//===- StringMap.h - String Hash table map interface ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the StringMap class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STRINGMAP_H
#define LLVM_ADT_STRINGMAP_H
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/PointerLikeTypeTraits.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <initializer_list>
#include <iterator>
#include <utility>
namespace llvm {
template<typename ValueTy> class StringMapConstIterator;
template<typename ValueTy> class StringMapIterator;
template<typename ValueTy> class StringMapKeyIterator;
/// StringMapEntryBase - Shared base class of StringMapEntry instances.
class StringMapEntryBase {
size_t StrLen;
public:
explicit StringMapEntryBase(size_t Len) : StrLen(Len) {}
size_t getKeyLength() const { return StrLen; }
};
/// StringMapImpl - This is the base class of StringMap that is shared among
/// all of its instantiations.
class StringMapImpl {
protected:
// Array of NumBuckets pointers to entries, null pointers are holes.
// TheTable[NumBuckets] contains a sentinel value for easy iteration. Followed
// by an array of the actual hash values as unsigned integers.
StringMapEntryBase **TheTable = nullptr;
unsigned NumBuckets = 0;
unsigned NumItems = 0;
unsigned NumTombstones = 0;
unsigned ItemSize;
protected:
explicit StringMapImpl(unsigned itemSize)
: ItemSize(itemSize) {}
StringMapImpl(StringMapImpl &&RHS)
: TheTable(RHS.TheTable), NumBuckets(RHS.NumBuckets),
NumItems(RHS.NumItems), NumTombstones(RHS.NumTombstones),
ItemSize(RHS.ItemSize) {
RHS.TheTable = nullptr;
RHS.NumBuckets = 0;
RHS.NumItems = 0;
RHS.NumTombstones = 0;
}
StringMapImpl(unsigned InitSize, unsigned ItemSize);
unsigned RehashTable(unsigned BucketNo = 0);
/// LookupBucketFor - Look up the bucket that the specified string should end
/// up in. If it already exists as a key in the map, the Item pointer for the
/// specified bucket will be non-null. Otherwise, it will be null. In either
/// case, the FullHashValue field of the bucket will be set to the hash value
/// of the string.
unsigned LookupBucketFor(StringRef Key);
/// FindKey - Look up the bucket that contains the specified key. If it exists
/// in the map, return the bucket number of the key. Otherwise return -1.
/// This does not modify the map.
int FindKey(StringRef Key) const;
/// RemoveKey - Remove the specified StringMapEntry from the table, but do not
/// delete it. This aborts if the value isn't in the table.
void RemoveKey(StringMapEntryBase *V);
/// RemoveKey - Remove the StringMapEntry for the specified key from the
/// table, returning it. If the key is not in the table, this returns null.
StringMapEntryBase *RemoveKey(StringRef Key);
/// Allocate the table with the specified number of buckets and otherwise
/// setup the map as empty.
void init(unsigned Size);
public:
static StringMapEntryBase *getTombstoneVal() {
uintptr_t Val = static_cast<uintptr_t>(-1);
Val <<= PointerLikeTypeTraits<StringMapEntryBase *>::NumLowBitsAvailable;
return reinterpret_cast<StringMapEntryBase *>(Val);
}
unsigned getNumBuckets() const { return NumBuckets; }
unsigned getNumItems() const { return NumItems; }
bool empty() const { return NumItems == 0; }
unsigned size() const { return NumItems; }
void swap(StringMapImpl &Other) {
std::swap(TheTable, Other.TheTable);
std::swap(NumBuckets, Other.NumBuckets);
std::swap(NumItems, Other.NumItems);
std::swap(NumTombstones, Other.NumTombstones);
}
};
/// StringMapEntry - This is used to represent one value that is inserted into
/// a StringMap. It contains the Value itself and the key: the string length
/// and data.
template<typename ValueTy>
class StringMapEntry : public StringMapEntryBase {
public:
ValueTy second;
explicit StringMapEntry(size_t strLen)
: StringMapEntryBase(strLen), second() {}
template <typename... InitTy>
StringMapEntry(size_t strLen, InitTy &&... InitVals)
: StringMapEntryBase(strLen), second(std::forward<InitTy>(InitVals)...) {}
StringMapEntry(StringMapEntry &E) = delete;
StringRef getKey() const {
return StringRef(getKeyData(), getKeyLength());
}
const ValueTy &getValue() const { return second; }
ValueTy &getValue() { return second; }
void setValue(const ValueTy &V) { second = V; }
/// getKeyData - Return the start of the string data that is the key for this
/// value. The string data is always stored immediately after the
/// StringMapEntry object.
const char *getKeyData() const {return reinterpret_cast<const char*>(this+1);}
StringRef first() const { return StringRef(getKeyData(), getKeyLength()); }
/// Create a StringMapEntry for the specified key construct the value using
/// \p InitiVals.
template <typename AllocatorTy, typename... InitTy>
static StringMapEntry *Create(StringRef Key, AllocatorTy &Allocator,
InitTy &&... InitVals) {
size_t KeyLength = Key.size();
// Allocate a new item with space for the string at the end and a null
// terminator.
size_t AllocSize = sizeof(StringMapEntry) + KeyLength + 1;
size_t Alignment = alignof(StringMapEntry);
StringMapEntry *NewItem =
static_cast<StringMapEntry*>(Allocator.Allocate(AllocSize,Alignment));
assert(NewItem && "Unhandled out-of-memory");
// Construct the value.
new (NewItem) StringMapEntry(KeyLength, std::forward<InitTy>(InitVals)...);
// Copy the string information.
char *StrBuffer = const_cast<char*>(NewItem->getKeyData());
if (KeyLength > 0)
memcpy(StrBuffer, Key.data(), KeyLength);
StrBuffer[KeyLength] = 0; // Null terminate for convenience of clients.
return NewItem;
}
/// Create - Create a StringMapEntry with normal malloc/free.
template <typename... InitType>
static StringMapEntry *Create(StringRef Key, InitType &&... InitVal) {
MallocAllocator A;
return Create(Key, A, std::forward<InitType>(InitVal)...);
}
static StringMapEntry *Create(StringRef Key) {
return Create(Key, ValueTy());
}
/// GetStringMapEntryFromKeyData - Given key data that is known to be embedded
/// into a StringMapEntry, return the StringMapEntry itself.
static StringMapEntry &GetStringMapEntryFromKeyData(const char *KeyData) {
char *Ptr = const_cast<char*>(KeyData) - sizeof(StringMapEntry<ValueTy>);
return *reinterpret_cast<StringMapEntry*>(Ptr);
}
/// Destroy - Destroy this StringMapEntry, releasing memory back to the
/// specified allocator.
template<typename AllocatorTy>
void Destroy(AllocatorTy &Allocator) {
// Free memory referenced by the item.
size_t AllocSize = sizeof(StringMapEntry) + getKeyLength() + 1;
this->~StringMapEntry();
Allocator.Deallocate(static_cast<void *>(this), AllocSize);
}
/// Destroy this object, releasing memory back to the malloc allocator.
void Destroy() {
MallocAllocator A;
Destroy(A);
}
};
/// StringMap - This is an unconventional map that is specialized for handling
/// keys that are "strings", which are basically ranges of bytes. This does some
/// funky memory allocation and hashing things to make it extremely efficient,
/// storing the string data *after* the value in the map.
template<typename ValueTy, typename AllocatorTy = MallocAllocator>
class StringMap : public StringMapImpl {
AllocatorTy Allocator;
public:
using MapEntryTy = StringMapEntry<ValueTy>;
StringMap() : StringMapImpl(static_cast<unsigned>(sizeof(MapEntryTy))) {}
explicit StringMap(unsigned InitialSize)
: StringMapImpl(InitialSize, static_cast<unsigned>(sizeof(MapEntryTy))) {}
explicit StringMap(AllocatorTy A)
: StringMapImpl(static_cast<unsigned>(sizeof(MapEntryTy))), Allocator(A) {}
StringMap(unsigned InitialSize, AllocatorTy A)
: StringMapImpl(InitialSize, static_cast<unsigned>(sizeof(MapEntryTy))),
Allocator(A) {}
StringMap(std::initializer_list<std::pair<StringRef, ValueTy>> List)
: StringMapImpl(List.size(), static_cast<unsigned>(sizeof(MapEntryTy))) {
for (const auto &P : List) {
insert(P);
}
}
StringMap(StringMap &&RHS)
: StringMapImpl(std::move(RHS)), Allocator(std::move(RHS.Allocator)) {}
StringMap(const StringMap &RHS) :
StringMapImpl(static_cast<unsigned>(sizeof(MapEntryTy))),
Allocator(RHS.Allocator) {
if (RHS.empty())
return;
// Allocate TheTable of the same size as RHS's TheTable, and set the
// sentinel appropriately (and NumBuckets).
init(RHS.NumBuckets);
unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1),
*RHSHashTable = (unsigned *)(RHS.TheTable + NumBuckets + 1);
NumItems = RHS.NumItems;
NumTombstones = RHS.NumTombstones;
for (unsigned I = 0, E = NumBuckets; I != E; ++I) {
StringMapEntryBase *Bucket = RHS.TheTable[I];
if (!Bucket || Bucket == getTombstoneVal()) {
TheTable[I] = Bucket;
continue;
}
TheTable[I] = MapEntryTy::Create(
static_cast<MapEntryTy *>(Bucket)->getKey(), Allocator,
static_cast<MapEntryTy *>(Bucket)->getValue());
HashTable[I] = RHSHashTable[I];
}
// Note that here we've copied everything from the RHS into this object,
// tombstones included. We could, instead, have re-probed for each key to
// instantiate this new object without any tombstone buckets. The
// assumption here is that items are rarely deleted from most StringMaps,
// and so tombstones are rare, so the cost of re-probing for all inputs is
// not worthwhile.
}
StringMap &operator=(StringMap RHS) {
StringMapImpl::swap(RHS);
std::swap(Allocator, RHS.Allocator);
return *this;
}
~StringMap() {
// Delete all the elements in the map, but don't reset the elements
// to default values. This is a copy of clear(), but avoids unnecessary
// work not required in the destructor.
if (!empty()) {
for (unsigned I = 0, E = NumBuckets; I != E; ++I) {
StringMapEntryBase *Bucket = TheTable[I];
if (Bucket && Bucket != getTombstoneVal()) {
static_cast<MapEntryTy*>(Bucket)->Destroy(Allocator);
}
}
}
free(TheTable);
}
AllocatorTy &getAllocator() { return Allocator; }
const AllocatorTy &getAllocator() const { return Allocator; }
using key_type = const char*;
using mapped_type = ValueTy;
using value_type = StringMapEntry<ValueTy>;
using size_type = size_t;
using const_iterator = StringMapConstIterator<ValueTy>;
using iterator = StringMapIterator<ValueTy>;
iterator begin() {
return iterator(TheTable, NumBuckets == 0);
}
iterator end() {
return iterator(TheTable+NumBuckets, true);
}
const_iterator begin() const {
return const_iterator(TheTable, NumBuckets == 0);
}
const_iterator end() const {
return const_iterator(TheTable+NumBuckets, true);
}
iterator_range<StringMapKeyIterator<ValueTy>> keys() const {
return make_range(StringMapKeyIterator<ValueTy>(begin()),
StringMapKeyIterator<ValueTy>(end()));
}
iterator find(StringRef Key) {
int Bucket = FindKey(Key);
if (Bucket == -1) return end();
return iterator(TheTable+Bucket, true);
}
const_iterator find(StringRef Key) const {
int Bucket = FindKey(Key);
if (Bucket == -1) return end();
return const_iterator(TheTable+Bucket, true);
}
/// lookup - Return the entry for the specified key, or a default
/// constructed value if no such entry exists.
ValueTy lookup(StringRef Key) const {
const_iterator it = find(Key);
if (it != end())
return it->second;
return ValueTy();
}
/// Lookup the ValueTy for the \p Key, or create a default constructed value
/// if the key is not in the map.
ValueTy &operator[](StringRef Key) { return try_emplace(Key).first->second; }
/// count - Return 1 if the element is in the map, 0 otherwise.
size_type count(StringRef Key) const {
return find(Key) == end() ? 0 : 1;
}
/// insert - Insert the specified key/value pair into the map. If the key
/// already exists in the map, return false and ignore the request, otherwise
/// insert it and return true.
bool insert(MapEntryTy *KeyValue) {
unsigned BucketNo = LookupBucketFor(KeyValue->getKey());
StringMapEntryBase *&Bucket = TheTable[BucketNo];
if (Bucket && Bucket != getTombstoneVal())
return false; // Already exists in map.
if (Bucket == getTombstoneVal())
--NumTombstones;
Bucket = KeyValue;
++NumItems;
assert(NumItems + NumTombstones <= NumBuckets);
RehashTable();
return true;
}
/// insert - Inserts the specified key/value pair into the map if the key
/// isn't already in the map. The bool component of the returned pair is true
/// if and only if the insertion takes place, and the iterator component of
/// the pair points to the element with key equivalent to the key of the pair.
std::pair<iterator, bool> insert(std::pair<StringRef, ValueTy> KV) {
return try_emplace(KV.first, std::move(KV.second));
}
/// Emplace a new element for the specified key into the map if the key isn't
/// already in the map. The bool component of the returned pair is true
/// if and only if the insertion takes place, and the iterator component of
/// the pair points to the element with key equivalent to the key of the pair.
template <typename... ArgsTy>
std::pair<iterator, bool> try_emplace(StringRef Key, ArgsTy &&... Args) {
unsigned BucketNo = LookupBucketFor(Key);
StringMapEntryBase *&Bucket = TheTable[BucketNo];
if (Bucket && Bucket != getTombstoneVal())
return std::make_pair(iterator(TheTable + BucketNo, false),
false); // Already exists in map.
if (Bucket == getTombstoneVal())
--NumTombstones;
Bucket = MapEntryTy::Create(Key, Allocator, std::forward<ArgsTy>(Args)...);
++NumItems;
assert(NumItems + NumTombstones <= NumBuckets);
BucketNo = RehashTable(BucketNo);
return std::make_pair(iterator(TheTable + BucketNo, false), true);
}
// clear - Empties out the StringMap
void clear() {
if (empty()) return;
// Zap all values, resetting the keys back to non-present (not tombstone),
// which is safe because we're removing all elements.
for (unsigned I = 0, E = NumBuckets; I != E; ++I) {
StringMapEntryBase *&Bucket = TheTable[I];
if (Bucket && Bucket != getTombstoneVal()) {
static_cast<MapEntryTy*>(Bucket)->Destroy(Allocator);
}
Bucket = nullptr;
}
NumItems = 0;
NumTombstones = 0;
}
/// remove - Remove the specified key/value pair from the map, but do not
/// erase it. This aborts if the key is not in the map.
void remove(MapEntryTy *KeyValue) {
RemoveKey(KeyValue);
}
void erase(iterator I) {
MapEntryTy &V = *I;
remove(&V);
V.Destroy(Allocator);
}
bool erase(StringRef Key) {
iterator I = find(Key);
if (I == end()) return false;
erase(I);
return true;
}
};
template <typename DerivedTy, typename ValueTy>
class StringMapIterBase
: public iterator_facade_base<DerivedTy, std::forward_iterator_tag,
ValueTy> {
protected:
StringMapEntryBase **Ptr = nullptr;
public:
StringMapIterBase() = default;
explicit StringMapIterBase(StringMapEntryBase **Bucket,
bool NoAdvance = false)
: Ptr(Bucket) {
if (!NoAdvance) AdvancePastEmptyBuckets();
}
DerivedTy &operator=(const DerivedTy &Other) {
Ptr = Other.Ptr;
return static_cast<DerivedTy &>(*this);
}
bool operator==(const DerivedTy &RHS) const { return Ptr == RHS.Ptr; }
DerivedTy &operator++() { // Preincrement
++Ptr;
AdvancePastEmptyBuckets();
return static_cast<DerivedTy &>(*this);
}
DerivedTy operator++(int) { // Post-increment
DerivedTy Tmp(Ptr);
++*this;
return Tmp;
}
private:
void AdvancePastEmptyBuckets() {
while (*Ptr == nullptr || *Ptr == StringMapImpl::getTombstoneVal())
++Ptr;
}
};
template <typename ValueTy>
class StringMapConstIterator
: public StringMapIterBase<StringMapConstIterator<ValueTy>,
const StringMapEntry<ValueTy>> {
using base = StringMapIterBase<StringMapConstIterator<ValueTy>,
const StringMapEntry<ValueTy>>;
public:
StringMapConstIterator() = default;
explicit StringMapConstIterator(StringMapEntryBase **Bucket,
bool NoAdvance = false)
: base(Bucket, NoAdvance) {}
const StringMapEntry<ValueTy> &operator*() const {
return *static_cast<const StringMapEntry<ValueTy> *>(*this->Ptr);
}
};
template <typename ValueTy>
class StringMapIterator : public StringMapIterBase<StringMapIterator<ValueTy>,
StringMapEntry<ValueTy>> {
using base =
StringMapIterBase<StringMapIterator<ValueTy>, StringMapEntry<ValueTy>>;
public:
StringMapIterator() = default;
explicit StringMapIterator(StringMapEntryBase **Bucket,
bool NoAdvance = false)
: base(Bucket, NoAdvance) {}
StringMapEntry<ValueTy> &operator*() const {
return *static_cast<StringMapEntry<ValueTy> *>(*this->Ptr);
}
operator StringMapConstIterator<ValueTy>() const {
return StringMapConstIterator<ValueTy>(this->Ptr, true);
}
};
template <typename ValueTy>
class StringMapKeyIterator
: public iterator_adaptor_base<StringMapKeyIterator<ValueTy>,
StringMapConstIterator<ValueTy>,
std::forward_iterator_tag, StringRef> {
using base = iterator_adaptor_base<StringMapKeyIterator<ValueTy>,
StringMapConstIterator<ValueTy>,
std::forward_iterator_tag, StringRef>;
public:
StringMapKeyIterator() = default;
explicit StringMapKeyIterator(StringMapConstIterator<ValueTy> Iter)
: base(std::move(Iter)) {}
StringRef &operator*() {
Key = this->wrapped()->getKey();
return Key;
}
private:
StringRef Key;
};
} // end namespace llvm
#endif // LLVM_ADT_STRINGMAP_H