//===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares codegen opcodes and related utilities.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_ISDOPCODES_H
#define LLVM_CODEGEN_ISDOPCODES_H
namespace llvm {
/// ISD namespace - This namespace contains an enum which represents all of the
/// SelectionDAG node types and value types.
///
namespace ISD {
//===--------------------------------------------------------------------===//
/// ISD::NodeType enum - This enum defines the target-independent operators
/// for a SelectionDAG.
///
/// Targets may also define target-dependent operator codes for SDNodes. For
/// example, on x86, these are the enum values in the X86ISD namespace.
/// Targets should aim to use target-independent operators to model their
/// instruction sets as much as possible, and only use target-dependent
/// operators when they have special requirements.
///
/// Finally, during and after selection proper, SNodes may use special
/// operator codes that correspond directly with MachineInstr opcodes. These
/// are used to represent selected instructions. See the isMachineOpcode()
/// and getMachineOpcode() member functions of SDNode.
///
enum NodeType {
/// DELETED_NODE - This is an illegal value that is used to catch
/// errors. This opcode is not a legal opcode for any node.
DELETED_NODE,
/// EntryToken - This is the marker used to indicate the start of a region.
EntryToken,
/// TokenFactor - This node takes multiple tokens as input and produces a
/// single token result. This is used to represent the fact that the operand
/// operators are independent of each other.
TokenFactor,
/// AssertSext, AssertZext - These nodes record if a register contains a
/// value that has already been zero or sign extended from a narrower type.
/// These nodes take two operands. The first is the node that has already
/// been extended, and the second is a value type node indicating the width
/// of the extension
AssertSext, AssertZext,
/// Various leaf nodes.
BasicBlock, VALUETYPE, CONDCODE, Register, RegisterMask,
Constant, ConstantFP,
GlobalAddress, GlobalTLSAddress, FrameIndex,
JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
/// The address of the GOT
GLOBAL_OFFSET_TABLE,
/// FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
/// llvm.returnaddress on the DAG. These nodes take one operand, the index
/// of the frame or return address to return. An index of zero corresponds
/// to the current function's frame or return address, an index of one to
/// the parent's frame or return address, and so on.
FRAMEADDR, RETURNADDR, ADDROFRETURNADDR,
/// LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
/// Materializes the offset from the local object pointer of another
/// function to a particular local object passed to llvm.localescape. The
/// operand is the MCSymbol label used to represent this offset, since
/// typically the offset is not known until after code generation of the
/// parent.
LOCAL_RECOVER,
/// READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on
/// the DAG, which implements the named register global variables extension.
READ_REGISTER,
WRITE_REGISTER,
/// FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
/// first (possible) on-stack argument. This is needed for correct stack
/// adjustment during unwind.
FRAME_TO_ARGS_OFFSET,
/// EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical
/// Frame Address (CFA), generally the value of the stack pointer at the
/// call site in the previous frame.
EH_DWARF_CFA,
/// OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
/// 'eh_return' gcc dwarf builtin, which is used to return from
/// exception. The general meaning is: adjust stack by OFFSET and pass
/// execution to HANDLER. Many platform-related details also :)
EH_RETURN,
/// RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
/// This corresponds to the eh.sjlj.setjmp intrinsic.
/// It takes an input chain and a pointer to the jump buffer as inputs
/// and returns an outchain.
EH_SJLJ_SETJMP,
/// OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
/// This corresponds to the eh.sjlj.longjmp intrinsic.
/// It takes an input chain and a pointer to the jump buffer as inputs
/// and returns an outchain.
EH_SJLJ_LONGJMP,
/// OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN)
/// The target initializes the dispatch table here.
EH_SJLJ_SETUP_DISPATCH,
/// TargetConstant* - Like Constant*, but the DAG does not do any folding,
/// simplification, or lowering of the constant. They are used for constants
/// which are known to fit in the immediate fields of their users, or for
/// carrying magic numbers which are not values which need to be
/// materialized in registers.
TargetConstant,
TargetConstantFP,
/// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
/// anything else with this node, and this is valid in the target-specific
/// dag, turning into a GlobalAddress operand.
TargetGlobalAddress,
TargetGlobalTLSAddress,
TargetFrameIndex,
TargetJumpTable,
TargetConstantPool,
TargetExternalSymbol,
TargetBlockAddress,
MCSymbol,
/// TargetIndex - Like a constant pool entry, but with completely
/// target-dependent semantics. Holds target flags, a 32-bit index, and a
/// 64-bit index. Targets can use this however they like.
TargetIndex,
/// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
/// This node represents a target intrinsic function with no side effects.
/// The first operand is the ID number of the intrinsic from the
/// llvm::Intrinsic namespace. The operands to the intrinsic follow. The
/// node returns the result of the intrinsic.
INTRINSIC_WO_CHAIN,
/// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
/// This node represents a target intrinsic function with side effects that
/// returns a result. The first operand is a chain pointer. The second is
/// the ID number of the intrinsic from the llvm::Intrinsic namespace. The
/// operands to the intrinsic follow. The node has two results, the result
/// of the intrinsic and an output chain.
INTRINSIC_W_CHAIN,
/// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
/// This node represents a target intrinsic function with side effects that
/// does not return a result. The first operand is a chain pointer. The
/// second is the ID number of the intrinsic from the llvm::Intrinsic
/// namespace. The operands to the intrinsic follow.
INTRINSIC_VOID,
/// CopyToReg - This node has three operands: a chain, a register number to
/// set to this value, and a value.
CopyToReg,
/// CopyFromReg - This node indicates that the input value is a virtual or
/// physical register that is defined outside of the scope of this
/// SelectionDAG. The register is available from the RegisterSDNode object.
CopyFromReg,
/// UNDEF - An undefined node.
UNDEF,
/// EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
/// a Constant, which is required to be operand #1) half of the integer or
/// float value specified as operand #0. This is only for use before
/// legalization, for values that will be broken into multiple registers.
EXTRACT_ELEMENT,
/// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
/// Given two values of the same integer value type, this produces a value
/// twice as big. Like EXTRACT_ELEMENT, this can only be used before
/// legalization. The lower part of the composite value should be in
/// element 0 and the upper part should be in element 1.
BUILD_PAIR,
/// MERGE_VALUES - This node takes multiple discrete operands and returns
/// them all as its individual results. This nodes has exactly the same
/// number of inputs and outputs. This node is useful for some pieces of the
/// code generator that want to think about a single node with multiple
/// results, not multiple nodes.
MERGE_VALUES,
/// Simple integer binary arithmetic operators.
ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
/// SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
/// a signed/unsigned value of type i[2*N], and return the full value as
/// two results, each of type iN.
SMUL_LOHI, UMUL_LOHI,
/// SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
/// remainder result.
SDIVREM, UDIVREM,
/// CARRY_FALSE - This node is used when folding other nodes,
/// like ADDC/SUBC, which indicate the carry result is always false.
CARRY_FALSE,
/// Carry-setting nodes for multiple precision addition and subtraction.
/// These nodes take two operands of the same value type, and produce two
/// results. The first result is the normal add or sub result, the second
/// result is the carry flag result.
/// FIXME: These nodes are deprecated in favor of ADDCARRY and SUBCARRY.
/// They are kept around for now to provide a smooth transition path
/// toward the use of ADDCARRY/SUBCARRY and will eventually be removed.
ADDC, SUBC,
/// Carry-using nodes for multiple precision addition and subtraction. These
/// nodes take three operands: The first two are the normal lhs and rhs to
/// the add or sub, and the third is the input carry flag. These nodes
/// produce two results; the normal result of the add or sub, and the output
/// carry flag. These nodes both read and write a carry flag to allow them
/// to them to be chained together for add and sub of arbitrarily large
/// values.
ADDE, SUBE,
/// Carry-using nodes for multiple precision addition and subtraction.
/// These nodes take three operands: The first two are the normal lhs and
/// rhs to the add or sub, and the third is a boolean indicating if there
/// is an incoming carry. These nodes produce two results: the normal
/// result of the add or sub, and the output carry so they can be chained
/// together. The use of this opcode is preferable to adde/sube if the
/// target supports it, as the carry is a regular value rather than a
/// glue, which allows further optimisation.
ADDCARRY, SUBCARRY,
/// RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
/// These nodes take two operands: the normal LHS and RHS to the add. They
/// produce two results: the normal result of the add, and a boolean that
/// indicates if an overflow occurred (*not* a flag, because it may be store
/// to memory, etc.). If the type of the boolean is not i1 then the high
/// bits conform to getBooleanContents.
/// These nodes are generated from llvm.[su]add.with.overflow intrinsics.
SADDO, UADDO,
/// Same for subtraction.
SSUBO, USUBO,
/// Same for multiplication.
SMULO, UMULO,
/// Simple binary floating point operators.
FADD, FSUB, FMUL, FDIV, FREM,
/// Constrained versions of the binary floating point operators.
/// These will be lowered to the simple operators before final selection.
/// They are used to limit optimizations while the DAG is being
/// optimized.
STRICT_FADD, STRICT_FSUB, STRICT_FMUL, STRICT_FDIV, STRICT_FREM,
STRICT_FMA,
/// Constrained versions of libm-equivalent floating point intrinsics.
/// These will be lowered to the equivalent non-constrained pseudo-op
/// (or expanded to the equivalent library call) before final selection.
/// They are used to limit optimizations while the DAG is being optimized.
STRICT_FSQRT, STRICT_FPOW, STRICT_FPOWI, STRICT_FSIN, STRICT_FCOS,
STRICT_FEXP, STRICT_FEXP2, STRICT_FLOG, STRICT_FLOG10, STRICT_FLOG2,
STRICT_FRINT, STRICT_FNEARBYINT,
/// FMA - Perform a * b + c with no intermediate rounding step.
FMA,
/// FMAD - Perform a * b + c, while getting the same result as the
/// separately rounded operations.
FMAD,
/// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y. NOTE: This
/// DAG node does not require that X and Y have the same type, just that
/// they are both floating point. X and the result must have the same type.
/// FCOPYSIGN(f32, f64) is allowed.
FCOPYSIGN,
/// INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
/// value as an integer 0/1 value.
FGETSIGN,
/// Returns platform specific canonical encoding of a floating point number.
FCANONICALIZE,
/// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
/// specified, possibly variable, elements. The number of elements is
/// required to be a power of two. The types of the operands must all be
/// the same and must match the vector element type, except that integer
/// types are allowed to be larger than the element type, in which case
/// the operands are implicitly truncated.
BUILD_VECTOR,
/// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
/// at IDX replaced with VAL. If the type of VAL is larger than the vector
/// element type then VAL is truncated before replacement.
INSERT_VECTOR_ELT,
/// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
/// identified by the (potentially variable) element number IDX. If the
/// return type is an integer type larger than the element type of the
/// vector, the result is extended to the width of the return type. In
/// that case, the high bits are undefined.
EXTRACT_VECTOR_ELT,
/// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
/// vector type with the same length and element type, this produces a
/// concatenated vector result value, with length equal to the sum of the
/// lengths of the input vectors.
CONCAT_VECTORS,
/// INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector
/// with VECTOR2 inserted into VECTOR1 at the (potentially
/// variable) element number IDX, which must be a multiple of the
/// VECTOR2 vector length. The elements of VECTOR1 starting at
/// IDX are overwritten with VECTOR2. Elements IDX through
/// vector_length(VECTOR2) must be valid VECTOR1 indices.
INSERT_SUBVECTOR,
/// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
/// vector value) starting with the element number IDX, which must be a
/// constant multiple of the result vector length.
EXTRACT_SUBVECTOR,
/// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
/// VEC1/VEC2. A VECTOR_SHUFFLE node also contains an array of constant int
/// values that indicate which value (or undef) each result element will
/// get. These constant ints are accessible through the
/// ShuffleVectorSDNode class. This is quite similar to the Altivec
/// 'vperm' instruction, except that the indices must be constants and are
/// in terms of the element size of VEC1/VEC2, not in terms of bytes.
VECTOR_SHUFFLE,
/// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
/// scalar value into element 0 of the resultant vector type. The top
/// elements 1 to N-1 of the N-element vector are undefined. The type
/// of the operand must match the vector element type, except when they
/// are integer types. In this case the operand is allowed to be wider
/// than the vector element type, and is implicitly truncated to it.
SCALAR_TO_VECTOR,
/// MULHU/MULHS - Multiply high - Multiply two integers of type iN,
/// producing an unsigned/signed value of type i[2*N], then return the top
/// part.
MULHU, MULHS,
/// [US]{MIN/MAX} - Binary minimum or maximum or signed or unsigned
/// integers.
SMIN, SMAX, UMIN, UMAX,
/// Bitwise operators - logical and, logical or, logical xor.
AND, OR, XOR,
/// ABS - Determine the unsigned absolute value of a signed integer value of
/// the same bitwidth.
/// Note: A value of INT_MIN will return INT_MIN, no saturation or overflow
/// is performed.
ABS,
/// Shift and rotation operations. After legalization, the type of the
/// shift amount is known to be TLI.getShiftAmountTy(). Before legalization
/// the shift amount can be any type, but care must be taken to ensure it is
/// large enough. TLI.getShiftAmountTy() is i8 on some targets, but before
/// legalization, types like i1024 can occur and i8 doesn't have enough bits
/// to represent the shift amount.
/// When the 1st operand is a vector, the shift amount must be in the same
/// type. (TLI.getShiftAmountTy() will return the same type when the input
/// type is a vector.)
/// For rotates, the shift amount is treated as an unsigned amount modulo
/// the element size of the first operand.
SHL, SRA, SRL, ROTL, ROTR,
/// Byte Swap and Counting operators.
BSWAP, CTTZ, CTLZ, CTPOP, BITREVERSE,
/// Bit counting operators with an undefined result for zero inputs.
CTTZ_ZERO_UNDEF, CTLZ_ZERO_UNDEF,
/// Select(COND, TRUEVAL, FALSEVAL). If the type of the boolean COND is not
/// i1 then the high bits must conform to getBooleanContents.
SELECT,
/// Select with a vector condition (op #0) and two vector operands (ops #1
/// and #2), returning a vector result. All vectors have the same length.
/// Much like the scalar select and setcc, each bit in the condition selects
/// whether the corresponding result element is taken from op #1 or op #2.
/// At first, the VSELECT condition is of vXi1 type. Later, targets may
/// change the condition type in order to match the VSELECT node using a
/// pattern. The condition follows the BooleanContent format of the target.
VSELECT,
/// Select with condition operator - This selects between a true value and
/// a false value (ops #2 and #3) based on the boolean result of comparing
/// the lhs and rhs (ops #0 and #1) of a conditional expression with the
/// condition code in op #4, a CondCodeSDNode.
SELECT_CC,
/// SetCC operator - This evaluates to a true value iff the condition is
/// true. If the result value type is not i1 then the high bits conform
/// to getBooleanContents. The operands to this are the left and right
/// operands to compare (ops #0, and #1) and the condition code to compare
/// them with (op #2) as a CondCodeSDNode. If the operands are vector types
/// then the result type must also be a vector type.
SETCC,
/// Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but
/// op #2 is a boolean indicating if there is an incoming carry. This
/// operator checks the result of "LHS - RHS - Carry", and can be used to
/// compare two wide integers:
/// (setcccarry lhshi rhshi (subcarry lhslo rhslo) cc).
/// Only valid for integers.
SETCCCARRY,
/// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
/// integer shift operations. The operation ordering is:
/// [Lo,Hi] = op [LoLHS,HiLHS], Amt
SHL_PARTS, SRA_PARTS, SRL_PARTS,
/// Conversion operators. These are all single input single output
/// operations. For all of these, the result type must be strictly
/// wider or narrower (depending on the operation) than the source
/// type.
/// SIGN_EXTEND - Used for integer types, replicating the sign bit
/// into new bits.
SIGN_EXTEND,
/// ZERO_EXTEND - Used for integer types, zeroing the new bits.
ZERO_EXTEND,
/// ANY_EXTEND - Used for integer types. The high bits are undefined.
ANY_EXTEND,
/// TRUNCATE - Completely drop the high bits.
TRUNCATE,
/// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
/// depends on the first letter) to floating point.
SINT_TO_FP,
UINT_TO_FP,
/// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
/// sign extend a small value in a large integer register (e.g. sign
/// extending the low 8 bits of a 32-bit register to fill the top 24 bits
/// with the 7th bit). The size of the smaller type is indicated by the 1th
/// operand, a ValueType node.
SIGN_EXTEND_INREG,
/// ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an
/// in-register any-extension of the low lanes of an integer vector. The
/// result type must have fewer elements than the operand type, and those
/// elements must be larger integer types such that the total size of the
/// operand type and the result type match. Each of the low operand
/// elements is any-extended into the corresponding, wider result
/// elements with the high bits becoming undef.
ANY_EXTEND_VECTOR_INREG,
/// SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an
/// in-register sign-extension of the low lanes of an integer vector. The
/// result type must have fewer elements than the operand type, and those
/// elements must be larger integer types such that the total size of the
/// operand type and the result type match. Each of the low operand
/// elements is sign-extended into the corresponding, wider result
/// elements.
// FIXME: The SIGN_EXTEND_INREG node isn't specifically limited to
// scalars, but it also doesn't handle vectors well. Either it should be
// restricted to scalars or this node (and its handling) should be merged
// into it.
SIGN_EXTEND_VECTOR_INREG,
/// ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an
/// in-register zero-extension of the low lanes of an integer vector. The
/// result type must have fewer elements than the operand type, and those
/// elements must be larger integer types such that the total size of the
/// operand type and the result type match. Each of the low operand
/// elements is zero-extended into the corresponding, wider result
/// elements.
ZERO_EXTEND_VECTOR_INREG,
/// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
/// integer. These have the same semantics as fptosi and fptoui in IR. If
/// the FP value cannot fit in the integer type, the results are undefined.
FP_TO_SINT,
FP_TO_UINT,
/// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
/// down to the precision of the destination VT. TRUNC is a flag, which is
/// always an integer that is zero or one. If TRUNC is 0, this is a
/// normal rounding, if it is 1, this FP_ROUND is known to not change the
/// value of Y.
///
/// The TRUNC = 1 case is used in cases where we know that the value will
/// not be modified by the node, because Y is not using any of the extra
/// precision of source type. This allows certain transformations like
/// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
/// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
FP_ROUND,
/// FLT_ROUNDS_ - Returns current rounding mode:
/// -1 Undefined
/// 0 Round to 0
/// 1 Round to nearest
/// 2 Round to +inf
/// 3 Round to -inf
FLT_ROUNDS_,
/// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
/// rounds it to a floating point value. It then promotes it and returns it
/// in a register of the same size. This operation effectively just
/// discards excess precision. The type to round down to is specified by
/// the VT operand, a VTSDNode.
FP_ROUND_INREG,
/// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
FP_EXTEND,
/// BITCAST - This operator converts between integer, vector and FP
/// values, as if the value was stored to memory with one type and loaded
/// from the same address with the other type (or equivalently for vector
/// format conversions, etc). The source and result are required to have
/// the same bit size (e.g. f32 <-> i32). This can also be used for
/// int-to-int or fp-to-fp conversions, but that is a noop, deleted by
/// getNode().
///
/// This operator is subtly different from the bitcast instruction from
/// LLVM-IR since this node may change the bits in the register. For
/// example, this occurs on big-endian NEON and big-endian MSA where the
/// layout of the bits in the register depends on the vector type and this
/// operator acts as a shuffle operation for some vector type combinations.
BITCAST,
/// ADDRSPACECAST - This operator converts between pointers of different
/// address spaces.
ADDRSPACECAST,
/// FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions
/// and truncation for half-precision (16 bit) floating numbers. These nodes
/// form a semi-softened interface for dealing with f16 (as an i16), which
/// is often a storage-only type but has native conversions.
FP16_TO_FP, FP_TO_FP16,
/// FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
/// FLOG, FLOG2, FLOG10, FEXP, FEXP2,
/// FCEIL, FTRUNC, FRINT, FNEARBYINT, FROUND, FFLOOR - Perform various unary
/// floating point operations. These are inspired by libm.
FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
FLOG, FLOG2, FLOG10, FEXP, FEXP2,
FCEIL, FTRUNC, FRINT, FNEARBYINT, FROUND, FFLOOR,
/// FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two
/// values.
/// In the case where a single input is NaN, the non-NaN input is returned.
///
/// The return value of (FMINNUM 0.0, -0.0) could be either 0.0 or -0.0.
FMINNUM, FMAXNUM,
/// FMINNAN/FMAXNAN - Behave identically to FMINNUM/FMAXNUM, except that
/// when a single input is NaN, NaN is returned.
FMINNAN, FMAXNAN,
/// FSINCOS - Compute both fsin and fcos as a single operation.
FSINCOS,
/// LOAD and STORE have token chains as their first operand, then the same
/// operands as an LLVM load/store instruction, then an offset node that
/// is added / subtracted from the base pointer to form the address (for
/// indexed memory ops).
LOAD, STORE,
/// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
/// to a specified boundary. This node always has two return values: a new
/// stack pointer value and a chain. The first operand is the token chain,
/// the second is the number of bytes to allocate, and the third is the
/// alignment boundary. The size is guaranteed to be a multiple of the
/// stack alignment, and the alignment is guaranteed to be bigger than the
/// stack alignment (if required) or 0 to get standard stack alignment.
DYNAMIC_STACKALLOC,
/// Control flow instructions. These all have token chains.
/// BR - Unconditional branch. The first operand is the chain
/// operand, the second is the MBB to branch to.
BR,
/// BRIND - Indirect branch. The first operand is the chain, the second
/// is the value to branch to, which must be of the same type as the
/// target's pointer type.
BRIND,
/// BR_JT - Jumptable branch. The first operand is the chain, the second
/// is the jumptable index, the last one is the jumptable entry index.
BR_JT,
/// BRCOND - Conditional branch. The first operand is the chain, the
/// second is the condition, the third is the block to branch to if the
/// condition is true. If the type of the condition is not i1, then the
/// high bits must conform to getBooleanContents.
BRCOND,
/// BR_CC - Conditional branch. The behavior is like that of SELECT_CC, in
/// that the condition is represented as condition code, and two nodes to
/// compare, rather than as a combined SetCC node. The operands in order
/// are chain, cc, lhs, rhs, block to branch to if condition is true.
BR_CC,
/// INLINEASM - Represents an inline asm block. This node always has two
/// return values: a chain and a flag result. The inputs are as follows:
/// Operand #0 : Input chain.
/// Operand #1 : a ExternalSymbolSDNode with a pointer to the asm string.
/// Operand #2 : a MDNodeSDNode with the !srcloc metadata.
/// Operand #3 : HasSideEffect, IsAlignStack bits.
/// After this, it is followed by a list of operands with this format:
/// ConstantSDNode: Flags that encode whether it is a mem or not, the
/// of operands that follow, etc. See InlineAsm.h.
/// ... however many operands ...
/// Operand #last: Optional, an incoming flag.
///
/// The variable width operands are required to represent target addressing
/// modes as a single "operand", even though they may have multiple
/// SDOperands.
INLINEASM,
/// EH_LABEL - Represents a label in mid basic block used to track
/// locations needed for debug and exception handling tables. These nodes
/// take a chain as input and return a chain.
EH_LABEL,
/// ANNOTATION_LABEL - Represents a mid basic block label used by
/// annotations. This should remain within the basic block and be ordered
/// with respect to other call instructions, but loads and stores may float
/// past it.
ANNOTATION_LABEL,
/// CATCHPAD - Represents a catchpad instruction.
CATCHPAD,
/// CATCHRET - Represents a return from a catch block funclet. Used for
/// MSVC compatible exception handling. Takes a chain operand and a
/// destination basic block operand.
CATCHRET,
/// CLEANUPRET - Represents a return from a cleanup block funclet. Used for
/// MSVC compatible exception handling. Takes only a chain operand.
CLEANUPRET,
/// STACKSAVE - STACKSAVE has one operand, an input chain. It produces a
/// value, the same type as the pointer type for the system, and an output
/// chain.
STACKSAVE,
/// STACKRESTORE has two operands, an input chain and a pointer to restore
/// to it returns an output chain.
STACKRESTORE,
/// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end
/// of a call sequence, and carry arbitrary information that target might
/// want to know. The first operand is a chain, the rest are specified by
/// the target and not touched by the DAG optimizers.
/// Targets that may use stack to pass call arguments define additional
/// operands:
/// - size of the call frame part that must be set up within the
/// CALLSEQ_START..CALLSEQ_END pair,
/// - part of the call frame prepared prior to CALLSEQ_START.
/// Both these parameters must be constants, their sum is the total call
/// frame size.
/// CALLSEQ_START..CALLSEQ_END pairs may not be nested.
CALLSEQ_START, // Beginning of a call sequence
CALLSEQ_END, // End of a call sequence
/// VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
/// and the alignment. It returns a pair of values: the vaarg value and a
/// new chain.
VAARG,
/// VACOPY - VACOPY has 5 operands: an input chain, a destination pointer,
/// a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
/// source.
VACOPY,
/// VAEND, VASTART - VAEND and VASTART have three operands: an input chain,
/// pointer, and a SRCVALUE.
VAEND, VASTART,
/// SRCVALUE - This is a node type that holds a Value* that is used to
/// make reference to a value in the LLVM IR.
SRCVALUE,
/// MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
/// reference metadata in the IR.
MDNODE_SDNODE,
/// PCMARKER - This corresponds to the pcmarker intrinsic.
PCMARKER,
/// READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
/// It produces a chain and one i64 value. The only operand is a chain.
/// If i64 is not legal, the result will be expanded into smaller values.
/// Still, it returns an i64, so targets should set legality for i64.
/// The result is the content of the architecture-specific cycle
/// counter-like register (or other high accuracy low latency clock source).
READCYCLECOUNTER,
/// HANDLENODE node - Used as a handle for various purposes.
HANDLENODE,
/// INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic. It
/// takes as input a token chain, the pointer to the trampoline, the pointer
/// to the nested function, the pointer to pass for the 'nest' parameter, a
/// SRCVALUE for the trampoline and another for the nested function
/// (allowing targets to access the original Function*).
/// It produces a token chain as output.
INIT_TRAMPOLINE,
/// ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
/// It takes a pointer to the trampoline and produces a (possibly) new
/// pointer to the same trampoline with platform-specific adjustments
/// applied. The pointer it returns points to an executable block of code.
ADJUST_TRAMPOLINE,
/// TRAP - Trapping instruction
TRAP,
/// DEBUGTRAP - Trap intended to get the attention of a debugger.
DEBUGTRAP,
/// PREFETCH - This corresponds to a prefetch intrinsic. The first operand
/// is the chain. The other operands are the address to prefetch,
/// read / write specifier, locality specifier and instruction / data cache
/// specifier.
PREFETCH,
/// OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope)
/// This corresponds to the fence instruction. It takes an input chain, and
/// two integer constants: an AtomicOrdering and a SynchronizationScope.
ATOMIC_FENCE,
/// Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr)
/// This corresponds to "load atomic" instruction.
ATOMIC_LOAD,
/// OUTCHAIN = ATOMIC_STORE(INCHAIN, ptr, val)
/// This corresponds to "store atomic" instruction.
ATOMIC_STORE,
/// Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
/// For double-word atomic operations:
/// ValLo, ValHi, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmpLo, cmpHi,
/// swapLo, swapHi)
/// This corresponds to the cmpxchg instruction.
ATOMIC_CMP_SWAP,
/// Val, Success, OUTCHAIN
/// = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap)
/// N.b. this is still a strong cmpxchg operation, so
/// Success == "Val == cmp".
ATOMIC_CMP_SWAP_WITH_SUCCESS,
/// Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
/// Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
/// For double-word atomic operations:
/// ValLo, ValHi, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amtLo, amtHi)
/// ValLo, ValHi, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amtLo, amtHi)
/// These correspond to the atomicrmw instruction.
ATOMIC_SWAP,
ATOMIC_LOAD_ADD,
ATOMIC_LOAD_SUB,
ATOMIC_LOAD_AND,
ATOMIC_LOAD_CLR,
ATOMIC_LOAD_OR,
ATOMIC_LOAD_XOR,
ATOMIC_LOAD_NAND,
ATOMIC_LOAD_MIN,
ATOMIC_LOAD_MAX,
ATOMIC_LOAD_UMIN,
ATOMIC_LOAD_UMAX,
// Masked load and store - consecutive vector load and store operations
// with additional mask operand that prevents memory accesses to the
// masked-off lanes.
MLOAD, MSTORE,
// Masked gather and scatter - load and store operations for a vector of
// random addresses with additional mask operand that prevents memory
// accesses to the masked-off lanes.
MGATHER, MSCATTER,
/// This corresponds to the llvm.lifetime.* intrinsics. The first operand
/// is the chain and the second operand is the alloca pointer.
LIFETIME_START, LIFETIME_END,
/// GC_TRANSITION_START/GC_TRANSITION_END - These operators mark the
/// beginning and end of GC transition sequence, and carry arbitrary
/// information that target might need for lowering. The first operand is
/// a chain, the rest are specified by the target and not touched by the DAG
/// optimizers. GC_TRANSITION_START..GC_TRANSITION_END pairs may not be
/// nested.
GC_TRANSITION_START,
GC_TRANSITION_END,
/// GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of
/// the most recent dynamic alloca. For most targets that would be 0, but
/// for some others (e.g. PowerPC, PowerPC64) that would be compile-time
/// known nonzero constant. The only operand here is the chain.
GET_DYNAMIC_AREA_OFFSET,
/// Generic reduction nodes. These nodes represent horizontal vector
/// reduction operations, producing a scalar result.
/// The STRICT variants perform reductions in sequential order. The first
/// operand is an initial scalar accumulator value, and the second operand
/// is the vector to reduce.
VECREDUCE_STRICT_FADD, VECREDUCE_STRICT_FMUL,
/// These reductions are non-strict, and have a single vector operand.
VECREDUCE_FADD, VECREDUCE_FMUL,
VECREDUCE_ADD, VECREDUCE_MUL,
VECREDUCE_AND, VECREDUCE_OR, VECREDUCE_XOR,
VECREDUCE_SMAX, VECREDUCE_SMIN, VECREDUCE_UMAX, VECREDUCE_UMIN,
/// FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
VECREDUCE_FMAX, VECREDUCE_FMIN,
/// BUILTIN_OP_END - This must be the last enum value in this list.
/// The target-specific pre-isel opcode values start here.
BUILTIN_OP_END
};
/// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
/// which do not reference a specific memory location should be less than
/// this value. Those that do must not be less than this value, and can
/// be used with SelectionDAG::getMemIntrinsicNode.
static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+400;
//===--------------------------------------------------------------------===//
/// MemIndexedMode enum - This enum defines the load / store indexed
/// addressing modes.
///
/// UNINDEXED "Normal" load / store. The effective address is already
/// computed and is available in the base pointer. The offset
/// operand is always undefined. In addition to producing a
/// chain, an unindexed load produces one value (result of the
/// load); an unindexed store does not produce a value.
///
/// PRE_INC Similar to the unindexed mode where the effective address is
/// PRE_DEC the value of the base pointer add / subtract the offset.
/// It considers the computation as being folded into the load /
/// store operation (i.e. the load / store does the address
/// computation as well as performing the memory transaction).
/// The base operand is always undefined. In addition to
/// producing a chain, pre-indexed load produces two values
/// (result of the load and the result of the address
/// computation); a pre-indexed store produces one value (result
/// of the address computation).
///
/// POST_INC The effective address is the value of the base pointer. The
/// POST_DEC value of the offset operand is then added to / subtracted
/// from the base after memory transaction. In addition to
/// producing a chain, post-indexed load produces two values
/// (the result of the load and the result of the base +/- offset
/// computation); a post-indexed store produces one value (the
/// the result of the base +/- offset computation).
enum MemIndexedMode {
UNINDEXED = 0,
PRE_INC,
PRE_DEC,
POST_INC,
POST_DEC
};
static const int LAST_INDEXED_MODE = POST_DEC + 1;
//===--------------------------------------------------------------------===//
/// LoadExtType enum - This enum defines the three variants of LOADEXT
/// (load with extension).
///
/// SEXTLOAD loads the integer operand and sign extends it to a larger
/// integer result type.
/// ZEXTLOAD loads the integer operand and zero extends it to a larger
/// integer result type.
/// EXTLOAD is used for two things: floating point extending loads and
/// integer extending loads [the top bits are undefined].
enum LoadExtType {
NON_EXTLOAD = 0,
EXTLOAD,
SEXTLOAD,
ZEXTLOAD
};
static const int LAST_LOADEXT_TYPE = ZEXTLOAD + 1;
NodeType getExtForLoadExtType(bool IsFP, LoadExtType);
//===--------------------------------------------------------------------===//
/// ISD::CondCode enum - These are ordered carefully to make the bitfields
/// below work out, when considering SETFALSE (something that never exists
/// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered
/// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
/// to. If the "N" column is 1, the result of the comparison is undefined if
/// the input is a NAN.
///
/// All of these (except for the 'always folded ops') should be handled for
/// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
/// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
///
/// Note that these are laid out in a specific order to allow bit-twiddling
/// to transform conditions.
enum CondCode {
// Opcode N U L G E Intuitive operation
SETFALSE, // 0 0 0 0 Always false (always folded)
SETOEQ, // 0 0 0 1 True if ordered and equal
SETOGT, // 0 0 1 0 True if ordered and greater than
SETOGE, // 0 0 1 1 True if ordered and greater than or equal
SETOLT, // 0 1 0 0 True if ordered and less than
SETOLE, // 0 1 0 1 True if ordered and less than or equal
SETONE, // 0 1 1 0 True if ordered and operands are unequal
SETO, // 0 1 1 1 True if ordered (no nans)
SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
SETUEQ, // 1 0 0 1 True if unordered or equal
SETUGT, // 1 0 1 0 True if unordered or greater than
SETUGE, // 1 0 1 1 True if unordered, greater than, or equal
SETULT, // 1 1 0 0 True if unordered or less than
SETULE, // 1 1 0 1 True if unordered, less than, or equal
SETUNE, // 1 1 1 0 True if unordered or not equal
SETTRUE, // 1 1 1 1 Always true (always folded)
// Don't care operations: undefined if the input is a nan.
SETFALSE2, // 1 X 0 0 0 Always false (always folded)
SETEQ, // 1 X 0 0 1 True if equal
SETGT, // 1 X 0 1 0 True if greater than
SETGE, // 1 X 0 1 1 True if greater than or equal
SETLT, // 1 X 1 0 0 True if less than
SETLE, // 1 X 1 0 1 True if less than or equal
SETNE, // 1 X 1 1 0 True if not equal
SETTRUE2, // 1 X 1 1 1 Always true (always folded)
SETCC_INVALID // Marker value.
};
/// Return true if this is a setcc instruction that performs a signed
/// comparison when used with integer operands.
inline bool isSignedIntSetCC(CondCode Code) {
return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
}
/// Return true if this is a setcc instruction that performs an unsigned
/// comparison when used with integer operands.
inline bool isUnsignedIntSetCC(CondCode Code) {
return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
}
/// Return true if the specified condition returns true if the two operands to
/// the condition are equal. Note that if one of the two operands is a NaN,
/// this value is meaningless.
inline bool isTrueWhenEqual(CondCode Cond) {
return ((int)Cond & 1) != 0;
}
/// This function returns 0 if the condition is always false if an operand is
/// a NaN, 1 if the condition is always true if the operand is a NaN, and 2 if
/// the condition is undefined if the operand is a NaN.
inline unsigned getUnorderedFlavor(CondCode Cond) {
return ((int)Cond >> 3) & 3;
}
/// Return the operation corresponding to !(X op Y), where 'op' is a valid
/// SetCC operation.
CondCode getSetCCInverse(CondCode Operation, bool isInteger);
/// Return the operation corresponding to (Y op X) when given the operation
/// for (X op Y).
CondCode getSetCCSwappedOperands(CondCode Operation);
/// Return the result of a logical OR between different comparisons of
/// identical values: ((X op1 Y) | (X op2 Y)). This function returns
/// SETCC_INVALID if it is not possible to represent the resultant comparison.
CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
/// Return the result of a logical AND between different comparisons of
/// identical values: ((X op1 Y) & (X op2 Y)). This function returns
/// SETCC_INVALID if it is not possible to represent the resultant comparison.
CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
} // end llvm::ISD namespace
} // end llvm namespace
#endif