//===---------------- Layer.h -- Layer interfaces --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Layer interfaces.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_ORC_LAYER_H
#define LLVM_EXECUTIONENGINE_ORC_LAYER_H
#include "llvm/ExecutionEngine/Orc/Core.h"
#include "llvm/ExecutionEngine/Orc/ThreadSafeModule.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/MemoryBuffer.h"
namespace llvm {
namespace orc {
/// Interface for layers that accept LLVM IR.
class IRLayer {
public:
IRLayer(ExecutionSession &ES);
virtual ~IRLayer();
/// Returns the ExecutionSession for this layer.
ExecutionSession &getExecutionSession() { return ES; }
/// Sets the CloneToNewContextOnEmit flag (false by default).
///
/// When set, IR modules added to this layer will be cloned on to a new
/// context before emit is called. This can be used by clients who want
/// to load all IR using one LLVMContext (to save memory via type and
/// constant uniquing), but want to move Modules to fresh contexts before
/// compiling them to enable concurrent compilation.
/// Single threaded clients, or clients who load every module on a new
/// context, need not set this.
void setCloneToNewContextOnEmit(bool CloneToNewContextOnEmit) {
this->CloneToNewContextOnEmit = CloneToNewContextOnEmit;
}
/// Returns the current value of the CloneToNewContextOnEmit flag.
bool getCloneToNewContextOnEmit() const { return CloneToNewContextOnEmit; }
/// Adds a MaterializationUnit representing the given IR to the given
/// JITDylib.
virtual Error add(JITDylib &JD, ThreadSafeModule TSM,
VModuleKey K = VModuleKey());
/// Emit should materialize the given IR.
virtual void emit(MaterializationResponsibility R, ThreadSafeModule TSM) = 0;
private:
bool CloneToNewContextOnEmit = false;
ExecutionSession &ES;
};
/// IRMaterializationUnit is a convenient base class for MaterializationUnits
/// wrapping LLVM IR. Represents materialization responsibility for all symbols
/// in the given module. If symbols are overridden by other definitions, then
/// their linkage is changed to available-externally.
class IRMaterializationUnit : public MaterializationUnit {
public:
using SymbolNameToDefinitionMap = std::map<SymbolStringPtr, GlobalValue *>;
/// Create an IRMaterializationLayer. Scans the module to build the
/// SymbolFlags and SymbolToDefinition maps.
IRMaterializationUnit(ExecutionSession &ES, ThreadSafeModule TSM,
VModuleKey K);
/// Create an IRMaterializationLayer from a module, and pre-existing
/// SymbolFlags and SymbolToDefinition maps. The maps must provide
/// entries for each definition in M.
/// This constructor is useful for delegating work from one
/// IRMaterializationUnit to another.
IRMaterializationUnit(ThreadSafeModule TSM, VModuleKey K,
SymbolFlagsMap SymbolFlags,
SymbolNameToDefinitionMap SymbolToDefinition);
/// Return the ModuleIdentifier as the name for this MaterializationUnit.
StringRef getName() const override;
const ThreadSafeModule &getModule() const { return TSM; }
protected:
ThreadSafeModule TSM;
SymbolNameToDefinitionMap SymbolToDefinition;
private:
void discard(const JITDylib &JD, const SymbolStringPtr &Name) override;
};
/// MaterializationUnit that materializes modules by calling the 'emit' method
/// on the given IRLayer.
class BasicIRLayerMaterializationUnit : public IRMaterializationUnit {
public:
BasicIRLayerMaterializationUnit(IRLayer &L, VModuleKey K,
ThreadSafeModule TSM);
private:
void materialize(MaterializationResponsibility R) override;
IRLayer &L;
VModuleKey K;
};
/// Interface for Layers that accept object files.
class ObjectLayer {
public:
ObjectLayer(ExecutionSession &ES);
virtual ~ObjectLayer();
/// Returns the execution session for this layer.
ExecutionSession &getExecutionSession() { return ES; }
/// Adds a MaterializationUnit representing the given IR to the given
/// JITDylib.
virtual Error add(JITDylib &JD, std::unique_ptr<MemoryBuffer> O,
VModuleKey K = VModuleKey());
/// Emit should materialize the given IR.
virtual void emit(MaterializationResponsibility R,
std::unique_ptr<MemoryBuffer> O) = 0;
private:
ExecutionSession &ES;
};
/// Materializes the given object file (represented by a MemoryBuffer
/// instance) by calling 'emit' on the given ObjectLayer.
class BasicObjectLayerMaterializationUnit : public MaterializationUnit {
public:
static Expected<std::unique_ptr<BasicObjectLayerMaterializationUnit>>
Create(ObjectLayer &L, VModuleKey K, std::unique_ptr<MemoryBuffer> O);
BasicObjectLayerMaterializationUnit(ObjectLayer &L, VModuleKey K,
std::unique_ptr<MemoryBuffer> O,
SymbolFlagsMap SymbolFlags);
/// Return the buffer's identifier as the name for this MaterializationUnit.
StringRef getName() const override;
private:
void materialize(MaterializationResponsibility R) override;
void discard(const JITDylib &JD, const SymbolStringPtr &Name) override;
ObjectLayer &L;
std::unique_ptr<MemoryBuffer> O;
};
/// Returns a SymbolFlagsMap for the object file represented by the given
/// buffer, or an error if the buffer does not contain a valid object file.
// FIXME: Maybe move to Core.h?
Expected<SymbolFlagsMap> getObjectSymbolFlags(ExecutionSession &ES,
MemoryBufferRef ObjBuffer);
} // End namespace orc
} // End namespace llvm
#endif // LLVM_EXECUTIONENGINE_ORC_LAYER_H