//===- Optional.h - Simple variant for passing optional values --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides Optional, a template class modeled in the spirit of
// OCaml's 'opt' variant. The idea is to strongly type whether or not
// a value can be optional.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_OPTIONAL_H
#define LLVM_ADT_OPTIONAL_H
#include "llvm/ADT/None.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/type_traits.h"
#include <algorithm>
#include <cassert>
#include <new>
#include <utility>
namespace llvm {
namespace optional_detail {
/// Storage for any type.
template <typename T, bool = isPodLike<T>::value> struct OptionalStorage {
AlignedCharArrayUnion<T> storage;
bool hasVal = false;
OptionalStorage() = default;
OptionalStorage(const T &y) : hasVal(true) { new (storage.buffer) T(y); }
OptionalStorage(const OptionalStorage &O) : hasVal(O.hasVal) {
if (hasVal)
new (storage.buffer) T(*O.getPointer());
}
OptionalStorage(T &&y) : hasVal(true) {
new (storage.buffer) T(std::forward<T>(y));
}
OptionalStorage(OptionalStorage &&O) : hasVal(O.hasVal) {
if (O.hasVal) {
new (storage.buffer) T(std::move(*O.getPointer()));
}
}
OptionalStorage &operator=(T &&y) {
if (hasVal)
*getPointer() = std::move(y);
else {
new (storage.buffer) T(std::move(y));
hasVal = true;
}
return *this;
}
OptionalStorage &operator=(OptionalStorage &&O) {
if (!O.hasVal)
reset();
else {
*this = std::move(*O.getPointer());
}
return *this;
}
// FIXME: these assignments (& the equivalent const T&/const Optional& ctors)
// could be made more efficient by passing by value, possibly unifying them
// with the rvalue versions above - but this could place a different set of
// requirements (notably: the existence of a default ctor) when implemented
// in that way. Careful SFINAE to avoid such pitfalls would be required.
OptionalStorage &operator=(const T &y) {
if (hasVal)
*getPointer() = y;
else {
new (storage.buffer) T(y);
hasVal = true;
}
return *this;
}
OptionalStorage &operator=(const OptionalStorage &O) {
if (!O.hasVal)
reset();
else
*this = *O.getPointer();
return *this;
}
~OptionalStorage() { reset(); }
void reset() {
if (hasVal) {
(*getPointer()).~T();
hasVal = false;
}
}
T *getPointer() {
assert(hasVal);
return reinterpret_cast<T *>(storage.buffer);
}
const T *getPointer() const {
assert(hasVal);
return reinterpret_cast<const T *>(storage.buffer);
}
};
} // namespace optional_detail
template <typename T> class Optional {
optional_detail::OptionalStorage<T> Storage;
public:
using value_type = T;
constexpr Optional() {}
constexpr Optional(NoneType) {}
Optional(const T &y) : Storage(y) {}
Optional(const Optional &O) = default;
Optional(T &&y) : Storage(std::forward<T>(y)) {}
Optional(Optional &&O) = default;
Optional &operator=(T &&y) {
Storage = std::move(y);
return *this;
}
Optional &operator=(Optional &&O) = default;
/// Create a new object by constructing it in place with the given arguments.
template <typename... ArgTypes> void emplace(ArgTypes &&... Args) {
reset();
Storage.hasVal = true;
new (getPointer()) T(std::forward<ArgTypes>(Args)...);
}
static inline Optional create(const T *y) {
return y ? Optional(*y) : Optional();
}
Optional &operator=(const T &y) {
Storage = y;
return *this;
}
Optional &operator=(const Optional &O) = default;
void reset() { Storage.reset(); }
const T *getPointer() const {
assert(Storage.hasVal);
return reinterpret_cast<const T *>(Storage.storage.buffer);
}
T *getPointer() {
assert(Storage.hasVal);
return reinterpret_cast<T *>(Storage.storage.buffer);
}
const T &getValue() const LLVM_LVALUE_FUNCTION { return *getPointer(); }
T &getValue() LLVM_LVALUE_FUNCTION { return *getPointer(); }
explicit operator bool() const { return Storage.hasVal; }
bool hasValue() const { return Storage.hasVal; }
const T *operator->() const { return getPointer(); }
T *operator->() { return getPointer(); }
const T &operator*() const LLVM_LVALUE_FUNCTION { return *getPointer(); }
T &operator*() LLVM_LVALUE_FUNCTION { return *getPointer(); }
template <typename U>
constexpr T getValueOr(U &&value) const LLVM_LVALUE_FUNCTION {
return hasValue() ? getValue() : std::forward<U>(value);
}
#if LLVM_HAS_RVALUE_REFERENCE_THIS
T &&getValue() && { return std::move(*getPointer()); }
T &&operator*() && { return std::move(*getPointer()); }
template <typename U>
T getValueOr(U &&value) && {
return hasValue() ? std::move(getValue()) : std::forward<U>(value);
}
#endif
};
template <typename T> struct isPodLike<Optional<T>> {
// An Optional<T> is pod-like if T is.
static const bool value = isPodLike<T>::value;
};
template <typename T, typename U>
bool operator==(const Optional<T> &X, const Optional<U> &Y) {
if (X && Y)
return *X == *Y;
return X.hasValue() == Y.hasValue();
}
template <typename T, typename U>
bool operator!=(const Optional<T> &X, const Optional<U> &Y) {
return !(X == Y);
}
template <typename T, typename U>
bool operator<(const Optional<T> &X, const Optional<U> &Y) {
if (X && Y)
return *X < *Y;
return X.hasValue() < Y.hasValue();
}
template <typename T, typename U>
bool operator<=(const Optional<T> &X, const Optional<U> &Y) {
return !(Y < X);
}
template <typename T, typename U>
bool operator>(const Optional<T> &X, const Optional<U> &Y) {
return Y < X;
}
template <typename T, typename U>
bool operator>=(const Optional<T> &X, const Optional<U> &Y) {
return !(X < Y);
}
template<typename T>
bool operator==(const Optional<T> &X, NoneType) {
return !X;
}
template<typename T>
bool operator==(NoneType, const Optional<T> &X) {
return X == None;
}
template<typename T>
bool operator!=(const Optional<T> &X, NoneType) {
return !(X == None);
}
template<typename T>
bool operator!=(NoneType, const Optional<T> &X) {
return X != None;
}
template <typename T> bool operator<(const Optional<T> &X, NoneType) {
return false;
}
template <typename T> bool operator<(NoneType, const Optional<T> &X) {
return X.hasValue();
}
template <typename T> bool operator<=(const Optional<T> &X, NoneType) {
return !(None < X);
}
template <typename T> bool operator<=(NoneType, const Optional<T> &X) {
return !(X < None);
}
template <typename T> bool operator>(const Optional<T> &X, NoneType) {
return None < X;
}
template <typename T> bool operator>(NoneType, const Optional<T> &X) {
return X < None;
}
template <typename T> bool operator>=(const Optional<T> &X, NoneType) {
return None <= X;
}
template <typename T> bool operator>=(NoneType, const Optional<T> &X) {
return X <= None;
}
template <typename T> bool operator==(const Optional<T> &X, const T &Y) {
return X && *X == Y;
}
template <typename T> bool operator==(const T &X, const Optional<T> &Y) {
return Y && X == *Y;
}
template <typename T> bool operator!=(const Optional<T> &X, const T &Y) {
return !(X == Y);
}
template <typename T> bool operator!=(const T &X, const Optional<T> &Y) {
return !(X == Y);
}
template <typename T> bool operator<(const Optional<T> &X, const T &Y) {
return !X || *X < Y;
}
template <typename T> bool operator<(const T &X, const Optional<T> &Y) {
return Y && X < *Y;
}
template <typename T> bool operator<=(const Optional<T> &X, const T &Y) {
return !(Y < X);
}
template <typename T> bool operator<=(const T &X, const Optional<T> &Y) {
return !(Y < X);
}
template <typename T> bool operator>(const Optional<T> &X, const T &Y) {
return Y < X;
}
template <typename T> bool operator>(const T &X, const Optional<T> &Y) {
return Y < X;
}
template <typename T> bool operator>=(const Optional<T> &X, const T &Y) {
return !(X < Y);
}
template <typename T> bool operator>=(const T &X, const Optional<T> &Y) {
return !(X < Y);
}
} // end namespace llvm
#endif // LLVM_ADT_OPTIONAL_H