/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FRAMEWORKS_ML_NN_MULTINOMIAL_H
#define FRAMEWORKS_ML_NN_MULTINOMIAL_H
#include "HalOperation.h"
#include "tensorflow/lite/kernels/internal/tensor_utils.h"
#include <algorithm>
#include <cmath>
namespace android {
namespace nn {
struct RunTimeOperandInfo;
struct Shape;
class Multinomial {
public:
Multinomial(const android::hardware::neuralnetworks::V1_2::Operation& operation,
std::vector<RunTimeOperandInfo>& operands);
static bool Prepare(const hardware::neuralnetworks::V1_2::Operation& operation,
std::vector<RunTimeOperandInfo>& operands, Shape* outputShape);
bool Eval();
static constexpr int kInputTensor = 0;
static constexpr int kSampleCountParam = 1;
static constexpr int kRandomSeedsTensor = 2;
static constexpr int kOutputTensor = 0;
private:
void EvalFloat32(const float* inputData);
RunTimeOperandInfo* input_;
int sample_count_;
RunTimeOperandInfo* random_seeds_;
RunTimeOperandInfo* output_;
};
} // namespace nn
} // namespace android
#endif // FRAMEWORKS_ML_NN_MULTINOMIAL_H