/*
* Copyright (C) 2017, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android-base/logging.h>
#include <android-base/macros.h>
#include <cutils/properties.h>
#include <gmock/gmock.h>
#undef NAN // This is weird, NAN is defined in bionic/libc/include/math.h:38
#include "wifi_chip.h"
#include "mock_interface_tool.h"
#include "mock_wifi_feature_flags.h"
#include "mock_wifi_iface_util.h"
#include "mock_wifi_legacy_hal.h"
#include "mock_wifi_mode_controller.h"
using testing::NiceMock;
using testing::Return;
using testing::Test;
namespace {
using android::hardware::wifi::V1_0::ChipId;
constexpr ChipId kFakeChipId = 5;
} // namespace
namespace android {
namespace hardware {
namespace wifi {
namespace V1_3 {
namespace implementation {
class WifiChipTest : public Test {
protected:
void setupV1IfaceCombination() {
// clang-format off
const hidl_vec<V1_0::IWifiChip::ChipIfaceCombination> combinationsSta = {
{{{{IfaceType::STA}, 1}, {{IfaceType::P2P}, 1}}}
};
const hidl_vec<V1_0::IWifiChip::ChipIfaceCombination> combinationsAp = {
{{{{IfaceType::AP}, 1}}}
};
const std::vector<V1_0::IWifiChip::ChipMode> modes = {
{feature_flags::chip_mode_ids::kV1Sta, combinationsSta},
{feature_flags::chip_mode_ids::kV1Ap, combinationsAp}
};
// clang-format on
EXPECT_CALL(*feature_flags_, getChipModes())
.WillRepeatedly(testing::Return(modes));
}
void setupV1_AwareIfaceCombination() {
// clang-format off
const hidl_vec<V1_0::IWifiChip::ChipIfaceCombination> combinationsSta = {
{{{{IfaceType::STA}, 1}, {{IfaceType::P2P, IfaceType::NAN}, 1}}}
};
const hidl_vec<V1_0::IWifiChip::ChipIfaceCombination> combinationsAp = {
{{{{IfaceType::AP}, 1}}}
};
const std::vector<V1_0::IWifiChip::ChipMode> modes = {
{feature_flags::chip_mode_ids::kV1Sta, combinationsSta},
{feature_flags::chip_mode_ids::kV1Ap, combinationsAp}
};
// clang-format on
EXPECT_CALL(*feature_flags_, getChipModes())
.WillRepeatedly(testing::Return(modes));
}
void setupV1_AwareDisabledApIfaceCombination() {
// clang-format off
const hidl_vec<V1_0::IWifiChip::ChipIfaceCombination> combinationsSta = {
{{{{IfaceType::STA}, 1}, {{IfaceType::P2P, IfaceType::NAN}, 1}}}
};
const std::vector<V1_0::IWifiChip::ChipMode> modes = {
{feature_flags::chip_mode_ids::kV1Sta, combinationsSta}
};
// clang-format on
EXPECT_CALL(*feature_flags_, getChipModes())
.WillRepeatedly(testing::Return(modes));
}
void setupV2_AwareIfaceCombination() {
// clang-format off
const hidl_vec<V1_0::IWifiChip::ChipIfaceCombination> combinations = {
{{{{IfaceType::STA}, 1}, {{IfaceType::AP}, 1}}},
{{{{IfaceType::STA}, 1}, {{IfaceType::P2P, IfaceType::NAN}, 1}}}
};
const std::vector<V1_0::IWifiChip::ChipMode> modes = {
{feature_flags::chip_mode_ids::kV3, combinations}
};
// clang-format on
EXPECT_CALL(*feature_flags_, getChipModes())
.WillRepeatedly(testing::Return(modes));
}
void setupV2_AwareDisabledApIfaceCombination() {
// clang-format off
const hidl_vec<V1_0::IWifiChip::ChipIfaceCombination> combinations = {
{{{{IfaceType::STA}, 1}, {{IfaceType::P2P, IfaceType::NAN}, 1}}}
};
const std::vector<V1_0::IWifiChip::ChipMode> modes = {
{feature_flags::chip_mode_ids::kV3, combinations}
};
// clang-format on
EXPECT_CALL(*feature_flags_, getChipModes())
.WillRepeatedly(testing::Return(modes));
}
void setup_MultiIfaceCombination() {
// clang-format off
const hidl_vec<V1_0::IWifiChip::ChipIfaceCombination> combinations = {
{{{{IfaceType::STA}, 3}, {{IfaceType::AP}, 1}}}
};
const std::vector<V1_0::IWifiChip::ChipMode> modes = {
{feature_flags::chip_mode_ids::kV3, combinations}
};
// clang-format on
EXPECT_CALL(*feature_flags_, getChipModes())
.WillRepeatedly(testing::Return(modes));
}
void assertNumberOfModes(uint32_t num_modes) {
chip_->getAvailableModes(
[num_modes](const WifiStatus& status,
const std::vector<WifiChip::ChipMode>& modes) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
// V2_Aware has 1 mode of operation.
ASSERT_EQ(num_modes, modes.size());
});
}
void findModeAndConfigureForIfaceType(const IfaceType& type) {
// This should be aligned with kInvalidModeId in wifi_chip.cpp.
ChipModeId mode_id = UINT32_MAX;
chip_->getAvailableModes(
[&mode_id, &type](const WifiStatus& status,
const std::vector<WifiChip::ChipMode>& modes) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
for (const auto& mode : modes) {
for (const auto& combination : mode.availableCombinations) {
for (const auto& limit : combination.limits) {
if (limit.types.end() !=
std::find(limit.types.begin(),
limit.types.end(), type)) {
mode_id = mode.id;
}
}
}
}
});
ASSERT_NE(UINT32_MAX, mode_id);
chip_->configureChip(mode_id, [](const WifiStatus& status) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
});
}
// Returns an empty string on error.
std::string createIface(const IfaceType& type) {
std::string iface_name;
if (type == IfaceType::AP) {
chip_->createApIface([&iface_name](const WifiStatus& status,
const sp<IWifiApIface>& iface) {
if (WifiStatusCode::SUCCESS == status.code) {
ASSERT_NE(iface.get(), nullptr);
iface->getName([&iface_name](const WifiStatus& status,
const hidl_string& name) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
iface_name = name.c_str();
});
}
});
} else if (type == IfaceType::NAN) {
chip_->createNanIface(
[&iface_name](
const WifiStatus& status,
const sp<android::hardware::wifi::V1_0::IWifiNanIface>&
iface) {
if (WifiStatusCode::SUCCESS == status.code) {
ASSERT_NE(iface.get(), nullptr);
iface->getName([&iface_name](const WifiStatus& status,
const hidl_string& name) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
iface_name = name.c_str();
});
}
});
} else if (type == IfaceType::P2P) {
chip_->createP2pIface(
[&iface_name](const WifiStatus& status,
const sp<IWifiP2pIface>& iface) {
if (WifiStatusCode::SUCCESS == status.code) {
ASSERT_NE(iface.get(), nullptr);
iface->getName([&iface_name](const WifiStatus& status,
const hidl_string& name) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
iface_name = name.c_str();
});
}
});
} else if (type == IfaceType::STA) {
chip_->createStaIface(
[&iface_name](const WifiStatus& status,
const sp<V1_0::IWifiStaIface>& iface) {
if (WifiStatusCode::SUCCESS == status.code) {
ASSERT_NE(iface.get(), nullptr);
iface->getName([&iface_name](const WifiStatus& status,
const hidl_string& name) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
iface_name = name.c_str();
});
}
});
}
return iface_name;
}
void removeIface(const IfaceType& type, const std::string& iface_name) {
if (type == IfaceType::AP) {
chip_->removeApIface(iface_name, [](const WifiStatus& status) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
});
} else if (type == IfaceType::NAN) {
chip_->removeNanIface(iface_name, [](const WifiStatus& status) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
});
} else if (type == IfaceType::P2P) {
chip_->removeP2pIface(iface_name, [](const WifiStatus& status) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
});
} else if (type == IfaceType::STA) {
chip_->removeStaIface(iface_name, [](const WifiStatus& status) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
});
}
}
bool createRttController() {
bool success = false;
chip_->createRttController(
NULL, [&success](const WifiStatus& status,
const sp<IWifiRttController>& rtt) {
if (WifiStatusCode::SUCCESS == status.code) {
ASSERT_NE(rtt.get(), nullptr);
success = true;
}
});
return success;
}
sp<WifiChip> chip_;
ChipId chip_id_ = kFakeChipId;
std::shared_ptr<NiceMock<wifi_system::MockInterfaceTool>> iface_tool_{
new NiceMock<wifi_system::MockInterfaceTool>};
std::shared_ptr<NiceMock<legacy_hal::MockWifiLegacyHal>> legacy_hal_{
new NiceMock<legacy_hal::MockWifiLegacyHal>(iface_tool_)};
std::shared_ptr<NiceMock<mode_controller::MockWifiModeController>>
mode_controller_{new NiceMock<mode_controller::MockWifiModeController>};
std::shared_ptr<NiceMock<iface_util::MockWifiIfaceUtil>> iface_util_{
new NiceMock<iface_util::MockWifiIfaceUtil>(iface_tool_)};
std::shared_ptr<NiceMock<feature_flags::MockWifiFeatureFlags>>
feature_flags_{new NiceMock<feature_flags::MockWifiFeatureFlags>};
public:
void SetUp() override {
chip_ = new WifiChip(chip_id_, legacy_hal_, mode_controller_,
iface_util_, feature_flags_);
EXPECT_CALL(*mode_controller_, changeFirmwareMode(testing::_))
.WillRepeatedly(testing::Return(true));
EXPECT_CALL(*legacy_hal_, start())
.WillRepeatedly(testing::Return(legacy_hal::WIFI_SUCCESS));
}
void TearDown() override {
// Restore default system iface names (This should ideally be using a
// mock).
property_set("wifi.interface", "wlan0");
property_set("wifi.concurrent.interface", "wlan1");
}
};
////////// V1 Iface Combinations ////////////
// Mode 1 - STA + P2P
// Mode 2 - AP
class WifiChipV1IfaceCombinationTest : public WifiChipTest {
public:
void SetUp() override {
setupV1IfaceCombination();
WifiChipTest::SetUp();
// V1 has 2 modes of operation.
assertNumberOfModes(2u);
}
};
TEST_F(WifiChipV1IfaceCombinationTest, StaMode_CreateSta_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
}
TEST_F(WifiChipV1IfaceCombinationTest, StaMode_CreateP2p_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV1IfaceCombinationTest, StaMode_CreateNan_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_TRUE(createIface(IfaceType::NAN).empty());
}
TEST_F(WifiChipV1IfaceCombinationTest, StaMode_CreateAp_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_TRUE(createIface(IfaceType::AP).empty());
}
TEST_F(WifiChipV1IfaceCombinationTest, StaMode_CreateStaP2p_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV1IfaceCombinationTest, ApMode_CreateAp_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::AP);
ASSERT_EQ(createIface(IfaceType::AP), "wlan0");
}
TEST_F(WifiChipV1IfaceCombinationTest, ApMode_CreateSta_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceType::AP);
ASSERT_TRUE(createIface(IfaceType::STA).empty());
}
TEST_F(WifiChipV1IfaceCombinationTest, ApMode_CreateP2p_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceType::AP);
ASSERT_TRUE(createIface(IfaceType::STA).empty());
}
TEST_F(WifiChipV1IfaceCombinationTest, ApMode_CreateNan_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceType::AP);
ASSERT_TRUE(createIface(IfaceType::NAN).empty());
}
////////// V1 + Aware Iface Combinations ////////////
// Mode 1 - STA + P2P/NAN
// Mode 2 - AP
class WifiChipV1_AwareIfaceCombinationTest : public WifiChipTest {
public:
void SetUp() override {
setupV1_AwareIfaceCombination();
WifiChipTest::SetUp();
// V1_Aware has 2 modes of operation.
assertNumberOfModes(2u);
}
};
TEST_F(WifiChipV1_AwareIfaceCombinationTest, StaMode_CreateSta_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, StaMode_CreateP2p_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, StaMode_CreateNan_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::NAN).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, StaMode_CreateAp_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_TRUE(createIface(IfaceType::AP).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest,
StaMode_CreateStaP2p_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest,
StaMode_CreateStaNan_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::NAN).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest,
StaMode_CreateStaP2PNan_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
ASSERT_TRUE(createIface(IfaceType::NAN).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest,
StaMode_CreateStaNan_AfterP2pRemove_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
const auto p2p_iface_name = createIface(IfaceType::P2P);
ASSERT_FALSE(p2p_iface_name.empty());
ASSERT_TRUE(createIface(IfaceType::NAN).empty());
// After removing P2P iface, NAN iface creation should succeed.
removeIface(IfaceType::P2P, p2p_iface_name);
ASSERT_FALSE(createIface(IfaceType::NAN).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest,
StaMode_CreateStaP2p_AfterNanRemove_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
const auto nan_iface_name = createIface(IfaceType::NAN);
ASSERT_FALSE(nan_iface_name.empty());
ASSERT_TRUE(createIface(IfaceType::P2P).empty());
// After removing NAN iface, P2P iface creation should succeed.
removeIface(IfaceType::NAN, nan_iface_name);
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, ApMode_CreateAp_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::AP);
ASSERT_EQ(createIface(IfaceType::AP), "wlan0");
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, ApMode_CreateSta_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceType::AP);
ASSERT_TRUE(createIface(IfaceType::STA).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, ApMode_CreateP2p_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceType::AP);
ASSERT_TRUE(createIface(IfaceType::STA).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, ApMode_CreateNan_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceType::AP);
ASSERT_TRUE(createIface(IfaceType::NAN).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, RttControllerFlowStaModeNoSta) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_TRUE(createRttController());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, RttControllerFlowStaModeWithSta) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_TRUE(createRttController());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, RttControllerFlowApToSta) {
findModeAndConfigureForIfaceType(IfaceType::AP);
const auto ap_iface_name = createIface(IfaceType::AP);
ASSERT_FALSE(ap_iface_name.empty());
ASSERT_FALSE(createRttController());
removeIface(IfaceType::AP, ap_iface_name);
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_TRUE(createRttController());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, SelectTxScenarioWithOnlySta) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
EXPECT_CALL(*legacy_hal_, selectTxPowerScenario("wlan0", testing::_))
.WillOnce(testing::Return(legacy_hal::WIFI_SUCCESS));
chip_->selectTxPowerScenario_1_2(
V1_2::IWifiChip::TxPowerScenario::ON_HEAD_CELL_OFF,
[](const WifiStatus& status) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
});
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, SelectTxScenarioWithOnlyAp) {
findModeAndConfigureForIfaceType(IfaceType::AP);
ASSERT_EQ(createIface(IfaceType::AP), "wlan0");
EXPECT_CALL(*legacy_hal_, selectTxPowerScenario("wlan0", testing::_))
.WillOnce(testing::Return(legacy_hal::WIFI_SUCCESS));
chip_->selectTxPowerScenario_1_2(
V1_2::IWifiChip::TxPowerScenario::ON_HEAD_CELL_OFF,
[](const WifiStatus& status) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
});
}
////////// V2 + Aware Iface Combinations ////////////
// Mode 1 - STA + STA/AP
// - STA + P2P/NAN
class WifiChipV2_AwareIfaceCombinationTest : public WifiChipTest {
public:
void SetUp() override {
setupV2_AwareIfaceCombination();
WifiChipTest::SetUp();
// V2_Aware has 1 mode of operation.
assertNumberOfModes(1u);
}
};
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateSta_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateP2p_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateNan_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::NAN).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateAp_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_EQ(createIface(IfaceType::AP), "wlan1");
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateStaSta_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceType::AP);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
ASSERT_TRUE(createIface(IfaceType::STA).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateStaAp_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::AP);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
ASSERT_EQ(createIface(IfaceType::AP), "wlan1");
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateApSta_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::AP);
ASSERT_EQ(createIface(IfaceType::AP), "wlan1");
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest,
CreateSta_AfterStaApRemove_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
const auto sta_iface_name = createIface(IfaceType::STA);
ASSERT_FALSE(sta_iface_name.empty());
const auto ap_iface_name = createIface(IfaceType::AP);
ASSERT_FALSE(ap_iface_name.empty());
ASSERT_TRUE(createIface(IfaceType::STA).empty());
// After removing AP & STA iface, STA iface creation should succeed.
removeIface(IfaceType::STA, sta_iface_name);
removeIface(IfaceType::AP, ap_iface_name);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateStaP2p_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateStaNan_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::NAN).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateStaP2PNan_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
ASSERT_TRUE(createIface(IfaceType::NAN).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest,
CreateStaNan_AfterP2pRemove_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
const auto p2p_iface_name = createIface(IfaceType::P2P);
ASSERT_FALSE(p2p_iface_name.empty());
ASSERT_TRUE(createIface(IfaceType::NAN).empty());
// After removing P2P iface, NAN iface creation should succeed.
removeIface(IfaceType::P2P, p2p_iface_name);
ASSERT_FALSE(createIface(IfaceType::NAN).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest,
CreateStaP2p_AfterNanRemove_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
const auto nan_iface_name = createIface(IfaceType::NAN);
ASSERT_FALSE(nan_iface_name.empty());
ASSERT_TRUE(createIface(IfaceType::P2P).empty());
// After removing NAN iface, P2P iface creation should succeed.
removeIface(IfaceType::NAN, nan_iface_name);
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateApNan_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceType::AP);
ASSERT_FALSE(createIface(IfaceType::AP).empty());
ASSERT_TRUE(createIface(IfaceType::NAN).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateApP2p_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceType::AP);
ASSERT_FALSE(createIface(IfaceType::AP).empty());
ASSERT_TRUE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest,
StaMode_CreateStaNan_AfterP2pRemove_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
const auto p2p_iface_name = createIface(IfaceType::P2P);
ASSERT_FALSE(p2p_iface_name.empty());
ASSERT_TRUE(createIface(IfaceType::NAN).empty());
// After removing P2P iface, NAN iface creation should succeed.
removeIface(IfaceType::P2P, p2p_iface_name);
ASSERT_FALSE(createIface(IfaceType::NAN).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest,
StaMode_CreateStaP2p_AfterNanRemove_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
const auto nan_iface_name = createIface(IfaceType::NAN);
ASSERT_FALSE(nan_iface_name.empty());
ASSERT_TRUE(createIface(IfaceType::P2P).empty());
// After removing NAN iface, P2P iface creation should succeed.
removeIface(IfaceType::NAN, nan_iface_name);
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest,
CreateStaAp_EnsureDifferentIfaceNames) {
findModeAndConfigureForIfaceType(IfaceType::AP);
const auto sta_iface_name = createIface(IfaceType::STA);
const auto ap_iface_name = createIface(IfaceType::AP);
ASSERT_FALSE(sta_iface_name.empty());
ASSERT_FALSE(ap_iface_name.empty());
ASSERT_NE(sta_iface_name, ap_iface_name);
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, RttControllerFlowStaModeNoSta) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_TRUE(createRttController());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, RttControllerFlowStaModeWithSta) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_TRUE(createRttController());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, RttControllerFlow) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::AP).empty());
ASSERT_TRUE(createRttController());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, SelectTxScenarioWithOnlySta) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
EXPECT_CALL(*legacy_hal_, selectTxPowerScenario("wlan0", testing::_))
.WillOnce(testing::Return(legacy_hal::WIFI_SUCCESS));
chip_->selectTxPowerScenario_1_2(
V1_2::IWifiChip::TxPowerScenario::ON_HEAD_CELL_OFF,
[](const WifiStatus& status) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
});
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, SelectTxScenarioWithOnlyAp) {
findModeAndConfigureForIfaceType(IfaceType::AP);
ASSERT_EQ(createIface(IfaceType::AP), "wlan1");
EXPECT_CALL(*legacy_hal_, selectTxPowerScenario("wlan1", testing::_))
.WillOnce(testing::Return(legacy_hal::WIFI_SUCCESS));
chip_->selectTxPowerScenario_1_2(
V1_2::IWifiChip::TxPowerScenario::ON_HEAD_CELL_OFF,
[](const WifiStatus& status) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
});
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest,
InvalidateAndRemoveNanOnStaRemove) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
// Create NAN iface
ASSERT_EQ(createIface(IfaceType::NAN), "wlan0");
// We should have 1 nan iface.
chip_->getNanIfaceNames(
[](const WifiStatus& status, const hidl_vec<hidl_string>& iface_names) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
ASSERT_EQ(iface_names.size(), 1u);
ASSERT_EQ(iface_names[0], "wlan0");
});
// Retrieve the exact iface object.
sp<IWifiNanIface> nan_iface;
chip_->getNanIface("wlan0", [&nan_iface](const WifiStatus& status,
const sp<IWifiNanIface>& iface) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
ASSERT_NE(iface.get(), nullptr);
nan_iface = iface;
});
// Remove the STA iface.
removeIface(IfaceType::STA, "wlan0");
// We should have 0 nan iface now.
chip_->getNanIfaceNames(
[](const WifiStatus& status, const hidl_vec<hidl_string>& iface_names) {
ASSERT_EQ(WifiStatusCode::SUCCESS, status.code);
ASSERT_EQ(iface_names.size(), 0u);
});
// Any operation on the nan iface object should return error now.
nan_iface->getName(
[](const WifiStatus& status, const std::string& /* iface_name */) {
ASSERT_EQ(WifiStatusCode::ERROR_WIFI_IFACE_INVALID, status.code);
});
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest,
InvalidateAndRemoveRttControllerOnStaRemove) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
// Create RTT controller
sp<IWifiRttController> rtt_controller;
chip_->createRttController(
NULL, [&rtt_controller](const WifiStatus& status,
const sp<IWifiRttController>& rtt) {
if (WifiStatusCode::SUCCESS == status.code) {
ASSERT_NE(rtt.get(), nullptr);
rtt_controller = rtt;
}
});
// Remove the STA iface.
removeIface(IfaceType::STA, "wlan0");
// Any operation on the rtt controller object should return error now.
rtt_controller->getBoundIface(
[](const WifiStatus& status, const sp<IWifiIface>& /* iface */) {
ASSERT_EQ(WifiStatusCode::ERROR_WIFI_RTT_CONTROLLER_INVALID,
status.code);
});
}
////////// V1 Iface Combinations when AP creation is disabled //////////
class WifiChipV1_AwareDisabledApIfaceCombinationTest : public WifiChipTest {
public:
void SetUp() override {
setupV1_AwareDisabledApIfaceCombination();
WifiChipTest::SetUp();
}
};
TEST_F(WifiChipV1_AwareDisabledApIfaceCombinationTest,
StaMode_CreateSta_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_TRUE(createIface(IfaceType::AP).empty());
}
////////// V2 Iface Combinations when AP creation is disabled //////////
class WifiChipV2_AwareDisabledApIfaceCombinationTest : public WifiChipTest {
public:
void SetUp() override {
setupV2_AwareDisabledApIfaceCombination();
WifiChipTest::SetUp();
}
};
TEST_F(WifiChipV2_AwareDisabledApIfaceCombinationTest,
CreateSta_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_TRUE(createIface(IfaceType::AP).empty());
}
////////// Hypothetical Iface Combination with multiple ifaces //////////
class WifiChip_MultiIfaceTest : public WifiChipTest {
public:
void SetUp() override {
setup_MultiIfaceCombination();
WifiChipTest::SetUp();
}
};
TEST_F(WifiChip_MultiIfaceTest, Create3Sta) {
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_TRUE(createIface(IfaceType::STA).empty());
}
TEST_F(WifiChip_MultiIfaceTest, CreateStaWithDefaultNames) {
property_set("wifi.interface.0", "");
property_set("wifi.interface.1", "");
property_set("wifi.interface.2", "");
property_set("wifi.interface", "");
property_set("wifi.concurrent.interface", "");
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
ASSERT_EQ(createIface(IfaceType::STA), "wlan1");
ASSERT_EQ(createIface(IfaceType::STA), "wlan2");
}
TEST_F(WifiChip_MultiIfaceTest, CreateStaWithCustomNames) {
property_set("wifi.interface.0", "test0");
property_set("wifi.interface.1", "test1");
property_set("wifi.interface.2", "test2");
property_set("wifi.interface", "bad0");
property_set("wifi.concurrent.interface", "bad1");
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "bad0");
ASSERT_EQ(createIface(IfaceType::STA), "bad1");
ASSERT_EQ(createIface(IfaceType::STA), "test2");
}
TEST_F(WifiChip_MultiIfaceTest, CreateStaWithCustomAltNames) {
property_set("wifi.interface.0", "");
property_set("wifi.interface.1", "");
property_set("wifi.interface.2", "");
property_set("wifi.interface", "testA0");
property_set("wifi.concurrent.interface", "testA1");
findModeAndConfigureForIfaceType(IfaceType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "testA0");
ASSERT_EQ(createIface(IfaceType::STA), "testA1");
ASSERT_EQ(createIface(IfaceType::STA), "wlan2");
}
TEST_F(WifiChip_MultiIfaceTest, CreateApStartsWithIdx1) {
findModeAndConfigureForIfaceType(IfaceType::STA);
// First AP will be slotted to wlan1.
ASSERT_EQ(createIface(IfaceType::AP), "wlan1");
// First STA will be slotted to wlan0.
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
// All further STA will be slotted to the remaining free indices.
ASSERT_EQ(createIface(IfaceType::STA), "wlan2");
ASSERT_EQ(createIface(IfaceType::STA), "wlan3");
}
} // namespace implementation
} // namespace V1_3
} // namespace wifi
} // namespace hardware
} // namespace android