//===- llvm/ADT/PointerUnion.h - Discriminated Union of 2 Ptrs --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PointerUnion class, which is a discriminated union of
// pointer types.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_POINTERUNION_H
#define LLVM_ADT_POINTERUNION_H
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/Support/PointerLikeTypeTraits.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
namespace llvm {
template <typename T> struct PointerUnionTypeSelectorReturn {
using Return = T;
};
/// Get a type based on whether two types are the same or not.
///
/// For:
///
/// \code
/// using Ret = typename PointerUnionTypeSelector<T1, T2, EQ, NE>::Return;
/// \endcode
///
/// Ret will be EQ type if T1 is same as T2 or NE type otherwise.
template <typename T1, typename T2, typename RET_EQ, typename RET_NE>
struct PointerUnionTypeSelector {
using Return = typename PointerUnionTypeSelectorReturn<RET_NE>::Return;
};
template <typename T, typename RET_EQ, typename RET_NE>
struct PointerUnionTypeSelector<T, T, RET_EQ, RET_NE> {
using Return = typename PointerUnionTypeSelectorReturn<RET_EQ>::Return;
};
template <typename T1, typename T2, typename RET_EQ, typename RET_NE>
struct PointerUnionTypeSelectorReturn<
PointerUnionTypeSelector<T1, T2, RET_EQ, RET_NE>> {
using Return =
typename PointerUnionTypeSelector<T1, T2, RET_EQ, RET_NE>::Return;
};
/// Provide PointerLikeTypeTraits for void* that is used by PointerUnion
/// for the two template arguments.
template <typename PT1, typename PT2> class PointerUnionUIntTraits {
public:
static inline void *getAsVoidPointer(void *P) { return P; }
static inline void *getFromVoidPointer(void *P) { return P; }
enum {
PT1BitsAv = (int)(PointerLikeTypeTraits<PT1>::NumLowBitsAvailable),
PT2BitsAv = (int)(PointerLikeTypeTraits<PT2>::NumLowBitsAvailable),
NumLowBitsAvailable = PT1BitsAv < PT2BitsAv ? PT1BitsAv : PT2BitsAv
};
};
/// A discriminated union of two pointer types, with the discriminator in the
/// low bit of the pointer.
///
/// This implementation is extremely efficient in space due to leveraging the
/// low bits of the pointer, while exposing a natural and type-safe API.
///
/// Common use patterns would be something like this:
/// PointerUnion<int*, float*> P;
/// P = (int*)0;
/// printf("%d %d", P.is<int*>(), P.is<float*>()); // prints "1 0"
/// X = P.get<int*>(); // ok.
/// Y = P.get<float*>(); // runtime assertion failure.
/// Z = P.get<double*>(); // compile time failure.
/// P = (float*)0;
/// Y = P.get<float*>(); // ok.
/// X = P.get<int*>(); // runtime assertion failure.
template <typename PT1, typename PT2> class PointerUnion {
public:
using ValTy =
PointerIntPair<void *, 1, bool, PointerUnionUIntTraits<PT1, PT2>>;
private:
ValTy Val;
struct IsPT1 {
static const int Num = 0;
};
struct IsPT2 {
static const int Num = 1;
};
template <typename T> struct UNION_DOESNT_CONTAIN_TYPE {};
public:
PointerUnion() = default;
PointerUnion(PT1 V)
: Val(const_cast<void *>(
PointerLikeTypeTraits<PT1>::getAsVoidPointer(V))) {}
PointerUnion(PT2 V)
: Val(const_cast<void *>(PointerLikeTypeTraits<PT2>::getAsVoidPointer(V)),
1) {}
/// Test if the pointer held in the union is null, regardless of
/// which type it is.
bool isNull() const {
// Convert from the void* to one of the pointer types, to make sure that
// we recursively strip off low bits if we have a nested PointerUnion.
return !PointerLikeTypeTraits<PT1>::getFromVoidPointer(Val.getPointer());
}
explicit operator bool() const { return !isNull(); }
/// Test if the Union currently holds the type matching T.
template <typename T> int is() const {
using Ty = typename ::llvm::PointerUnionTypeSelector<
PT1, T, IsPT1,
::llvm::PointerUnionTypeSelector<PT2, T, IsPT2,
UNION_DOESNT_CONTAIN_TYPE<T>>>::Return;
int TyNo = Ty::Num;
return static_cast<int>(Val.getInt()) == TyNo;
}
/// Returns the value of the specified pointer type.
///
/// If the specified pointer type is incorrect, assert.
template <typename T> T get() const {
assert(is<T>() && "Invalid accessor called");
return PointerLikeTypeTraits<T>::getFromVoidPointer(Val.getPointer());
}
/// Returns the current pointer if it is of the specified pointer type,
/// otherwises returns null.
template <typename T> T dyn_cast() const {
if (is<T>())
return get<T>();
return T();
}
/// If the union is set to the first pointer type get an address pointing to
/// it.
PT1 const *getAddrOfPtr1() const {
return const_cast<PointerUnion *>(this)->getAddrOfPtr1();
}
/// If the union is set to the first pointer type get an address pointing to
/// it.
PT1 *getAddrOfPtr1() {
assert(is<PT1>() && "Val is not the first pointer");
assert(
get<PT1>() == Val.getPointer() &&
"Can't get the address because PointerLikeTypeTraits changes the ptr");
return const_cast<PT1 *>(
reinterpret_cast<const PT1 *>(Val.getAddrOfPointer()));
}
/// Assignment from nullptr which just clears the union.
const PointerUnion &operator=(std::nullptr_t) {
Val.initWithPointer(nullptr);
return *this;
}
/// Assignment operators - Allow assigning into this union from either
/// pointer type, setting the discriminator to remember what it came from.
const PointerUnion &operator=(const PT1 &RHS) {
Val.initWithPointer(
const_cast<void *>(PointerLikeTypeTraits<PT1>::getAsVoidPointer(RHS)));
return *this;
}
const PointerUnion &operator=(const PT2 &RHS) {
Val.setPointerAndInt(
const_cast<void *>(PointerLikeTypeTraits<PT2>::getAsVoidPointer(RHS)),
1);
return *this;
}
void *getOpaqueValue() const { return Val.getOpaqueValue(); }
static inline PointerUnion getFromOpaqueValue(void *VP) {
PointerUnion V;
V.Val = ValTy::getFromOpaqueValue(VP);
return V;
}
};
template <typename PT1, typename PT2>
bool operator==(PointerUnion<PT1, PT2> lhs, PointerUnion<PT1, PT2> rhs) {
return lhs.getOpaqueValue() == rhs.getOpaqueValue();
}
template <typename PT1, typename PT2>
bool operator!=(PointerUnion<PT1, PT2> lhs, PointerUnion<PT1, PT2> rhs) {
return lhs.getOpaqueValue() != rhs.getOpaqueValue();
}
template <typename PT1, typename PT2>
bool operator<(PointerUnion<PT1, PT2> lhs, PointerUnion<PT1, PT2> rhs) {
return lhs.getOpaqueValue() < rhs.getOpaqueValue();
}
// Teach SmallPtrSet that PointerUnion is "basically a pointer", that has
// # low bits available = min(PT1bits,PT2bits)-1.
template <typename PT1, typename PT2>
struct PointerLikeTypeTraits<PointerUnion<PT1, PT2>> {
static inline void *getAsVoidPointer(const PointerUnion<PT1, PT2> &P) {
return P.getOpaqueValue();
}
static inline PointerUnion<PT1, PT2> getFromVoidPointer(void *P) {
return PointerUnion<PT1, PT2>::getFromOpaqueValue(P);
}
// The number of bits available are the min of the two pointer types.
enum {
NumLowBitsAvailable = PointerLikeTypeTraits<
typename PointerUnion<PT1, PT2>::ValTy>::NumLowBitsAvailable
};
};
/// A pointer union of three pointer types. See documentation for PointerUnion
/// for usage.
template <typename PT1, typename PT2, typename PT3> class PointerUnion3 {
public:
using InnerUnion = PointerUnion<PT1, PT2>;
using ValTy = PointerUnion<InnerUnion, PT3>;
private:
ValTy Val;
struct IsInnerUnion {
ValTy Val;
IsInnerUnion(ValTy val) : Val(val) {}
template <typename T> int is() const {
return Val.template is<InnerUnion>() &&
Val.template get<InnerUnion>().template is<T>();
}
template <typename T> T get() const {
return Val.template get<InnerUnion>().template get<T>();
}
};
struct IsPT3 {
ValTy Val;
IsPT3(ValTy val) : Val(val) {}
template <typename T> int is() const { return Val.template is<T>(); }
template <typename T> T get() const { return Val.template get<T>(); }
};
public:
PointerUnion3() = default;
PointerUnion3(PT1 V) { Val = InnerUnion(V); }
PointerUnion3(PT2 V) { Val = InnerUnion(V); }
PointerUnion3(PT3 V) { Val = V; }
/// Test if the pointer held in the union is null, regardless of
/// which type it is.
bool isNull() const { return Val.isNull(); }
explicit operator bool() const { return !isNull(); }
/// Test if the Union currently holds the type matching T.
template <typename T> int is() const {
// If T is PT1/PT2 choose IsInnerUnion otherwise choose IsPT3.
using Ty = typename ::llvm::PointerUnionTypeSelector<
PT1, T, IsInnerUnion,
::llvm::PointerUnionTypeSelector<PT2, T, IsInnerUnion, IsPT3>>::Return;
return Ty(Val).template is<T>();
}
/// Returns the value of the specified pointer type.
///
/// If the specified pointer type is incorrect, assert.
template <typename T> T get() const {
assert(is<T>() && "Invalid accessor called");
// If T is PT1/PT2 choose IsInnerUnion otherwise choose IsPT3.
using Ty = typename ::llvm::PointerUnionTypeSelector<
PT1, T, IsInnerUnion,
::llvm::PointerUnionTypeSelector<PT2, T, IsInnerUnion, IsPT3>>::Return;
return Ty(Val).template get<T>();
}
/// Returns the current pointer if it is of the specified pointer type,
/// otherwises returns null.
template <typename T> T dyn_cast() const {
if (is<T>())
return get<T>();
return T();
}
/// Assignment from nullptr which just clears the union.
const PointerUnion3 &operator=(std::nullptr_t) {
Val = nullptr;
return *this;
}
/// Assignment operators - Allow assigning into this union from either
/// pointer type, setting the discriminator to remember what it came from.
const PointerUnion3 &operator=(const PT1 &RHS) {
Val = InnerUnion(RHS);
return *this;
}
const PointerUnion3 &operator=(const PT2 &RHS) {
Val = InnerUnion(RHS);
return *this;
}
const PointerUnion3 &operator=(const PT3 &RHS) {
Val = RHS;
return *this;
}
void *getOpaqueValue() const { return Val.getOpaqueValue(); }
static inline PointerUnion3 getFromOpaqueValue(void *VP) {
PointerUnion3 V;
V.Val = ValTy::getFromOpaqueValue(VP);
return V;
}
};
// Teach SmallPtrSet that PointerUnion3 is "basically a pointer", that has
// # low bits available = min(PT1bits,PT2bits,PT2bits)-2.
template <typename PT1, typename PT2, typename PT3>
struct PointerLikeTypeTraits<PointerUnion3<PT1, PT2, PT3>> {
static inline void *getAsVoidPointer(const PointerUnion3<PT1, PT2, PT3> &P) {
return P.getOpaqueValue();
}
static inline PointerUnion3<PT1, PT2, PT3> getFromVoidPointer(void *P) {
return PointerUnion3<PT1, PT2, PT3>::getFromOpaqueValue(P);
}
// The number of bits available are the min of the two pointer types.
enum {
NumLowBitsAvailable = PointerLikeTypeTraits<
typename PointerUnion3<PT1, PT2, PT3>::ValTy>::NumLowBitsAvailable
};
};
template <typename PT1, typename PT2, typename PT3>
bool operator<(PointerUnion3<PT1, PT2, PT3> lhs,
PointerUnion3<PT1, PT2, PT3> rhs) {
return lhs.getOpaqueValue() < rhs.getOpaqueValue();
}
/// A pointer union of four pointer types. See documentation for PointerUnion
/// for usage.
template <typename PT1, typename PT2, typename PT3, typename PT4>
class PointerUnion4 {
public:
using InnerUnion1 = PointerUnion<PT1, PT2>;
using InnerUnion2 = PointerUnion<PT3, PT4>;
using ValTy = PointerUnion<InnerUnion1, InnerUnion2>;
private:
ValTy Val;
public:
PointerUnion4() = default;
PointerUnion4(PT1 V) { Val = InnerUnion1(V); }
PointerUnion4(PT2 V) { Val = InnerUnion1(V); }
PointerUnion4(PT3 V) { Val = InnerUnion2(V); }
PointerUnion4(PT4 V) { Val = InnerUnion2(V); }
/// Test if the pointer held in the union is null, regardless of
/// which type it is.
bool isNull() const { return Val.isNull(); }
explicit operator bool() const { return !isNull(); }
/// Test if the Union currently holds the type matching T.
template <typename T> int is() const {
// If T is PT1/PT2 choose InnerUnion1 otherwise choose InnerUnion2.
using Ty = typename ::llvm::PointerUnionTypeSelector<
PT1, T, InnerUnion1,
::llvm::PointerUnionTypeSelector<PT2, T, InnerUnion1,
InnerUnion2>>::Return;
return Val.template is<Ty>() && Val.template get<Ty>().template is<T>();
}
/// Returns the value of the specified pointer type.
///
/// If the specified pointer type is incorrect, assert.
template <typename T> T get() const {
assert(is<T>() && "Invalid accessor called");
// If T is PT1/PT2 choose InnerUnion1 otherwise choose InnerUnion2.
using Ty = typename ::llvm::PointerUnionTypeSelector<
PT1, T, InnerUnion1,
::llvm::PointerUnionTypeSelector<PT2, T, InnerUnion1,
InnerUnion2>>::Return;
return Val.template get<Ty>().template get<T>();
}
/// Returns the current pointer if it is of the specified pointer type,
/// otherwises returns null.
template <typename T> T dyn_cast() const {
if (is<T>())
return get<T>();
return T();
}
/// Assignment from nullptr which just clears the union.
const PointerUnion4 &operator=(std::nullptr_t) {
Val = nullptr;
return *this;
}
/// Assignment operators - Allow assigning into this union from either
/// pointer type, setting the discriminator to remember what it came from.
const PointerUnion4 &operator=(const PT1 &RHS) {
Val = InnerUnion1(RHS);
return *this;
}
const PointerUnion4 &operator=(const PT2 &RHS) {
Val = InnerUnion1(RHS);
return *this;
}
const PointerUnion4 &operator=(const PT3 &RHS) {
Val = InnerUnion2(RHS);
return *this;
}
const PointerUnion4 &operator=(const PT4 &RHS) {
Val = InnerUnion2(RHS);
return *this;
}
void *getOpaqueValue() const { return Val.getOpaqueValue(); }
static inline PointerUnion4 getFromOpaqueValue(void *VP) {
PointerUnion4 V;
V.Val = ValTy::getFromOpaqueValue(VP);
return V;
}
};
// Teach SmallPtrSet that PointerUnion4 is "basically a pointer", that has
// # low bits available = min(PT1bits,PT2bits,PT2bits)-2.
template <typename PT1, typename PT2, typename PT3, typename PT4>
struct PointerLikeTypeTraits<PointerUnion4<PT1, PT2, PT3, PT4>> {
static inline void *
getAsVoidPointer(const PointerUnion4<PT1, PT2, PT3, PT4> &P) {
return P.getOpaqueValue();
}
static inline PointerUnion4<PT1, PT2, PT3, PT4> getFromVoidPointer(void *P) {
return PointerUnion4<PT1, PT2, PT3, PT4>::getFromOpaqueValue(P);
}
// The number of bits available are the min of the two pointer types.
enum {
NumLowBitsAvailable = PointerLikeTypeTraits<
typename PointerUnion4<PT1, PT2, PT3, PT4>::ValTy>::NumLowBitsAvailable
};
};
// Teach DenseMap how to use PointerUnions as keys.
template <typename T, typename U> struct DenseMapInfo<PointerUnion<T, U>> {
using Pair = PointerUnion<T, U>;
using FirstInfo = DenseMapInfo<T>;
using SecondInfo = DenseMapInfo<U>;
static inline Pair getEmptyKey() { return Pair(FirstInfo::getEmptyKey()); }
static inline Pair getTombstoneKey() {
return Pair(FirstInfo::getTombstoneKey());
}
static unsigned getHashValue(const Pair &PairVal) {
intptr_t key = (intptr_t)PairVal.getOpaqueValue();
return DenseMapInfo<intptr_t>::getHashValue(key);
}
static bool isEqual(const Pair &LHS, const Pair &RHS) {
return LHS.template is<T>() == RHS.template is<T>() &&
(LHS.template is<T>() ? FirstInfo::isEqual(LHS.template get<T>(),
RHS.template get<T>())
: SecondInfo::isEqual(LHS.template get<U>(),
RHS.template get<U>()));
}
};
} // end namespace llvm
#endif // LLVM_ADT_POINTERUNION_H