/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "GlWrapper.h"
#include <stdio.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <ui/DisplayInfo.h>
#include <ui/GraphicBuffer.h>
using namespace android;
using android::GraphicBuffer;
using android::sp;
const char vertexShaderSource[] = ""
"#version 300 es \n"
"layout(location = 0) in vec4 pos; \n"
"layout(location = 1) in vec2 tex; \n"
"out vec2 uv; \n"
"void main() \n"
"{ \n"
" gl_Position = pos; \n"
" uv = tex; \n"
"} \n";
const char pixelShaderSource[] =
"#version 300 es \n"
"precision mediump float; \n"
"uniform sampler2D tex; \n"
"in vec2 uv; \n"
"out vec4 color; \n"
"void main() \n"
"{ \n"
" vec4 texel = texture(tex, uv); \n"
" color = texel; \n"
"} \n";
static const char *getEGLError(void) {
switch (eglGetError()) {
case EGL_SUCCESS:
return "EGL_SUCCESS";
case EGL_NOT_INITIALIZED:
return "EGL_NOT_INITIALIZED";
case EGL_BAD_ACCESS:
return "EGL_BAD_ACCESS";
case EGL_BAD_ALLOC:
return "EGL_BAD_ALLOC";
case EGL_BAD_ATTRIBUTE:
return "EGL_BAD_ATTRIBUTE";
case EGL_BAD_CONTEXT:
return "EGL_BAD_CONTEXT";
case EGL_BAD_CONFIG:
return "EGL_BAD_CONFIG";
case EGL_BAD_CURRENT_SURFACE:
return "EGL_BAD_CURRENT_SURFACE";
case EGL_BAD_DISPLAY:
return "EGL_BAD_DISPLAY";
case EGL_BAD_SURFACE:
return "EGL_BAD_SURFACE";
case EGL_BAD_MATCH:
return "EGL_BAD_MATCH";
case EGL_BAD_PARAMETER:
return "EGL_BAD_PARAMETER";
case EGL_BAD_NATIVE_PIXMAP:
return "EGL_BAD_NATIVE_PIXMAP";
case EGL_BAD_NATIVE_WINDOW:
return "EGL_BAD_NATIVE_WINDOW";
case EGL_CONTEXT_LOST:
return "EGL_CONTEXT_LOST";
default:
return "Unknown error";
}
}
// Given shader source, load and compile it
static GLuint loadShader(GLenum type, const char *shaderSrc) {
// Create the shader object
GLuint shader = glCreateShader (type);
if (shader == 0) {
return 0;
}
// Load and compile the shader
glShaderSource(shader, 1, &shaderSrc, nullptr);
glCompileShader(shader);
// Verify the compilation worked as expected
GLint compiled = 0;
glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled);
if (!compiled) {
ALOGE("Error compiling shader\n");
GLint size = 0;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &size);
if (size > 0)
{
// Get and report the error message
char *infoLog = (char*)malloc(size);
glGetShaderInfoLog(shader, size, nullptr, infoLog);
ALOGE(" msg:\n%s\n", infoLog);
free(infoLog);
}
glDeleteShader(shader);
return 0;
}
return shader;
}
// Create a program object given vertex and pixels shader source
static GLuint buildShaderProgram(const char* vtxSrc, const char* pxlSrc) {
GLuint program = glCreateProgram();
if (program == 0) {
ALOGE("Failed to allocate program object\n");
return 0;
}
// Compile the shaders and bind them to this program
GLuint vertexShader = loadShader(GL_VERTEX_SHADER, vtxSrc);
if (vertexShader == 0) {
ALOGE("Failed to load vertex shader\n");
glDeleteProgram(program);
return 0;
}
GLuint pixelShader = loadShader(GL_FRAGMENT_SHADER, pxlSrc);
if (pixelShader == 0) {
ALOGE("Failed to load pixel shader\n");
glDeleteProgram(program);
glDeleteShader(vertexShader);
return 0;
}
glAttachShader(program, vertexShader);
glAttachShader(program, pixelShader);
// Link the program
glLinkProgram(program);
GLint linked = 0;
glGetProgramiv(program, GL_LINK_STATUS, &linked);
if (!linked)
{
ALOGE("Error linking program.\n");
GLint size = 0;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &size);
if (size > 0)
{
// Get and report the error message
char *infoLog = (char*)malloc(size);
glGetProgramInfoLog(program, size, nullptr, infoLog);
ALOGE(" msg: %s\n", infoLog);
free(infoLog);
}
glDeleteProgram(program);
glDeleteShader(vertexShader);
glDeleteShader(pixelShader);
return 0;
}
return program;
}
// Main entry point
bool GlWrapper::initialize() {
//
// Create the native full screen window and get a suitable configuration to match it
//
status_t err;
mFlinger = new SurfaceComposerClient();
if (mFlinger == nullptr) {
ALOGE("SurfaceComposerClient couldn't be allocated");
return false;
}
err = mFlinger->initCheck();
if (err != NO_ERROR) {
ALOGE("SurfaceComposerClient::initCheck error: %#x", err);
return false;
}
// Get main display parameters.
sp<IBinder> mainDpy = SurfaceComposerClient::getInternalDisplayToken();
if (mainDpy == nullptr) {
ALOGE("ERROR: no internal display");
return false;
}
DisplayInfo mainDpyInfo;
err = SurfaceComposerClient::getDisplayInfo(mainDpy, &mainDpyInfo);
if (err != NO_ERROR) {
ALOGE("ERROR: unable to get display characteristics");
return false;
}
if (mainDpyInfo.orientation != DISPLAY_ORIENTATION_0 &&
mainDpyInfo.orientation != DISPLAY_ORIENTATION_180) {
// rotated
mWidth = mainDpyInfo.h;
mHeight = mainDpyInfo.w;
} else {
mWidth = mainDpyInfo.w;
mHeight = mainDpyInfo.h;
}
mFlingerSurfaceControl = mFlinger->createSurface(
String8("Evs Display"), mWidth, mHeight,
PIXEL_FORMAT_RGBX_8888, ISurfaceComposerClient::eOpaque);
if (mFlingerSurfaceControl == nullptr || !mFlingerSurfaceControl->isValid()) {
ALOGE("Failed to create SurfaceControl");
return false;
}
mFlingerSurface = mFlingerSurfaceControl->getSurface();
// Set up our OpenGL ES context associated with the default display
mDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
if (mDisplay == EGL_NO_DISPLAY) {
ALOGE("Failed to get egl display");
return false;
}
EGLint major = 3;
EGLint minor = 0;
if (!eglInitialize(mDisplay, &major, &minor)) {
ALOGE("Failed to initialize EGL: %s", getEGLError());
return false;
}
const EGLint config_attribs[] = {
// Tag Value
EGL_RED_SIZE, 8,
EGL_GREEN_SIZE, 8,
EGL_BLUE_SIZE, 8,
EGL_DEPTH_SIZE, 0,
EGL_NONE
};
// Pick the default configuration without constraints (is this good enough?)
EGLConfig egl_config = {0};
EGLint numConfigs = -1;
eglChooseConfig(mDisplay, config_attribs, &egl_config, 1, &numConfigs);
if (numConfigs != 1) {
ALOGE("Didn't find a suitable format for our display window");
return false;
}
// Create the EGL render target surface
mSurface = eglCreateWindowSurface(mDisplay, egl_config, mFlingerSurface.get(), nullptr);
if (mSurface == EGL_NO_SURFACE) {
ALOGE("gelCreateWindowSurface failed.");
return false;
}
// Create the EGL context
// NOTE: Our shader is (currently at least) written to require version 3, so this
// is required.
const EGLint context_attribs[] = {EGL_CONTEXT_CLIENT_VERSION, 3, EGL_NONE};
mContext = eglCreateContext(mDisplay, egl_config, EGL_NO_CONTEXT, context_attribs);
if (mContext == EGL_NO_CONTEXT) {
ALOGE("Failed to create OpenGL ES Context: %s", getEGLError());
return false;
}
// Activate our render target for drawing
if (!eglMakeCurrent(mDisplay, mSurface, mSurface, mContext)) {
ALOGE("Failed to make the OpenGL ES Context current: %s", getEGLError());
return false;
}
// Create the shader program for our simple pipeline
mShaderProgram = buildShaderProgram(vertexShaderSource, pixelShaderSource);
if (!mShaderProgram) {
ALOGE("Failed to build shader program: %s", getEGLError());
return false;
}
// Create a GL texture that will eventually wrap our externally created texture surface(s)
glGenTextures(1, &mTextureMap);
if (mTextureMap <= 0) {
ALOGE("Didn't get a texture handle allocated: %s", getEGLError());
return false;
}
// Turn off mip-mapping for the created texture surface
// (the inbound camera imagery doesn't have MIPs)
glBindTexture(GL_TEXTURE_2D, mTextureMap);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, 0);
return true;
}
void GlWrapper::shutdown() {
// Drop our device textures
if (mKHRimage != EGL_NO_IMAGE_KHR) {
eglDestroyImageKHR(mDisplay, mKHRimage);
mKHRimage = EGL_NO_IMAGE_KHR;
}
// Release all GL resources
eglMakeCurrent(mDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
eglDestroySurface(mDisplay, mSurface);
eglDestroyContext(mDisplay, mContext);
eglTerminate(mDisplay);
mSurface = EGL_NO_SURFACE;
mContext = EGL_NO_CONTEXT;
mDisplay = EGL_NO_DISPLAY;
// Let go of our SurfaceComposer resources
mFlingerSurface.clear();
mFlingerSurfaceControl.clear();
mFlinger.clear();
}
void GlWrapper::showWindow() {
if (mFlingerSurfaceControl != nullptr) {
SurfaceComposerClient::Transaction{}
.setLayer(mFlingerSurfaceControl, 0x7FFFFFFF) // always on top
.show(mFlingerSurfaceControl)
.apply();
}
}
void GlWrapper::hideWindow() {
if (mFlingerSurfaceControl != nullptr) {
SurfaceComposerClient::Transaction{}
.hide(mFlingerSurfaceControl)
.apply();
}
}
bool GlWrapper::updateImageTexture(const BufferDesc& buffer) {
// If we haven't done it yet, create an "image" object to wrap the gralloc buffer
if (mKHRimage == EGL_NO_IMAGE_KHR) {
// create a temporary GraphicBuffer to wrap the provided handle
sp<GraphicBuffer> pGfxBuffer = new GraphicBuffer(
buffer.width,
buffer.height,
buffer.format,
1, /* layer count */
buffer.usage,
buffer.stride,
const_cast<native_handle_t*>(buffer.memHandle.getNativeHandle()),
false /* keep ownership */
);
if (pGfxBuffer.get() == nullptr) {
ALOGE("Failed to allocate GraphicsBuffer to wrap our native handle");
return false;
}
// Get a GL compatible reference to the graphics buffer we've been given
EGLint eglImageAttributes[] = {EGL_IMAGE_PRESERVED_KHR, EGL_TRUE, EGL_NONE};
EGLClientBuffer cbuf = static_cast<EGLClientBuffer>(pGfxBuffer->getNativeBuffer());
// TODO: If we pass in a context, we get "bad context" back
#if 0
mKHRimage = eglCreateImageKHR(mDisplay, mContext,
EGL_NATIVE_BUFFER_ANDROID, cbuf,
eglImageAttributes);
#else
mKHRimage = eglCreateImageKHR(mDisplay, EGL_NO_CONTEXT,
EGL_NATIVE_BUFFER_ANDROID, cbuf,
eglImageAttributes);
#endif
if (mKHRimage == EGL_NO_IMAGE_KHR) {
ALOGE("error creating EGLImage: %s", getEGLError());
return false;
}
// Update the texture handle we already created to refer to this gralloc buffer
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, mTextureMap);
glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, static_cast<GLeglImageOES>(mKHRimage));
}
return true;
}
void GlWrapper::renderImageToScreen() {
// Set the viewport
glViewport(0, 0, mWidth, mHeight);
// Clear the color buffer
glClearColor(0.1f, 0.5f, 0.1f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
// Select our screen space simple texture shader
glUseProgram(mShaderProgram);
// Bind the texture and assign it to the shader's sampler
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, mTextureMap);
GLint sampler = glGetUniformLocation(mShaderProgram, "tex");
glUniform1i(sampler, 0);
// We want our image to show up opaque regardless of alpha values
glDisable(GL_BLEND);
// Draw a rectangle on the screen
GLfloat vertsCarPos[] = { -0.8, 0.8, 0.0f, // left top in window space
0.8, 0.8, 0.0f, // right top
-0.8, -0.8, 0.0f, // left bottom
0.8, -0.8, 0.0f // right bottom
};
// NOTE: We didn't flip the image in the texture, so V=0 is actually the top of the image
GLfloat vertsCarTex[] = { 0.0f, 0.0f, // left top
1.0f, 0.0f, // right top
0.0f, 1.0f, // left bottom
1.0f, 1.0f // right bottom
};
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, vertsCarPos);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, vertsCarTex);
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
// Clean up and flip the rendered result to the front so it is visible
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
glFinish();
eglSwapBuffers(mDisplay, mSurface);
}