//===- llvm/CodeGen/ScheduleDAG.h - Common Base Class -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file Implements the ScheduleDAG class, which is used as the common base
/// class for instruction schedulers. This encapsulates the scheduling DAG,
/// which is shared between SelectionDAG and MachineInstr scheduling.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
#define LLVM_CODEGEN_SCHEDULEDAG_H
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstddef>
#include <iterator>
#include <string>
#include <vector>
namespace llvm {
template<class Graph> class GraphWriter;
class MachineFunction;
class MachineRegisterInfo;
class MCInstrDesc;
struct MCSchedClassDesc;
class ScheduleDAG;
class SDNode;
class SUnit;
class TargetInstrInfo;
class TargetMachine;
class TargetRegisterClass;
class TargetRegisterInfo;
/// Scheduling dependency. This represents one direction of an edge in the
/// scheduling DAG.
class SDep {
public:
/// These are the different kinds of scheduling dependencies.
enum Kind {
Data, ///< Regular data dependence (aka true-dependence).
Anti, ///< A register anti-dependence (aka WAR).
Output, ///< A register output-dependence (aka WAW).
Order ///< Any other ordering dependency.
};
// Strong dependencies must be respected by the scheduler. Artificial
// dependencies may be removed only if they are redundant with another
// strong dependence.
//
// Weak dependencies may be violated by the scheduling strategy, but only if
// the strategy can prove it is correct to do so.
//
// Strong OrderKinds must occur before "Weak".
// Weak OrderKinds must occur after "Weak".
enum OrderKind {
Barrier, ///< An unknown scheduling barrier.
MayAliasMem, ///< Nonvolatile load/Store instructions that may alias.
MustAliasMem, ///< Nonvolatile load/Store instructions that must alias.
Artificial, ///< Arbitrary strong DAG edge (no real dependence).
Weak, ///< Arbitrary weak DAG edge.
Cluster ///< Weak DAG edge linking a chain of clustered instrs.
};
private:
/// A pointer to the depending/depended-on SUnit, and an enum
/// indicating the kind of the dependency.
PointerIntPair<SUnit *, 2, Kind> Dep;
/// A union discriminated by the dependence kind.
union {
/// For Data, Anti, and Output dependencies, the associated register. For
/// Data dependencies that don't currently have a register/ assigned, this
/// is set to zero.
unsigned Reg;
/// Additional information about Order dependencies.
unsigned OrdKind; // enum OrderKind
} Contents;
/// The time associated with this edge. Often this is just the value of the
/// Latency field of the predecessor, however advanced models may provide
/// additional information about specific edges.
unsigned Latency;
public:
/// Constructs a null SDep. This is only for use by container classes which
/// require default constructors. SUnits may not/ have null SDep edges.
SDep() : Dep(nullptr, Data) {}
/// Constructs an SDep with the specified values.
SDep(SUnit *S, Kind kind, unsigned Reg)
: Dep(S, kind), Contents() {
switch (kind) {
default:
llvm_unreachable("Reg given for non-register dependence!");
case Anti:
case Output:
assert(Reg != 0 &&
"SDep::Anti and SDep::Output must use a non-zero Reg!");
Contents.Reg = Reg;
Latency = 0;
break;
case Data:
Contents.Reg = Reg;
Latency = 1;
break;
}
}
SDep(SUnit *S, OrderKind kind)
: Dep(S, Order), Contents(), Latency(0) {
Contents.OrdKind = kind;
}
/// Returns true if the specified SDep is equivalent except for latency.
bool overlaps(const SDep &Other) const;
bool operator==(const SDep &Other) const {
return overlaps(Other) && Latency == Other.Latency;
}
bool operator!=(const SDep &Other) const {
return !operator==(Other);
}
/// Returns the latency value for this edge, which roughly means the
/// minimum number of cycles that must elapse between the predecessor and
/// the successor, given that they have this edge between them.
unsigned getLatency() const {
return Latency;
}
/// Sets the latency for this edge.
void setLatency(unsigned Lat) {
Latency = Lat;
}
//// Returns the SUnit to which this edge points.
SUnit *getSUnit() const;
//// Assigns the SUnit to which this edge points.
void setSUnit(SUnit *SU);
/// Returns an enum value representing the kind of the dependence.
Kind getKind() const;
/// Shorthand for getKind() != SDep::Data.
bool isCtrl() const {
return getKind() != Data;
}
/// Tests if this is an Order dependence between two memory accesses
/// where both sides of the dependence access memory in non-volatile and
/// fully modeled ways.
bool isNormalMemory() const {
return getKind() == Order && (Contents.OrdKind == MayAliasMem
|| Contents.OrdKind == MustAliasMem);
}
/// Tests if this is an Order dependence that is marked as a barrier.
bool isBarrier() const {
return getKind() == Order && Contents.OrdKind == Barrier;
}
/// Tests if this is could be any kind of memory dependence.
bool isNormalMemoryOrBarrier() const {
return (isNormalMemory() || isBarrier());
}
/// Tests if this is an Order dependence that is marked as
/// "must alias", meaning that the SUnits at either end of the edge have a
/// memory dependence on a known memory location.
bool isMustAlias() const {
return getKind() == Order && Contents.OrdKind == MustAliasMem;
}
/// Tests if this a weak dependence. Weak dependencies are considered DAG
/// edges for height computation and other heuristics, but do not force
/// ordering. Breaking a weak edge may require the scheduler to compensate,
/// for example by inserting a copy.
bool isWeak() const {
return getKind() == Order && Contents.OrdKind >= Weak;
}
/// Tests if this is an Order dependence that is marked as
/// "artificial", meaning it isn't necessary for correctness.
bool isArtificial() const {
return getKind() == Order && Contents.OrdKind == Artificial;
}
/// Tests if this is an Order dependence that is marked as "cluster",
/// meaning it is artificial and wants to be adjacent.
bool isCluster() const {
return getKind() == Order && Contents.OrdKind == Cluster;
}
/// Tests if this is a Data dependence that is associated with a register.
bool isAssignedRegDep() const {
return getKind() == Data && Contents.Reg != 0;
}
/// Returns the register associated with this edge. This is only valid on
/// Data, Anti, and Output edges. On Data edges, this value may be zero,
/// meaning there is no associated register.
unsigned getReg() const {
assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
"getReg called on non-register dependence edge!");
return Contents.Reg;
}
/// Assigns the associated register for this edge. This is only valid on
/// Data, Anti, and Output edges. On Anti and Output edges, this value must
/// not be zero. On Data edges, the value may be zero, which would mean that
/// no specific register is associated with this edge.
void setReg(unsigned Reg) {
assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
"setReg called on non-register dependence edge!");
assert((getKind() != Anti || Reg != 0) &&
"SDep::Anti edge cannot use the zero register!");
assert((getKind() != Output || Reg != 0) &&
"SDep::Output edge cannot use the zero register!");
Contents.Reg = Reg;
}
raw_ostream &print(raw_ostream &O,
const TargetRegisterInfo *TRI = nullptr) const;
};
template <>
struct isPodLike<SDep> { static const bool value = true; };
/// Scheduling unit. This is a node in the scheduling DAG.
class SUnit {
private:
enum : unsigned { BoundaryID = ~0u };
SDNode *Node = nullptr; ///< Representative node.
MachineInstr *Instr = nullptr; ///< Alternatively, a MachineInstr.
public:
SUnit *OrigNode = nullptr; ///< If not this, the node from which this node
/// was cloned. (SD scheduling only)
const MCSchedClassDesc *SchedClass =
nullptr; ///< nullptr or resolved SchedClass.
SmallVector<SDep, 4> Preds; ///< All sunit predecessors.
SmallVector<SDep, 4> Succs; ///< All sunit successors.
typedef SmallVectorImpl<SDep>::iterator pred_iterator;
typedef SmallVectorImpl<SDep>::iterator succ_iterator;
typedef SmallVectorImpl<SDep>::const_iterator const_pred_iterator;
typedef SmallVectorImpl<SDep>::const_iterator const_succ_iterator;
unsigned NodeNum = BoundaryID; ///< Entry # of node in the node vector.
unsigned NodeQueueId = 0; ///< Queue id of node.
unsigned NumPreds = 0; ///< # of SDep::Data preds.
unsigned NumSuccs = 0; ///< # of SDep::Data sucss.
unsigned NumPredsLeft = 0; ///< # of preds not scheduled.
unsigned NumSuccsLeft = 0; ///< # of succs not scheduled.
unsigned WeakPredsLeft = 0; ///< # of weak preds not scheduled.
unsigned WeakSuccsLeft = 0; ///< # of weak succs not scheduled.
unsigned short NumRegDefsLeft = 0; ///< # of reg defs with no scheduled use.
unsigned short Latency = 0; ///< Node latency.
bool isVRegCycle : 1; ///< May use and def the same vreg.
bool isCall : 1; ///< Is a function call.
bool isCallOp : 1; ///< Is a function call operand.
bool isTwoAddress : 1; ///< Is a two-address instruction.
bool isCommutable : 1; ///< Is a commutable instruction.
bool hasPhysRegUses : 1; ///< Has physreg uses.
bool hasPhysRegDefs : 1; ///< Has physreg defs that are being used.
bool hasPhysRegClobbers : 1; ///< Has any physreg defs, used or not.
bool isPending : 1; ///< True once pending.
bool isAvailable : 1; ///< True once available.
bool isScheduled : 1; ///< True once scheduled.
bool isScheduleHigh : 1; ///< True if preferable to schedule high.
bool isScheduleLow : 1; ///< True if preferable to schedule low.
bool isCloned : 1; ///< True if this node has been cloned.
bool isUnbuffered : 1; ///< Uses an unbuffered resource.
bool hasReservedResource : 1; ///< Uses a reserved resource.
Sched::Preference SchedulingPref = Sched::None; ///< Scheduling preference.
private:
bool isDepthCurrent : 1; ///< True if Depth is current.
bool isHeightCurrent : 1; ///< True if Height is current.
unsigned Depth = 0; ///< Node depth.
unsigned Height = 0; ///< Node height.
public:
unsigned TopReadyCycle = 0; ///< Cycle relative to start when node is ready.
unsigned BotReadyCycle = 0; ///< Cycle relative to end when node is ready.
const TargetRegisterClass *CopyDstRC =
nullptr; ///< Is a special copy node if != nullptr.
const TargetRegisterClass *CopySrcRC = nullptr;
/// Constructs an SUnit for pre-regalloc scheduling to represent an
/// SDNode and any nodes flagged to it.
SUnit(SDNode *node, unsigned nodenum)
: Node(node), NodeNum(nodenum), isVRegCycle(false), isCall(false),
isCallOp(false), isTwoAddress(false), isCommutable(false),
hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
isPending(false), isAvailable(false), isScheduled(false),
isScheduleHigh(false), isScheduleLow(false), isCloned(false),
isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false),
isHeightCurrent(false) {}
/// Constructs an SUnit for post-regalloc scheduling to represent a
/// MachineInstr.
SUnit(MachineInstr *instr, unsigned nodenum)
: Instr(instr), NodeNum(nodenum), isVRegCycle(false), isCall(false),
isCallOp(false), isTwoAddress(false), isCommutable(false),
hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
isPending(false), isAvailable(false), isScheduled(false),
isScheduleHigh(false), isScheduleLow(false), isCloned(false),
isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false),
isHeightCurrent(false) {}
/// Constructs a placeholder SUnit.
SUnit()
: isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
isCommutable(false), hasPhysRegUses(false), hasPhysRegDefs(false),
hasPhysRegClobbers(false), isPending(false), isAvailable(false),
isScheduled(false), isScheduleHigh(false), isScheduleLow(false),
isCloned(false), isUnbuffered(false), hasReservedResource(false),
isDepthCurrent(false), isHeightCurrent(false) {}
/// Boundary nodes are placeholders for the boundary of the
/// scheduling region.
///
/// BoundaryNodes can have DAG edges, including Data edges, but they do not
/// correspond to schedulable entities (e.g. instructions) and do not have a
/// valid ID. Consequently, always check for boundary nodes before accessing
/// an associative data structure keyed on node ID.
bool isBoundaryNode() const { return NodeNum == BoundaryID; }
/// Assigns the representative SDNode for this SUnit. This may be used
/// during pre-regalloc scheduling.
void setNode(SDNode *N) {
assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
Node = N;
}
/// Returns the representative SDNode for this SUnit. This may be used
/// during pre-regalloc scheduling.
SDNode *getNode() const {
assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
return Node;
}
/// Returns true if this SUnit refers to a machine instruction as
/// opposed to an SDNode.
bool isInstr() const { return Instr; }
/// Assigns the instruction for the SUnit. This may be used during
/// post-regalloc scheduling.
void setInstr(MachineInstr *MI) {
assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
Instr = MI;
}
/// Returns the representative MachineInstr for this SUnit. This may be used
/// during post-regalloc scheduling.
MachineInstr *getInstr() const {
assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
return Instr;
}
/// Adds the specified edge as a pred of the current node if not already.
/// It also adds the current node as a successor of the specified node.
bool addPred(const SDep &D, bool Required = true);
/// Adds a barrier edge to SU by calling addPred(), with latency 0
/// generally or latency 1 for a store followed by a load.
bool addPredBarrier(SUnit *SU) {
SDep Dep(SU, SDep::Barrier);
unsigned TrueMemOrderLatency =
((SU->getInstr()->mayStore() && this->getInstr()->mayLoad()) ? 1 : 0);
Dep.setLatency(TrueMemOrderLatency);
return addPred(Dep);
}
/// Removes the specified edge as a pred of the current node if it exists.
/// It also removes the current node as a successor of the specified node.
void removePred(const SDep &D);
/// Returns the depth of this node, which is the length of the maximum path
/// up to any node which has no predecessors.
unsigned getDepth() const {
if (!isDepthCurrent)
const_cast<SUnit *>(this)->ComputeDepth();
return Depth;
}
/// Returns the height of this node, which is the length of the
/// maximum path down to any node which has no successors.
unsigned getHeight() const {
if (!isHeightCurrent)
const_cast<SUnit *>(this)->ComputeHeight();
return Height;
}
/// If NewDepth is greater than this node's depth value, sets it to
/// be the new depth value. This also recursively marks successor nodes
/// dirty.
void setDepthToAtLeast(unsigned NewDepth);
/// If NewDepth is greater than this node's depth value, set it to be
/// the new height value. This also recursively marks predecessor nodes
/// dirty.
void setHeightToAtLeast(unsigned NewHeight);
/// Sets a flag in this node to indicate that its stored Depth value
/// will require recomputation the next time getDepth() is called.
void setDepthDirty();
/// Sets a flag in this node to indicate that its stored Height value
/// will require recomputation the next time getHeight() is called.
void setHeightDirty();
/// Tests if node N is a predecessor of this node.
bool isPred(const SUnit *N) const {
for (const SDep &Pred : Preds)
if (Pred.getSUnit() == N)
return true;
return false;
}
/// Tests if node N is a successor of this node.
bool isSucc(const SUnit *N) const {
for (const SDep &Succ : Succs)
if (Succ.getSUnit() == N)
return true;
return false;
}
bool isTopReady() const {
return NumPredsLeft == 0;
}
bool isBottomReady() const {
return NumSuccsLeft == 0;
}
/// Orders this node's predecessor edges such that the critical path
/// edge occurs first.
void biasCriticalPath();
void dump(const ScheduleDAG *G) const;
void dumpAll(const ScheduleDAG *G) const;
raw_ostream &print(raw_ostream &O,
const SUnit *Entry = nullptr,
const SUnit *Exit = nullptr) const;
raw_ostream &print(raw_ostream &O, const ScheduleDAG *G) const;
private:
void ComputeDepth();
void ComputeHeight();
};
/// Returns true if the specified SDep is equivalent except for latency.
inline bool SDep::overlaps(const SDep &Other) const {
if (Dep != Other.Dep)
return false;
switch (Dep.getInt()) {
case Data:
case Anti:
case Output:
return Contents.Reg == Other.Contents.Reg;
case Order:
return Contents.OrdKind == Other.Contents.OrdKind;
}
llvm_unreachable("Invalid dependency kind!");
}
//// Returns the SUnit to which this edge points.
inline SUnit *SDep::getSUnit() const { return Dep.getPointer(); }
//// Assigns the SUnit to which this edge points.
inline void SDep::setSUnit(SUnit *SU) { Dep.setPointer(SU); }
/// Returns an enum value representing the kind of the dependence.
inline SDep::Kind SDep::getKind() const { return Dep.getInt(); }
//===--------------------------------------------------------------------===//
/// This interface is used to plug different priorities computation
/// algorithms into the list scheduler. It implements the interface of a
/// standard priority queue, where nodes are inserted in arbitrary order and
/// returned in priority order. The computation of the priority and the
/// representation of the queue are totally up to the implementation to
/// decide.
class SchedulingPriorityQueue {
virtual void anchor();
unsigned CurCycle = 0;
bool HasReadyFilter;
public:
SchedulingPriorityQueue(bool rf = false) : HasReadyFilter(rf) {}
virtual ~SchedulingPriorityQueue() = default;
virtual bool isBottomUp() const = 0;
virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
virtual void addNode(const SUnit *SU) = 0;
virtual void updateNode(const SUnit *SU) = 0;
virtual void releaseState() = 0;
virtual bool empty() const = 0;
bool hasReadyFilter() const { return HasReadyFilter; }
virtual bool tracksRegPressure() const { return false; }
virtual bool isReady(SUnit *) const {
assert(!HasReadyFilter && "The ready filter must override isReady()");
return true;
}
virtual void push(SUnit *U) = 0;
void push_all(const std::vector<SUnit *> &Nodes) {
for (std::vector<SUnit *>::const_iterator I = Nodes.begin(),
E = Nodes.end(); I != E; ++I)
push(*I);
}
virtual SUnit *pop() = 0;
virtual void remove(SUnit *SU) = 0;
virtual void dump(ScheduleDAG *) const {}
/// As each node is scheduled, this method is invoked. This allows the
/// priority function to adjust the priority of related unscheduled nodes,
/// for example.
virtual void scheduledNode(SUnit *) {}
virtual void unscheduledNode(SUnit *) {}
void setCurCycle(unsigned Cycle) {
CurCycle = Cycle;
}
unsigned getCurCycle() const {
return CurCycle;
}
};
class ScheduleDAG {
public:
const TargetMachine &TM; ///< Target processor
const TargetInstrInfo *TII; ///< Target instruction information
const TargetRegisterInfo *TRI; ///< Target processor register info
MachineFunction &MF; ///< Machine function
MachineRegisterInfo &MRI; ///< Virtual/real register map
std::vector<SUnit> SUnits; ///< The scheduling units.
SUnit EntrySU; ///< Special node for the region entry.
SUnit ExitSU; ///< Special node for the region exit.
#ifdef NDEBUG
static const bool StressSched = false;
#else
bool StressSched;
#endif
explicit ScheduleDAG(MachineFunction &mf);
virtual ~ScheduleDAG();
/// Clears the DAG state (between regions).
void clearDAG();
/// Returns the MCInstrDesc of this SUnit.
/// Returns NULL for SDNodes without a machine opcode.
const MCInstrDesc *getInstrDesc(const SUnit *SU) const {
if (SU->isInstr()) return &SU->getInstr()->getDesc();
return getNodeDesc(SU->getNode());
}
/// Pops up a GraphViz/gv window with the ScheduleDAG rendered using 'dot'.
virtual void viewGraph(const Twine &Name, const Twine &Title);
virtual void viewGraph();
virtual void dumpNode(const SUnit *SU) const = 0;
/// Returns a label for an SUnit node in a visualization of the ScheduleDAG.
virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
/// Returns a label for the region of code covered by the DAG.
virtual std::string getDAGName() const = 0;
/// Adds custom features for a visualization of the ScheduleDAG.
virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
#ifndef NDEBUG
/// Verifies that all SUnits were scheduled and that their state is
/// consistent. Returns the number of scheduled SUnits.
unsigned VerifyScheduledDAG(bool isBottomUp);
#endif
private:
/// Returns the MCInstrDesc of this SDNode or NULL.
const MCInstrDesc *getNodeDesc(const SDNode *Node) const;
};
class SUnitIterator : public std::iterator<std::forward_iterator_tag,
SUnit, ptrdiff_t> {
SUnit *Node;
unsigned Operand;
SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
public:
bool operator==(const SUnitIterator& x) const {
return Operand == x.Operand;
}
bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
pointer operator*() const {
return Node->Preds[Operand].getSUnit();
}
pointer operator->() const { return operator*(); }
SUnitIterator& operator++() { // Preincrement
++Operand;
return *this;
}
SUnitIterator operator++(int) { // Postincrement
SUnitIterator tmp = *this; ++*this; return tmp;
}
static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
static SUnitIterator end (SUnit *N) {
return SUnitIterator(N, (unsigned)N->Preds.size());
}
unsigned getOperand() const { return Operand; }
const SUnit *getNode() const { return Node; }
/// Tests if this is not an SDep::Data dependence.
bool isCtrlDep() const {
return getSDep().isCtrl();
}
bool isArtificialDep() const {
return getSDep().isArtificial();
}
const SDep &getSDep() const {
return Node->Preds[Operand];
}
};
template <> struct GraphTraits<SUnit*> {
typedef SUnit *NodeRef;
typedef SUnitIterator ChildIteratorType;
static NodeRef getEntryNode(SUnit *N) { return N; }
static ChildIteratorType child_begin(NodeRef N) {
return SUnitIterator::begin(N);
}
static ChildIteratorType child_end(NodeRef N) {
return SUnitIterator::end(N);
}
};
template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
typedef pointer_iterator<std::vector<SUnit>::iterator> nodes_iterator;
static nodes_iterator nodes_begin(ScheduleDAG *G) {
return nodes_iterator(G->SUnits.begin());
}
static nodes_iterator nodes_end(ScheduleDAG *G) {
return nodes_iterator(G->SUnits.end());
}
};
/// This class can compute a topological ordering for SUnits and provides
/// methods for dynamically updating the ordering as new edges are added.
///
/// This allows a very fast implementation of IsReachable, for example.
class ScheduleDAGTopologicalSort {
/// A reference to the ScheduleDAG's SUnits.
std::vector<SUnit> &SUnits;
SUnit *ExitSU;
/// Maps topological index to the node number.
std::vector<int> Index2Node;
/// Maps the node number to its topological index.
std::vector<int> Node2Index;
/// a set of nodes visited during a DFS traversal.
BitVector Visited;
/// Makes a DFS traversal and mark all nodes affected by the edge insertion.
/// These nodes will later get new topological indexes by means of the Shift
/// method.
void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
/// Reassigns topological indexes for the nodes in the DAG to
/// preserve the topological ordering.
void Shift(BitVector& Visited, int LowerBound, int UpperBound);
/// Assigns the topological index to the node n.
void Allocate(int n, int index);
public:
ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits, SUnit *ExitSU);
/// Creates the initial topological ordering from the DAG to be scheduled.
void InitDAGTopologicalSorting();
/// Returns an array of SUs that are both in the successor
/// subtree of StartSU and in the predecessor subtree of TargetSU.
/// StartSU and TargetSU are not in the array.
/// Success is false if TargetSU is not in the successor subtree of
/// StartSU, else it is true.
std::vector<int> GetSubGraph(const SUnit &StartSU, const SUnit &TargetSU,
bool &Success);
/// Checks if \p SU is reachable from \p TargetSU.
bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
/// Returns true if addPred(TargetSU, SU) creates a cycle.
bool WillCreateCycle(SUnit *TargetSU, SUnit *SU);
/// Updates the topological ordering to accommodate an edge to be
/// added from SUnit \p X to SUnit \p Y.
void AddPred(SUnit *Y, SUnit *X);
/// Updates the topological ordering to accommodate an an edge to be
/// removed from the specified node \p N from the predecessors of the
/// current node \p M.
void RemovePred(SUnit *M, SUnit *N);
typedef std::vector<int>::iterator iterator;
typedef std::vector<int>::const_iterator const_iterator;
iterator begin() { return Index2Node.begin(); }
const_iterator begin() const { return Index2Node.begin(); }
iterator end() { return Index2Node.end(); }
const_iterator end() const { return Index2Node.end(); }
typedef std::vector<int>::reverse_iterator reverse_iterator;
typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
reverse_iterator rbegin() { return Index2Node.rbegin(); }
const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
reverse_iterator rend() { return Index2Node.rend(); }
const_reverse_iterator rend() const { return Index2Node.rend(); }
};
} // end namespace llvm
#endif // LLVM_CODEGEN_SCHEDULEDAG_H