_ASYMM);
} else {
NN_RET_CHECK(input.type == filter.type);
}
if (input.type == OperandType::TENSOR_QUANT8_ASYMM) {
NN_RET_CHECK(bias.type == OperandType::TENSOR_INT32);
} else {
NN_RET_CHECK(input.type == bias.type);
}
NN_RET_CHECK_EQ(getNumberOfDimensions(input), 4);
NN_RET_CHECK_EQ(getNumberOfDimensions(filter), 4);
NN_RET_CHECK_EQ(getNumberOfDimensions(bias), 1);
Conv2dParam param;
NN_RET_CHECK(param.initialize(context));
uint32_t batches = getSizeOfDimension(input, 0);
uint32_t height = getSizeOfDimension(input, param.useNchw ? 2 : 1);
uint32_t width = getSizeOfDimension(input, param.useNchw ? 3 : 2);
uint32_t channels_in = getSizeOfDimension(input, param.useNchw ? 1 : 3);
uint32_t channels_out = getSizeOfDimension(filter, 0);
uint32_t filterHeight = getSizeOfDimension(filter, 1);
uint32_t filterWidth = getSizeOfDimension(filter, 2);
// Only batches can be zero.
NN_RET_CHECK_EQ(channels_in, getSizeOfDimension(filter, 3));
NN_RET_CHECK_EQ(channels_out, getSizeOfDimension(bias, 0));
NN_RET_CHECK_GT(height, 0);
NN_RET_CHECK_GT(width, 0);
NN_RET_CHECK_GT(channels_in, 0);
NN_RET_CHECK_GT(channels_out, 0);
int32_t effectiveFilterWidth = (filterWidth - 1) * param.dilation_width_factor + 1;
int32_t effectiveFilterHeight = (filterHeight - 1) * param.dilation_height_factor + 1;
NN_RET_CHECK_GT(effectiveFilterWidth, param.padding_left);
NN_RET_CHECK_GT(effectiveFilterWidth, param.padding_right);
NN_RET_CHECK_GT(effectiveFilterHeight, param.padding_top);
NN_RET_CHECK_GT(effectiveFilterHeight, param.padding_bottom);
uint32_t outWidth =
computeOutSize(width, filterWidth, param.stride_width, param.dilation_width_factor,
param.padding_left, param.padding_right);
uint32_t outHeight =
computeOutSize(height, filterHeight, param.stride_height, param.dilation_height_factor,
param.padding_top, param.padding_bottom);
Shape output = context->getOutputShape(kOutputTensor);
output.type = input.type;
if (param.useNchw) {
output.dimensions = {batches, channels_out, outHeight, outWidth};
} else {
output.dimensions = {batches, outHeight, outWidth, channels_out};
}
return context->setOutputShape(kOutputTensor, output);
}
bool execute(IOperationExecutionContext* context) {
// Bypass execution in the case of zero-sized input.
if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
Conv2dParam param;
NN_RET_CHECK(param.initialize(context));
switch (context->getInputType(kInputTensor)) {
case OperandType::TENSOR_FLOAT32:
return conv(context->getInputBuffer<float>(kInputTensor),
context->getInputShape(kInputTensor),
context->getInputBuffer<float>(kFilterTensor),
context->getInputShape(kFilterTensor),
context->getInputBuffer<float>(kBiasTensor),
context->getInputShape(kBiasTensor), param.padding_left,
param.padding_right, param.padding_top, param.padding_bottom,
param.stride_width, param.stride_height, param.dilation_width_factor,
param.dilation_height_factor, param.activation, param.useNchw,
context->getOutputBuffer<float>(kOutputTensor),
context->getOutputShape(kOutputTensor));
case OperandType::TENSOR_FLOAT16:
return conv(context->getInputBuffer<_Float16>(kInputTensor),
context->getInputShape(kInputTensor),
context->getInputBuffer<_Float16>(kFilterTensor),
context->getInputShape(kFilterTensor),
context->getInputBuffer<_Float16>(kBiasTensor),
context->getInputShape(kBiasTensor), param.padding_left,
param.padding_right, param.padding_top, param.padding_bottom,
param.stride_width, param.stride_height, param.dilation_width_factor,
param.dilation_height_factor, param.activation, param.useNchw,
context->getOutputBuffer<_Float16>(kOutputTensor),
context->getOutputShape(kOutputTensor));
case OperandType::TENSOR_QUANT8_ASYMM:
if (context->getInputType(kFilterTensor) ==
OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
return convQuant8PerChannel(
context->getInputBuffer<uint8_t>(kInputTensor),
context->getInputShape(kInputTensor),
context->getInputBuffer<int8_t>(kFilterTensor),
context->getInputShape(kFilterTensor),
context->getInputExtraParams(kFilterTensor).channelQuant().scales.data(),
context->getInputBuffer<int32_t>(kBiasTensor),
context->getInputShape(kBiasTensor), param.padding_left,
param.padding_right, param.padding_top, param.padding_bottom,
param.stride_width, param.stride_height, param.dilation_width_factor,
param.dilation_height_factor, param.activation, param.useNchw,
context->getOutputBuffer<uint8_t>(kOutputTensor),
context->getOutputShape(kOutputTensor));
} else if (context->getInputType(kFilterTensor) == OperandType::TENSOR_QUANT8_ASYMM) {
return conv(context->getInputBuffer<uint8_t>(kInputTensor),
context->getInputShape(kInputTensor),
context->getInputBuffer<uint8_t>(kFilterTensor),
context->getInputShape(kFilterTensor),
context->getInputBuffer<int32_t>(kBiasTensor),
context->getInputShape(kBiasTensor), param.padding_left,
param.padding_right, param.padding_top, param.padding_bottom,
param.stride_width, param.stride_height, param.dilation_width_factor,
param.dilation_height_factor, param.activation, param.useNchw,
context->getOutputBuffer<uint8_t>(kOutputTensor),
context->getOutputShape(kOutputTensor));
} else {
NN_RET_CHECK_FAIL() << "Unsupported filter type for operation " << kOperationName;
}
default:
NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
}
}
} // namespace conv_2d
NN_REGISTER_OPERATION(CONV_2D, conv_2d::kOperationName, conv_2d::validate, conv_2d::prepare,
conv_2d::execute, .allowZeroSizedInput = true);
} // namespace nn
} // namespace android