/*
* Copyright (C) 2016 The Android Open Source Project
* Copyright (C) 2016 Mopria Alliance, Inc.
* Copyright (C) 2013 Hewlett-Packard Development Company, L.P.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <math.h>
#include "wprint_image.h"
#include "lib_wprint.h"
#define TAG "wprint_image"
#define MIN_DECODE_MEM (1 * 1024 * 1024)
#define MAX_DECODE_MEM (4 * 1024 * 1024)
void wprint_image_setup(wprint_image_info_t *image_info, const char *mime_type,
const ifc_wprint_t *wprint_ifc, unsigned int output_resolution,
int pdf_render_resolution) {
if (image_info != NULL) {
LOGD("image_setup");
memset(image_info, 0, sizeof(wprint_image_info_t));
image_info->wprint_ifc = wprint_ifc;
image_info->mime_type = mime_type;
image_info->print_resolution = output_resolution;
image_info->pdf_render_resolution = pdf_render_resolution;
}
}
status_t wprint_image_get_info(FILE *imgfile, wprint_image_info_t *image_info) {
if (image_info == NULL) return ERROR;
image_info->imgfile = imgfile;
image_info->rotation = ROT_0;
image_info->swath_start = -1;
image_info->rows_cached = 0;
image_info->output_cache = NULL;
image_info->output_swath_start = -1;
image_info->scaled_sample_size = 1;
image_info->stripe_height = 0;
image_info->unscaled_rows = NULL;
image_info->unscaled_rows_needed = 0;
image_info->mixed_memory = NULL;
image_info->mixed_memory_needed = 0;
image_info->scaled_width = -1;
image_info->scaled_height = -1;
image_info->unscaled_start_row = -1;
image_info->unscaled_end_row = -1;
image_info->scaling_needed = FALSE;
image_info->output_padding_top = 0;
image_info->output_padding_left = 0;
image_info->output_padding_right = 0;
image_info->output_padding_bottom = 0;
const image_decode_ifc_t *decode_ifc = image_info->decode_ifc;
if ((decode_ifc != NULL) && (decode_ifc->get_hdr != NULL)) {
if (OK == decode_ifc->get_hdr(image_info)) {
LOGI("wprint_image_get_info(): %s dim = %dx%d", image_info->mime_type,
image_info->width, image_info->height);
return OK;
} else {
LOGE("ERROR: get_hdr for %s", image_info->mime_type);
return ERROR;
}
}
LOGE("Unsupported image type: %s", image_info->mime_type);
return ERROR;
}
status_t wprint_image_set_output_properties(wprint_image_info_t *image_info,
wprint_rotation_t rotation, unsigned int printable_width, unsigned int printable_height,
unsigned int top_margin, unsigned int left_margin, unsigned int right_margin,
unsigned int bottom_margin, unsigned int render_flags, unsigned int max_decode_stripe,
unsigned int concurrent_stripes, unsigned int padding_options) {
// validate rotation
switch (rotation) {
default:
rotation = ROT_0;
case ROT_0:
case ROT_90:
case ROT_180:
case ROT_270:
break;
}
// rotate margins
switch (rotation) {
case ROT_90:
case ROT_270: {
unsigned int temp;
temp = top_margin;
top_margin = left_margin;
left_margin = bottom_margin;
bottom_margin = right_margin;
right_margin = temp;
break;
}
default:
break;
}
unsigned int input_render_flags = render_flags;
// store padding options
image_info->padding_options = (padding_options & PAD_ALL);
// store margin adjusted printable area
image_info->printable_width = printable_width - (left_margin + right_margin);
image_info->printable_height = printable_height - (top_margin + bottom_margin);
// store rendering parameters
image_info->render_flags = render_flags;
image_info->output_rows = max_decode_stripe;
image_info->stripe_height = max_decode_stripe;
image_info->concurrent_stripes = concurrent_stripes;
// free data just in case
if (image_info->unscaled_rows != NULL) {
free(image_info->unscaled_rows);
}
// free data just in case
if (image_info->mixed_memory != NULL) {
free(image_info->mixed_memory);
}
image_info->row_offset = 0;
image_info->col_offset = 0;
image_info->scaled_sample_size = 1;
image_info->scaled_width = -1;
image_info->scaled_height = -1;
image_info->unscaled_start_row = -1;
image_info->unscaled_end_row = -1;
image_info->unscaled_rows = NULL;
image_info->unscaled_rows_needed = 0;
image_info->mixed_memory = NULL;
image_info->mixed_memory_needed = 0;
image_info->rotation = rotation;
unsigned int image_output_width;
unsigned int image_output_height;
// save margins
switch (image_info->rotation) {
case ROT_180:
case ROT_270:
image_info->output_padding_top = bottom_margin;
image_info->output_padding_left = right_margin;
image_info->output_padding_right = left_margin;
image_info->output_padding_bottom = top_margin;
break;
case ROT_0:
case ROT_90:
default:
image_info->output_padding_top = top_margin;
image_info->output_padding_left = left_margin;
image_info->output_padding_right = right_margin;
image_info->output_padding_bottom = bottom_margin;
break;
}
// swap dimensions
switch (image_info->rotation) {
case ROT_90:
case ROT_270:
image_output_width = image_info->height;
image_output_height = image_info->width;
break;
case ROT_0:
case ROT_180:
default:
image_output_width = image_info->width;
image_output_height = image_info->height;
break;
}
int native_units = 0;
const image_decode_ifc_t *decode_ifc = image_info->decode_ifc;
if ((image_info->render_flags & RENDER_FLAG_AUTO_FIT) && (decode_ifc != NULL) &&
(decode_ifc->native_units != NULL)) {
native_units = decode_ifc->native_units(image_info);
}
if (native_units <= 0) {
native_units = image_info->print_resolution;
}
float native_scaling = 1.0f;
unsigned int native_image_output_width = image_output_width;
unsigned int native_image_output_height = image_output_height;
if ((native_units != image_info->print_resolution)
&& !((image_info->render_flags & RENDER_FLAG_AUTO_SCALE)
|| ((image_info->render_flags & RENDER_FLAG_AUTO_FIT)
&& !(image_info->render_flags & RENDER_FLAG_DOCUMENT_SCALING)))) {
native_scaling = (image_info->print_resolution * 1.0f) / (native_units * 1.0f);
native_image_output_width = (int) floorf(image_output_width * native_scaling);
native_image_output_height = (int) floorf(image_output_height * native_scaling);
LOGD("need to do native scaling by %f factor to size %dx%d", native_scaling,
native_image_output_width, native_image_output_height);
}
// if we have to scale determine if we can use subsampling to scale down
if ((image_info->render_flags & (RENDER_FLAG_AUTO_SCALE | RENDER_FLAG_AUTO_FIT)) &&
(native_scaling == 1.0f)) {
LOGD("calculating subsampling");
/*
* Find a subsampling scale factor that produces an image that is still bigger
* than the printable area and then finish scaling later using the fine-scaler.
* This produces better quality than subsampling to a smaller size and scaling up.
*/
image_info->scaled_sample_size = 1;
if ((decode_ifc != NULL) && (decode_ifc->supports_subsampling(image_info) == OK)) {
// subsampling supported
int next_width, next_height;
next_width = image_output_width >> 1;
next_height = image_output_height >> 1;
while (((image_info->render_flags & RENDER_FLAG_AUTO_SCALE) &&
(next_width > image_info->printable_width) &&
(next_height > image_info->printable_height)) ||
((image_info->render_flags & RENDER_FLAG_AUTO_FIT) &&
((next_width > image_info->printable_width) ||
(next_height > image_info->printable_height)))) {
image_info->scaled_sample_size <<= 1;
next_width >>= 1;
next_height >>= 1;
}
}
LOGD("calculated sample size: %d", image_info->scaled_sample_size);
// are we dong any subsampling?
if (image_info->scaled_sample_size > 1) {
// force the decoder to close and reopen with the new sample size setting
decode_ifc->cleanup(image_info);
decode_ifc->get_hdr(image_info);
// update the output size
image_output_width /= image_info->scaled_sample_size;
image_output_height /= image_info->scaled_sample_size;
}
/*
* have we reached our target size with subsampling?
* if so disable further scaling
*/
// check if width matches and height meets criteria
if ((image_output_width == image_info->printable_width) &&
(((image_info->render_flags & RENDER_FLAG_AUTO_SCALE) &&
(image_output_height >= image_info->printable_height)) ||
((image_info->render_flags & RENDER_FLAG_AUTO_FIT) &&
(image_output_height < image_info->printable_height)))) {
LOGD("disabling fine scaling since width matches and height meets criteria");
image_info->render_flags &= ~(RENDER_FLAG_AUTO_SCALE | RENDER_FLAG_AUTO_FIT);
} else if ((image_output_height == image_info->printable_height) &&
(((image_info->render_flags & RENDER_FLAG_AUTO_SCALE) &&
(image_output_width >= image_info->printable_width)) ||
((image_info->render_flags & RENDER_FLAG_AUTO_FIT) &&
(image_output_width < image_info->printable_width)))) {
// height matches and width meets criteria
LOGD("disabling fine scaling since height matches and width meets criteria");
image_info->render_flags &= ~(RENDER_FLAG_AUTO_SCALE | RENDER_FLAG_AUTO_FIT);
}
if ((image_info->render_flags & RENDER_FLAG_DOCUMENT_SCALING)
&& (image_output_height <= image_info->printable_height)
&& (image_output_width <= image_info->printable_width)) {
image_info->render_flags &= ~(RENDER_FLAG_AUTO_SCALE | RENDER_FLAG_AUTO_FIT);
}
} else if ((native_scaling != 1.0f) &&
(image_info->render_flags & RENDER_FLAG_DOCUMENT_SCALING)) {
LOGD("checking native document scaling factor");
if ((native_image_output_height <= image_info->printable_height)
&& (native_image_output_width <= image_output_width
<= image_info->printable_width)) {
LOGD("fit in printable area, just scale to native units");
image_info->render_flags &= ~(RENDER_FLAG_AUTO_SCALE | RENDER_FLAG_AUTO_FIT);
} else {
LOGD("we don't fit in printable area, continue with fit-to-page");
native_scaling = 1.0f;
}
}
// store the subsampled dimensions
image_info->sampled_width = (image_info->width / image_info->scaled_sample_size);
image_info->sampled_height = (image_info->height / image_info->scaled_sample_size);
// do we have any additional scaling to do?
if ((image_info->render_flags & (RENDER_FLAG_AUTO_SCALE | RENDER_FLAG_AUTO_FIT))
|| (native_scaling != 1.0f)) {
LOGD("calculating fine-scaling");
int i;
float targetHeight, targetWidth;
float sourceHeight, sourceWidth;
float rw;
int useHeight;
sourceWidth = image_output_width * 1.0f;
sourceHeight = image_output_height * 1.0f;
if (image_info->render_flags & (RENDER_FLAG_AUTO_SCALE | RENDER_FLAG_AUTO_FIT)) {
targetHeight = image_info->printable_height * 1.0f;
targetWidth = image_info->printable_width * 1.0f;
// determine what our bounding edge is
rw = (targetHeight * sourceWidth) / sourceHeight;
if (image_info->render_flags & RENDER_FLAG_AUTO_SCALE) {
useHeight = (rw >= targetWidth);
} else {
useHeight = (rw < targetWidth);
}
// determine the scaling factor
if (useHeight) {
image_info->scaled_width = (int) floorf(rw);
image_info->scaled_height = (int) floorf(targetHeight);
} else {
image_info->scaled_height = (int) floorf(targetWidth * sourceHeight / sourceWidth);
image_info->scaled_width = (int) floorf(targetWidth);
}
} else {
image_info->scaled_height = native_image_output_height;
image_info->scaled_width = native_image_output_width;
}
image_info->scaling_needed = TRUE;
/*
* setup the fine-scaler
* we use rotated image_output_width rather than the pre-rotated sampled_width
*/
scaler_make_image_scaler_tables(image_output_width, BYTES_PER_PIXEL(image_output_width),
image_info->scaled_width, BYTES_PER_PIXEL(image_info->scaled_width),
image_output_height, image_info->scaled_height, &image_info->scaler_config);
image_info->unscaled_rows_needed = 0;
image_info->mixed_memory_needed = 0;
// calculate memory requirements
for (i = 0; i < image_info->printable_height; i += max_decode_stripe) {
uint16 row;
uint16 row_start, row_end, gen_rows, row_offset;
uint32 mixed;
row = i;
if (row >= image_info->scaled_height) {
break;
}
scaler_calculate_scaling_rows(row,
MIN((row + (max_decode_stripe - 1)),
(image_info->scaled_height - 1)),
(void *) &image_info->scaler_config,
&row_start, &row_end, &gen_rows,
&row_offset, &mixed);
image_info->output_rows = MAX(image_info->output_rows, gen_rows);
image_info->unscaled_rows_needed = MAX(image_info->unscaled_rows_needed,
((row_end - row_start) + 3));
image_info->mixed_memory_needed = MAX(image_info->mixed_memory_needed, mixed);
}
int unscaled_size = BYTES_PER_PIXEL(
(MAX(image_output_width, image_output_height) * image_info->unscaled_rows_needed));
// allocate memory required for scaling
image_info->unscaled_rows = malloc(unscaled_size);
if (image_info->unscaled_rows != NULL) {
memset(image_info->unscaled_rows, 0xff, unscaled_size);
}
image_info->mixed_memory = (image_info->mixed_memory_needed != 0) ? malloc(
image_info->mixed_memory_needed) : NULL;
} else {
image_info->scaled_height = image_output_height;
image_info->scaled_width = image_output_width;
}
// final calculations
if ((image_info->render_flags & (RENDER_FLAG_AUTO_SCALE | RENDER_FLAG_AUTO_FIT)) ||
image_info->scaling_needed) {
/* use the full image size since both of the dimensions could be greater than
* the printable area */
image_info->output_width = image_output_width;
image_info->output_height = image_output_height;
} else {
// clip the image within the printable area
image_info->output_width = MIN(image_info->printable_width, image_output_width);
image_info->output_height = MIN(image_info->printable_height, image_output_height);
}
int delta;
switch (image_info->rotation) {
case ROT_90:
if (image_info->render_flags & RENDER_FLAG_AUTO_SCALE) {
} else if (image_info->render_flags & RENDER_FLAG_CENTER_HORIZONTAL) {
if (image_info->scaled_width > image_info->printable_width) {
image_info->col_offset = (
(image_info->scaled_width - image_info->printable_width) / 2);
} else {
int paddingDelta = (image_info->printable_width - image_info->scaled_width);
delta = paddingDelta / 2;
image_info->output_padding_left += delta;
image_info->output_padding_right += delta + (paddingDelta & 0x1);
}
} else if (image_info->scaled_width > image_info->printable_width) {
image_info->col_offset = (image_info->scaled_width - image_info->printable_width);
} else if (image_info->scaled_width < image_info->printable_width) {
image_info->output_padding_right += (image_info->printable_width -
image_info->scaled_width);
}
if (image_info->render_flags & RENDER_FLAG_AUTO_SCALE) {
} else if (image_info->render_flags & RENDER_FLAG_CENTER_VERTICAL) {
if (image_info->scaled_height > image_info->printable_height) {
image_info->row_offset = (
(image_info->scaled_height - image_info->printable_height) / 2);
} else {
int paddingDelta = (image_info->printable_height - image_info->scaled_height);
delta = paddingDelta / 2;
image_info->output_padding_top += delta;
image_info->output_padding_bottom += delta + (paddingDelta & 0x1);
}
} else if (image_info->scaled_height < image_info->printable_height) {
image_info->output_padding_bottom += (image_info->printable_height -
image_info->scaled_height);
}
break;
case ROT_180:
if (image_info->render_flags & RENDER_FLAG_AUTO_SCALE) {
} else if (image_info->render_flags & RENDER_FLAG_CENTER_HORIZONTAL) {
if (image_info->scaled_width > image_info->printable_width) {
image_info->col_offset = (
(image_info->scaled_width - image_info->printable_width) / 2);
} else {
int paddingDelta = (image_info->printable_width - image_info->scaled_width);
delta = paddingDelta / 2;
image_info->output_padding_left += delta;
image_info->output_padding_right += delta + (paddingDelta & 0x1);
}
} else if (image_info->scaled_width > image_info->printable_width) {
image_info->col_offset = (image_info->scaled_width - image_info->printable_width);
} else if (image_info->scaled_width < image_info->printable_width) {
image_info->output_padding_left += (image_info->printable_width -
image_info->scaled_width);
}
if (image_info->render_flags & RENDER_FLAG_AUTO_SCALE) {
} else if (image_info->render_flags & RENDER_FLAG_CENTER_VERTICAL) {
if (image_info->scaled_height > image_info->printable_height) {
image_info->row_offset = (
(image_info->scaled_height - image_info->printable_height) / 2);
} else {
int paddingDelta = (image_info->printable_height - image_info->scaled_height);
delta = paddingDelta / 2;
image_info->output_padding_top += delta;
image_info->output_padding_bottom += delta + (paddingDelta & 0x1);
}
} else if (image_info->scaled_height > image_info->printable_height) {
image_info->row_offset = (image_info->scaled_height - image_info->printable_height);
} else if (image_info->scaled_height < image_info->printable_height) {
image_info->output_padding_top += (image_info->printable_height -
image_info->scaled_height);
}
break;
case ROT_270:
if (image_info->render_flags & RENDER_FLAG_AUTO_SCALE) {
} else if (image_info->render_flags & RENDER_FLAG_CENTER_HORIZONTAL) {
if (image_info->scaled_width > image_info->printable_width) {
image_info->col_offset = (
(image_info->scaled_width - image_info->printable_width) / 2);
} else {
int paddingDelta = (image_info->printable_width - image_info->scaled_width);
delta = paddingDelta / 2;
image_info->output_padding_left += delta;
image_info->output_padding_right += delta + (paddingDelta & 0x1);
}
} else if (image_info->scaled_width > image_info->printable_width) {
image_info->col_offset = (image_info->scaled_width - image_info->printable_width);
} else if (image_info->scaled_width < image_info->printable_width) {
image_info->output_padding_left += (image_info->printable_width -
image_info->scaled_width);
}
if (image_info->render_flags & RENDER_FLAG_AUTO_SCALE) {
} else if (image_info->render_flags & RENDER_FLAG_CENTER_VERTICAL) {
if (image_info->scaled_height > image_info->printable_height) {
image_info->row_offset = (
(image_info->scaled_height - image_info->printable_height) / 2);
} else {
int paddingDelta = (image_info->printable_height - image_info->scaled_height);
delta = paddingDelta / 2;
image_info->output_padding_top += delta;
image_info->output_padding_bottom += delta + (paddingDelta & 0x1);
}
} else if (image_info->scaled_height < image_info->printable_height) {
image_info->output_padding_top += (image_info->printable_height -
image_info->scaled_height);
} else if (image_info->scaled_height > image_info->printable_height) {
image_info->row_offset = (image_info->scaled_height - image_info->printable_height);
}
break;
case ROT_0:
default:
if (image_info->render_flags & RENDER_FLAG_AUTO_SCALE) {
} else if (image_info->render_flags & RENDER_FLAG_CENTER_HORIZONTAL) {
if (image_info->scaled_width > image_info->printable_width) {
image_info->col_offset = (
(image_info->scaled_width - image_info->printable_width) / 2);
} else {
int paddingDelta = (image_info->printable_width - image_info->scaled_width);
delta = paddingDelta / 2;
image_info->output_padding_left += delta;
image_info->output_padding_right += delta + (paddingDelta & 0x1);
}
} else if (image_info->scaled_width < image_info->printable_width) {
image_info->output_padding_right += (image_info->printable_width -
image_info->scaled_width);
}
if (image_info->render_flags & RENDER_FLAG_AUTO_SCALE) {
} else if (image_info->render_flags & RENDER_FLAG_CENTER_VERTICAL) {
if (image_info->scaled_height > image_info->printable_height) {
image_info->row_offset = (
(image_info->scaled_height - image_info->printable_height) / 2);
} else {
int paddingDelta = (image_info->printable_height - image_info->scaled_height);
delta = paddingDelta / 2;
image_info->output_padding_top += delta;
image_info->output_padding_bottom += delta + (paddingDelta & 0x1);
}
} else if (image_info->scaled_height < image_info->printable_height) {
image_info->output_padding_bottom += (image_info->printable_height -
image_info->scaled_height);
}
break;
}
return OK;
}
static int _get_width(wprint_image_info_t *image_info, unsigned int padding_options) {
int width;
if (image_info->render_flags & RENDER_FLAG_AUTO_SCALE) {
width = image_info->printable_width;
} else if ((image_info->render_flags & RENDER_FLAG_AUTO_FIT) || image_info->scaling_needed) {
width = image_info->scaled_width;
} else {
width = image_info->output_width;
}
if (padding_options & PAD_LEFT) {
width += image_info->output_padding_left;
}
if (padding_options & PAD_RIGHT) {
width += image_info->output_padding_right;
}
return width;
}
int wprint_image_get_width(wprint_image_info_t *image_info) {
int width = _get_width(image_info, image_info->padding_options);
LOGD("wprint_image_get_width(): %d", width);
return width;
}
int wprint_image_get_output_buff_size(wprint_image_info_t *image_info) {
int width = MAX(MAX(image_info->scaled_width, image_info->scaled_height),
_get_width(image_info, image_info->padding_options));
LOGD("wprint_image_get_output_buff_size(): %dx%d", width, image_info->output_rows);
return (BYTES_PER_PIXEL(width * image_info->output_rows));
}
static int _get_height(wprint_image_info_t *image_info, unsigned int padding_options) {
int height;
if (image_info->render_flags & RENDER_FLAG_AUTO_SCALE) {
height = image_info->printable_height;
} else {
height = MIN(image_info->scaled_height, image_info->printable_height);
}
if (padding_options & PAD_TOP) {
height += image_info->output_padding_top;
}
if (padding_options & PAD_BOTTOM) {
height += image_info->output_padding_bottom;
}
return height;
}
int wprint_image_get_height(wprint_image_info_t *image_info) {
int height = _get_height(image_info, image_info->padding_options);
LOGD("wprint_image_get_height(): %d", height);
return height;
}
bool wprint_image_is_landscape(wprint_image_info_t *image_info) {
return (image_info->width > image_info->height);
}
int _decode_stripe(wprint_image_info_t *image_info, int start_row, int num_rows,
unsigned int padding_options, unsigned char *rgb_pixels) {
int image_y, image_x;
unsigned char *image_data;
int nbytes = -1;
int rbytes;
int col_offset;
int old_num_rows;
const image_decode_ifc_t *decode_ifc = image_info->decode_ifc;
if ((decode_ifc == NULL) || (decode_ifc->decode_row == NULL)) {
return nbytes;
}
nbytes = 0;
start_row += image_info->row_offset;
rbytes = BYTES_PER_PIXEL(image_info->output_width);
// get padding values
int padding_left = ((padding_options & PAD_LEFT) ? BYTES_PER_PIXEL(
image_info->output_padding_left) : 0);
int padding_right = ((padding_options & PAD_RIGHT) ? BYTES_PER_PIXEL(
image_info->output_padding_right) : 0);
old_num_rows = ~num_rows;
switch (image_info->rotation) {
case ROT_90:
col_offset = BYTES_PER_PIXEL(image_info->col_offset);
while (num_rows > 0) {
if (start_row > image_info->sampled_width) {
return nbytes;
}
if (old_num_rows == num_rows) {
LOGE("Bad ROT_90 calculations. Exiting to prevent infinite loop");
return ERROR;
}
old_num_rows = num_rows;
if ((image_info->output_swath_start == -1) ||
(start_row < image_info->output_swath_start) ||
(start_row >= (image_info->output_swath_start + image_info->rows_cached))) {
if (image_info->output_swath_start == -1) {
if (decode_ifc->decode_row(image_info, 0) == NULL) {
return ERROR;
}
}
image_info->output_swath_start = ((start_row / image_info->rows_cached) *
image_info->rows_cached);
for (image_y = 0; image_y < image_info->sampled_height; image_y++) {
image_data = decode_ifc->decode_row(image_info, image_y);
if (image_data == NULL) {
return ERROR;
}
for (image_x = 0; (image_x < image_info->rows_cached &&
((image_x + image_info->output_swath_start) <
image_info->sampled_width));
image_x++) {
memcpy(image_info->output_cache[image_x] + BYTES_PER_PIXEL(
(image_info->sampled_height - image_y - 1)),
image_data + BYTES_PER_PIXEL(
(image_info->output_swath_start + image_x)),
BYTES_PER_PIXEL(1));
}
}
}
for (image_y = start_row; ((num_rows != 0) &&
(image_y < image_info->sampled_width) &&
(image_y < (image_info->output_swath_start + image_info->rows_cached)));
image_y++, num_rows--, start_row++) {
memcpy(rgb_pixels + padding_left,
image_info->output_cache[image_y - image_info->output_swath_start] +
col_offset, rbytes);
nbytes += rbytes + padding_left + padding_right;
rgb_pixels += rbytes + padding_left + padding_right;
}
}
break;
case ROT_180:
col_offset = image_info->col_offset;
for (image_y = start_row;
((image_y < image_info->sampled_height) && (num_rows != 0));
image_y++, num_rows--) {
image_data = decode_ifc->decode_row(image_info,
(image_info->sampled_height - image_y - 1));
if (image_data == NULL) {
return ERROR;
}
for (image_x = 0; image_x < image_info->output_width; image_x++) {
memcpy(rgb_pixels + padding_left + BYTES_PER_PIXEL(image_x),
image_data + BYTES_PER_PIXEL(image_info->sampled_width -
image_x - col_offset - 1),
BYTES_PER_PIXEL(1));
}
nbytes += rbytes + padding_left + padding_right;
rgb_pixels += rbytes + padding_left + padding_right;
}
break;
case ROT_270:
col_offset = BYTES_PER_PIXEL(image_info->col_offset);
while (num_rows > 0) {
if (start_row > image_info->sampled_width) {
return nbytes;
}
if (old_num_rows == num_rows) {
LOGE("Bad ROT_270 calculations. Erroring out to prevent infinite loop.");
return ERROR;
}
old_num_rows = num_rows;
if ((image_info->output_swath_start == -1) ||
(start_row < image_info->output_swath_start) ||
(start_row >= (image_info->output_swath_start + image_info->rows_cached))) {
if (image_info->output_swath_start == -1) {
if (decode_ifc->decode_row(image_info, 0) == NULL) {
return ERROR;
}
}
image_info->output_swath_start = ((start_row / image_info->rows_cached) *
image_info->rows_cached);
for (image_y = 0; image_y < image_info->sampled_height; image_y++) {
image_data = decode_ifc->decode_row(image_info, image_y);
if (image_data == NULL) {
return ERROR;
}
for (image_x = 0; ((image_x < image_info->rows_cached) &&
((image_x + image_info->output_swath_start) <
image_info->sampled_width));
image_x++) {
memcpy(image_info->output_cache[image_x] + BYTES_PER_PIXEL(image_y),
image_data + BYTES_PER_PIXEL(image_info->sampled_width -
(image_info->output_swath_start +
image_x) - 1),
BYTES_PER_PIXEL(1));
}
}
}
for (image_y = start_row;
((num_rows != 0) &&
(image_y < image_info->sampled_width) &&
(image_y < (image_info->output_swath_start
+ image_info->rows_cached)));
image_y++, num_rows--, start_row++) {
memcpy(rgb_pixels + padding_left,
image_info->output_cache[image_y - image_info->output_swath_start] +
col_offset, rbytes);
nbytes += rbytes + padding_left + padding_right;
rgb_pixels += rbytes + padding_left + padding_right;
}
}
break;
case ROT_0:
default:
col_offset = BYTES_PER_PIXEL(image_info->col_offset);
for (image_y = start_row;
((image_y < image_info->sampled_height) && (num_rows != 0));
image_y++, num_rows--) {
image_data = decode_ifc->decode_row(image_info, image_y);
if (image_data == NULL) {
LOGE("ERROR: received no data for row: %d", image_y);
return ERROR;
}
memcpy(rgb_pixels + padding_left, image_data + col_offset, rbytes);
nbytes += rbytes + padding_left + padding_right;
rgb_pixels += rbytes + padding_left + padding_right;
}
break;
}
return nbytes;
}
int wprint_image_decode_stripe(wprint_image_info_t *image_info, int start_row, int *height,
unsigned char *rgb_pixels) {
int nbytes = 0;
int bytes_per_row = BYTES_PER_PIXEL(_get_width(image_info, image_info->padding_options));
if (height == NULL) {
return -1;
}
int num_rows = *height;
*height = 0;
// get padding values
int padding_left = ((image_info->padding_options & PAD_LEFT) ? BYTES_PER_PIXEL(
image_info->output_padding_left) : 0);
int padding_right = ((image_info->padding_options & PAD_RIGHT) ? BYTES_PER_PIXEL(
image_info->output_padding_right) : 0);
int padding_top = ((image_info->padding_options & PAD_TOP) ?
image_info->output_padding_top : 0);
// handle invalid requests
if ((start_row < 0) || (start_row >= _get_height(image_info, image_info->padding_options))) {
*height = 0;
return ERROR;
} else if ((image_info->padding_options & PAD_TOP) &&
(start_row < padding_top)) {
int blank_rows = MIN(num_rows, (padding_top - start_row));
int bytesToBlank = (blank_rows * bytes_per_row);
nbytes += bytesToBlank;
num_rows -= blank_rows;
*height += blank_rows;
memset(rgb_pixels, 0xff, bytesToBlank);
rgb_pixels += bytesToBlank;
start_row += blank_rows;
} else if ((image_info->padding_options & PAD_BOTTOM) &&
(start_row >= _get_height(image_info, image_info->padding_options & PAD_TOP))) {
// handle image padding on bottom
int blank_rows = MIN(num_rows,
_get_height(image_info, image_info->padding_options) - start_row);
int bytesToBlank = (blank_rows * bytes_per_row);
nbytes += bytesToBlank;
num_rows -= blank_rows;
*height += blank_rows;
memset(rgb_pixels, 0xff, bytesToBlank);
rgb_pixels += bytesToBlank;
start_row += blank_rows;
}
if (num_rows <= 0) {
return nbytes;
}
unsigned char *pad_rgb_pixels = rgb_pixels;
int unpadded_start_row = start_row;
// adjust start row to fit within image bounds
if (image_info->padding_options & PAD_TOP) {
unpadded_start_row -= padding_top;
}
// check if we need to scaling
if (image_info->scaling_needed) {
// scaling required
uint32 scaled_start_row = unpadded_start_row;
if (image_info->scaled_height > image_info->printable_height) {
scaled_start_row += ((image_info->scaled_height - image_info->printable_height) / 2);
}
uint32 stripe_height, mixed;
uint16 unscaled_row_start, unscaled_row_end;
uint16 generated_rows, row_offset;
uint32 predecoded_rows;
int scaled_num_rows = (((scaled_start_row + num_rows) > image_info->scaled_height) ?
(image_info->scaled_height - scaled_start_row) : num_rows);
while (scaled_num_rows > 0) {
stripe_height = MIN(scaled_num_rows, image_info->stripe_height);
scaler_calculate_scaling_rows(scaled_start_row,
MIN((scaled_start_row + stripe_height - 1),
(image_info->scaled_height - 1)), (void *) &image_info->scaler_config,
&unscaled_row_start, &unscaled_row_end, &generated_rows, &row_offset, &mixed);
if (mixed > image_info->mixed_memory_needed) {
LOGE("need more memory");
return -1;
}
predecoded_rows = 0;
if (unscaled_row_start <= image_info->unscaled_end_row) {
// shift over any rows we need that were decoded in the previous pass
predecoded_rows = (image_info->unscaled_end_row - unscaled_row_start) + 1;
memmove(image_info->unscaled_rows, image_info->unscaled_rows +
BYTES_PER_PIXEL(((unscaled_row_start - image_info->unscaled_start_row) *
image_info->output_width)),
BYTES_PER_PIXEL((predecoded_rows * image_info->output_width)));
}
image_info->unscaled_start_row = unscaled_row_start;
image_info->unscaled_end_row = unscaled_row_end;
/*
* decode the remaining rows we need
* don't pad the output since we need to move the data after scaling anyways
*/
int rowsLeftToDecode = ((image_info->unscaled_end_row -
(image_info->unscaled_start_row + predecoded_rows)) + 1);
if (rowsLeftToDecode > 0) {
int dbytes = _decode_stripe(image_info,
image_info->unscaled_start_row + predecoded_rows, rowsLeftToDecode,
PAD_NONE, (image_info->unscaled_rows + BYTES_PER_PIXEL(predecoded_rows *
image_info->output_width)));
if (dbytes <= 0) {
if (dbytes < 0) {
LOGE("couldn't decode rows");
}
return dbytes;
}
} else if (predecoded_rows <= 0) {
return 0;
}
// scale the data to it's final size
scaler_scale_image_data(image_info->unscaled_rows, (void *) &image_info->scaler_config,
rgb_pixels, image_info->mixed_memory);
// do we have to move the data around??
if ((row_offset != 0) ||
(image_info->scaled_width > image_info->printable_width) ||
(padding_left > 0) ||
(padding_right > 0)) {
int delta = 0;
int pixelsToMove = BYTES_PER_PIXEL(MIN(image_info->scaled_width,
image_info->printable_width));
int memMoveRow = ((bytes_per_row < image_info->scaler_config.iOutBufWidth) ? 0 : (
stripe_height - 1));
int memMoveIncrement = ((bytes_per_row < image_info->scaler_config.iOutBufWidth)
? 1 : -1);
// if scaled width is greater than the printable area drop pixels on either size
if (image_info->scaled_width > image_info->printable_width) {
delta = BYTES_PER_PIXEL(
((image_info->scaled_width - image_info->printable_width) / 2));
}
// move the data into the correct location in the output buffer
for (generated_rows = 0; generated_rows < stripe_height; generated_rows++,
memMoveRow += memMoveIncrement) {
memmove(rgb_pixels + (memMoveRow * bytes_per_row) + padding_left,
rgb_pixels + ((memMoveRow + row_offset) *
image_info->scaler_config.iOutBufWidth) + delta, pixelsToMove);
}
}
num_rows -= stripe_height;
scaled_num_rows -= stripe_height;
scaled_start_row += stripe_height;
nbytes += (bytes_per_row * stripe_height);
rgb_pixels += (bytes_per_row * stripe_height);
*height += stripe_height;
start_row += stripe_height;
}
} else {
// no scaling needed
// decode the request
int dbytes = _decode_stripe(image_info, unpadded_start_row,
(((unpadded_start_row + num_rows) >
_get_height(image_info, PAD_NONE)) ?
(_get_height(image_info, PAD_NONE) - unpadded_start_row)
: num_rows),
image_info->padding_options, rgb_pixels);
if (dbytes <= 0) {
if (dbytes < 0) {
LOGE("couldn't decode rows");
}
return dbytes;
}
int rows = (dbytes / bytes_per_row);
*height += rows;
num_rows -= rows;
start_row += rows;
unpadded_start_row += rows;
rgb_pixels += dbytes;
nbytes += dbytes;
}
// white pad the left and right edges
if ((pad_rgb_pixels != rgb_pixels) &&
(image_info->padding_options & (PAD_LEFT | PAD_RIGHT)) &&
((padding_left != 0) || (padding_right != 0))) {
while (pad_rgb_pixels != rgb_pixels) {
if (padding_left != 0) {
memset(pad_rgb_pixels, 0xff, padding_left);
}
if (padding_right != 0) {
memset(pad_rgb_pixels + (bytes_per_row - padding_right), 0xff, padding_right);
}
pad_rgb_pixels += bytes_per_row;
}
}
if ((image_info->padding_options & PAD_BOTTOM) && (num_rows > 0) &&
(start_row >= _get_height(image_info, image_info->padding_options & PAD_TOP))) {
int blank_rows = MIN(num_rows,
_get_height(image_info, image_info->padding_options) - start_row);
int bytesToBlank = (blank_rows * bytes_per_row);
nbytes += bytesToBlank;
num_rows -= blank_rows;
*height += blank_rows;
memset(rgb_pixels, 0xff, bytesToBlank);
rgb_pixels += bytesToBlank;
}
return nbytes;
}
int wprint_image_compute_rows_to_cache(wprint_image_info_t *image_info) {
int i;
int row_width, max_rows;
unsigned char output_mem;
int available_mem = MAX_DECODE_MEM;
int width, height;
width = image_info->sampled_width;
height = image_info->sampled_height;
switch (image_info->rotation) {
case ROT_90:
case ROT_270:
output_mem = 1;
row_width = height;
break;
case ROT_0:
case ROT_180:
default:
output_mem = 0;
row_width = width;
break;
}
available_mem -= (wprint_image_get_output_buff_size(image_info) *
image_info->concurrent_stripes);
if (image_info->unscaled_rows != NULL) {
// remove any memory allocated for scaling from our pool
available_mem -= BYTES_PER_PIXEL(
image_info->unscaled_rows_needed * image_info->output_width);
available_mem -= image_info->mixed_memory_needed;
}
// make sure we have a valid amount of memory to work with
available_mem = MAX(available_mem, MIN_DECODE_MEM);
LOGD("wprint_image_compute_rows_to_cache(): %d bytes available for row caching", available_mem);
row_width = BYTES_PER_PIXEL(row_width);
max_rows = (available_mem / row_width);
if (max_rows > 0xf) {
max_rows &= ~0xf;
}
LOGD("wprint_image_compute_rows_to_cache(): based on row width %d (%d), %d rows can be cached",
row_width, output_mem, max_rows);
if (output_mem) {
if (max_rows > (MAX(width, height))) {
max_rows = MAX(width, height);
}
image_info->output_cache = (unsigned char **) malloc(sizeof(unsigned char *) * max_rows);
for (i = 0; i < max_rows; i++) {
image_info->output_cache[i] = (unsigned char *) malloc(row_width);
}
} else {
max_rows = MIN(max_rows, height);
}
image_info->rows_cached = max_rows;
LOGD("wprint_image_compute_rows_to_cache(): %d rows being cached", max_rows);
return wprint_image_input_rows_cached(image_info);
}
int wprint_image_input_rows_cached(wprint_image_info_t *image_info) {
return ((image_info->output_cache != NULL) ? 1 : image_info->rows_cached);
}
void wprint_image_cleanup(wprint_image_info_t *image_info) {
int i;
const image_decode_ifc_t *decode_ifc = image_info->decode_ifc;
if ((decode_ifc != NULL) && (decode_ifc->cleanup != NULL)) {
decode_ifc->cleanup(image_info);
}
// free memory allocated for saving unscaled rows
if (image_info->unscaled_rows != NULL) {
free(image_info->unscaled_rows);
image_info->unscaled_rows = NULL;
}
// free memory allocated needed for mixed scaling
if (image_info->mixed_memory != NULL) {
free(image_info->mixed_memory);
image_info->mixed_memory = NULL;
}
if (image_info->output_cache != NULL) {
for (i = 0; i < image_info->rows_cached; i++) {
free(image_info->output_cache[i]);
}
free(image_info->output_cache);
image_info->output_cache = NULL;
}
}