//===- PassManager internal APIs and implementation details -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This header provides internal APIs and implementation details used by the
/// pass management interfaces exposed in PassManager.h. To understand more
/// context of why these particular interfaces are needed, see that header
/// file. None of these APIs should be used elsewhere.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_PASSMANAGERINTERNAL_H
#define LLVM_IR_PASSMANAGERINTERNAL_H
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include <memory>
#include <utility>
namespace llvm {
template <typename IRUnitT> class AllAnalysesOn;
template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
class PreservedAnalyses;
/// Implementation details of the pass manager interfaces.
namespace detail {
/// Template for the abstract base class used to dispatch
/// polymorphically over pass objects.
template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
struct PassConcept {
// Boiler plate necessary for the container of derived classes.
virtual ~PassConcept() = default;
/// The polymorphic API which runs the pass over a given IR entity.
///
/// Note that actual pass object can omit the analysis manager argument if
/// desired. Also that the analysis manager may be null if there is no
/// analysis manager in the pass pipeline.
virtual PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
ExtraArgTs... ExtraArgs) = 0;
/// Polymorphic method to access the name of a pass.
virtual StringRef name() const = 0;
};
/// A template wrapper used to implement the polymorphic API.
///
/// Can be instantiated for any object which provides a \c run method accepting
/// an \c IRUnitT& and an \c AnalysisManager<IRUnit>&. It requires the pass to
/// be a copyable object.
template <typename IRUnitT, typename PassT, typename PreservedAnalysesT,
typename AnalysisManagerT, typename... ExtraArgTs>
struct PassModel : PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...> {
explicit PassModel(PassT Pass) : Pass(std::move(Pass)) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
PassModel(const PassModel &Arg) : Pass(Arg.Pass) {}
PassModel(PassModel &&Arg) : Pass(std::move(Arg.Pass)) {}
friend void swap(PassModel &LHS, PassModel &RHS) {
using std::swap;
swap(LHS.Pass, RHS.Pass);
}
PassModel &operator=(PassModel RHS) {
swap(*this, RHS);
return *this;
}
PreservedAnalysesT run(IRUnitT &IR, AnalysisManagerT &AM,
ExtraArgTs... ExtraArgs) override {
return Pass.run(IR, AM, ExtraArgs...);
}
StringRef name() const override { return PassT::name(); }
PassT Pass;
};
/// Abstract concept of an analysis result.
///
/// This concept is parameterized over the IR unit that this result pertains
/// to.
template <typename IRUnitT, typename PreservedAnalysesT, typename InvalidatorT>
struct AnalysisResultConcept {
virtual ~AnalysisResultConcept() = default;
/// Method to try and mark a result as invalid.
///
/// When the outer analysis manager detects a change in some underlying
/// unit of the IR, it will call this method on all of the results cached.
///
/// \p PA is a set of preserved analyses which can be used to avoid
/// invalidation because the pass which changed the underlying IR took care
/// to update or preserve the analysis result in some way.
///
/// \p Inv is typically a \c AnalysisManager::Invalidator object that can be
/// used by a particular analysis result to discover if other analyses
/// results are also invalidated in the event that this result depends on
/// them. See the documentation in the \c AnalysisManager for more details.
///
/// \returns true if the result is indeed invalid (the default).
virtual bool invalidate(IRUnitT &IR, const PreservedAnalysesT &PA,
InvalidatorT &Inv) = 0;
};
/// SFINAE metafunction for computing whether \c ResultT provides an
/// \c invalidate member function.
template <typename IRUnitT, typename ResultT> class ResultHasInvalidateMethod {
using EnabledType = char;
struct DisabledType {
char a, b;
};
// Purely to help out MSVC which fails to disable the below specialization,
// explicitly enable using the result type's invalidate routine if we can
// successfully call that routine.
template <typename T> struct Nonce { using Type = EnabledType; };
template <typename T>
static typename Nonce<decltype(std::declval<T>().invalidate(
std::declval<IRUnitT &>(), std::declval<PreservedAnalyses>()))>::Type
check(rank<2>);
// First we define an overload that can only be taken if there is no
// invalidate member. We do this by taking the address of an invalidate
// member in an adjacent base class of a derived class. This would be
// ambiguous if there were an invalidate member in the result type.
template <typename T, typename U> static DisabledType NonceFunction(T U::*);
struct CheckerBase { int invalidate; };
template <typename T> struct Checker : CheckerBase, T {};
template <typename T>
static decltype(NonceFunction(&Checker<T>::invalidate)) check(rank<1>);
// Now we have the fallback that will only be reached when there is an
// invalidate member, and enables the trait.
template <typename T>
static EnabledType check(rank<0>);
public:
enum { Value = sizeof(check<ResultT>(rank<2>())) == sizeof(EnabledType) };
};
/// Wrapper to model the analysis result concept.
///
/// By default, this will implement the invalidate method with a trivial
/// implementation so that the actual analysis result doesn't need to provide
/// an invalidation handler. It is only selected when the invalidation handler
/// is not part of the ResultT's interface.
template <typename IRUnitT, typename PassT, typename ResultT,
typename PreservedAnalysesT, typename InvalidatorT,
bool HasInvalidateHandler =
ResultHasInvalidateMethod<IRUnitT, ResultT>::Value>
struct AnalysisResultModel;
/// Specialization of \c AnalysisResultModel which provides the default
/// invalidate functionality.
template <typename IRUnitT, typename PassT, typename ResultT,
typename PreservedAnalysesT, typename InvalidatorT>
struct AnalysisResultModel<IRUnitT, PassT, ResultT, PreservedAnalysesT,
InvalidatorT, false>
: AnalysisResultConcept<IRUnitT, PreservedAnalysesT, InvalidatorT> {
explicit AnalysisResultModel(ResultT Result) : Result(std::move(Result)) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
AnalysisResultModel(const AnalysisResultModel &Arg) : Result(Arg.Result) {}
AnalysisResultModel(AnalysisResultModel &&Arg)
: Result(std::move(Arg.Result)) {}
friend void swap(AnalysisResultModel &LHS, AnalysisResultModel &RHS) {
using std::swap;
swap(LHS.Result, RHS.Result);
}
AnalysisResultModel &operator=(AnalysisResultModel RHS) {
swap(*this, RHS);
return *this;
}
/// The model bases invalidation solely on being in the preserved set.
//
// FIXME: We should actually use two different concepts for analysis results
// rather than two different models, and avoid the indirect function call for
// ones that use the trivial behavior.
bool invalidate(IRUnitT &, const PreservedAnalysesT &PA,
InvalidatorT &) override {
auto PAC = PA.template getChecker<PassT>();
return !PAC.preserved() &&
!PAC.template preservedSet<AllAnalysesOn<IRUnitT>>();
}
ResultT Result;
};
/// Specialization of \c AnalysisResultModel which delegates invalidate
/// handling to \c ResultT.
template <typename IRUnitT, typename PassT, typename ResultT,
typename PreservedAnalysesT, typename InvalidatorT>
struct AnalysisResultModel<IRUnitT, PassT, ResultT, PreservedAnalysesT,
InvalidatorT, true>
: AnalysisResultConcept<IRUnitT, PreservedAnalysesT, InvalidatorT> {
explicit AnalysisResultModel(ResultT Result) : Result(std::move(Result)) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
AnalysisResultModel(const AnalysisResultModel &Arg) : Result(Arg.Result) {}
AnalysisResultModel(AnalysisResultModel &&Arg)
: Result(std::move(Arg.Result)) {}
friend void swap(AnalysisResultModel &LHS, AnalysisResultModel &RHS) {
using std::swap;
swap(LHS.Result, RHS.Result);
}
AnalysisResultModel &operator=(AnalysisResultModel RHS) {
swap(*this, RHS);
return *this;
}
/// The model delegates to the \c ResultT method.
bool invalidate(IRUnitT &IR, const PreservedAnalysesT &PA,
InvalidatorT &Inv) override {
return Result.invalidate(IR, PA, Inv);
}
ResultT Result;
};
/// Abstract concept of an analysis pass.
///
/// This concept is parameterized over the IR unit that it can run over and
/// produce an analysis result.
template <typename IRUnitT, typename PreservedAnalysesT, typename InvalidatorT,
typename... ExtraArgTs>
struct AnalysisPassConcept {
virtual ~AnalysisPassConcept() = default;
/// Method to run this analysis over a unit of IR.
/// \returns A unique_ptr to the analysis result object to be queried by
/// users.
virtual std::unique_ptr<
AnalysisResultConcept<IRUnitT, PreservedAnalysesT, InvalidatorT>>
run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
ExtraArgTs... ExtraArgs) = 0;
/// Polymorphic method to access the name of a pass.
virtual StringRef name() const = 0;
};
/// Wrapper to model the analysis pass concept.
///
/// Can wrap any type which implements a suitable \c run method. The method
/// must accept an \c IRUnitT& and an \c AnalysisManager<IRUnitT>& as arguments
/// and produce an object which can be wrapped in a \c AnalysisResultModel.
template <typename IRUnitT, typename PassT, typename PreservedAnalysesT,
typename InvalidatorT, typename... ExtraArgTs>
struct AnalysisPassModel : AnalysisPassConcept<IRUnitT, PreservedAnalysesT,
InvalidatorT, ExtraArgTs...> {
explicit AnalysisPassModel(PassT Pass) : Pass(std::move(Pass)) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
AnalysisPassModel(const AnalysisPassModel &Arg) : Pass(Arg.Pass) {}
AnalysisPassModel(AnalysisPassModel &&Arg) : Pass(std::move(Arg.Pass)) {}
friend void swap(AnalysisPassModel &LHS, AnalysisPassModel &RHS) {
using std::swap;
swap(LHS.Pass, RHS.Pass);
}
AnalysisPassModel &operator=(AnalysisPassModel RHS) {
swap(*this, RHS);
return *this;
}
// FIXME: Replace PassT::Result with type traits when we use C++11.
using ResultModelT =
AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
PreservedAnalysesT, InvalidatorT>;
/// The model delegates to the \c PassT::run method.
///
/// The return is wrapped in an \c AnalysisResultModel.
std::unique_ptr<
AnalysisResultConcept<IRUnitT, PreservedAnalysesT, InvalidatorT>>
run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
ExtraArgTs... ExtraArgs) override {
return llvm::make_unique<ResultModelT>(
Pass.run(IR, AM, std::forward<ExtraArgTs>(ExtraArgs)...));
}
/// The model delegates to a static \c PassT::name method.
///
/// The returned string ref must point to constant immutable data!
StringRef name() const override { return PassT::name(); }
PassT Pass;
};
} // end namespace detail
} // end namespace llvm
#endif // LLVM_IR_PASSMANAGERINTERNAL_H