HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Android 10
|
10.0.0_r6
下载
查看原文件
收藏
根目录
prebuilts
clang
host
linux-x86
clang-r339409b
include
llvm
IR
Instructions.h
//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file exposes the class definitions of all of the subclasses of the // Instruction class. This is meant to be an easy way to get access to all // instruction subclasses. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_INSTRUCTIONS_H #define LLVM_IR_INSTRUCTIONS_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/None.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constant.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/OperandTraits.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include
#include
#include
#include
namespace llvm { class APInt; class ConstantInt; class DataLayout; class LLVMContext; //===----------------------------------------------------------------------===// // AllocaInst Class //===----------------------------------------------------------------------===// /// an instruction to allocate memory on the stack class AllocaInst : public UnaryInstruction { Type *AllocatedType; protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; AllocaInst *cloneImpl() const; public: explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize = nullptr, const Twine &Name = "", Instruction *InsertBefore = nullptr); AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, const Twine &Name, BasicBlock *InsertAtEnd); AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, Instruction *InsertBefore = nullptr); AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, BasicBlock *InsertAtEnd); AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, unsigned Align, const Twine &Name = "", Instruction *InsertBefore = nullptr); AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, unsigned Align, const Twine &Name, BasicBlock *InsertAtEnd); /// Return true if there is an allocation size parameter to the allocation /// instruction that is not 1. bool isArrayAllocation() const; /// Get the number of elements allocated. For a simple allocation of a single /// element, this will return a constant 1 value. const Value *getArraySize() const { return getOperand(0); } Value *getArraySize() { return getOperand(0); } /// Overload to return most specific pointer type. PointerType *getType() const { return cast
(Instruction::getType()); } /// Get allocation size in bits. Returns None if size can't be determined, /// e.g. in case of a VLA. Optional
getAllocationSizeInBits(const DataLayout &DL) const; /// Return the type that is being allocated by the instruction. Type *getAllocatedType() const { return AllocatedType; } /// for use only in special circumstances that need to generically /// transform a whole instruction (eg: IR linking and vectorization). void setAllocatedType(Type *Ty) { AllocatedType = Ty; } /// Return the alignment of the memory that is being allocated by the /// instruction. unsigned getAlignment() const { return (1u << (getSubclassDataFromInstruction() & 31)) >> 1; } void setAlignment(unsigned Align); /// Return true if this alloca is in the entry block of the function and is a /// constant size. If so, the code generator will fold it into the /// prolog/epilog code, so it is basically free. bool isStaticAlloca() const; /// Return true if this alloca is used as an inalloca argument to a call. Such /// allocas are never considered static even if they are in the entry block. bool isUsedWithInAlloca() const { return getSubclassDataFromInstruction() & 32; } /// Specify whether this alloca is used to represent the arguments to a call. void setUsedWithInAlloca(bool V) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) | (V ? 32 : 0)); } /// Return true if this alloca is used as a swifterror argument to a call. bool isSwiftError() const { return getSubclassDataFromInstruction() & 64; } /// Specify whether this alloca is used to represent a swifterror. void setSwiftError(bool V) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~64) | (V ? 64 : 0)); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Alloca); } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } }; //===----------------------------------------------------------------------===// // LoadInst Class //===----------------------------------------------------------------------===// /// An instruction for reading from memory. This uses the SubclassData field in /// Value to store whether or not the load is volatile. class LoadInst : public UnaryInstruction { void AssertOK(); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; LoadInst *cloneImpl() const; public: LoadInst(Value *Ptr, const Twine &NameStr, Instruction *InsertBefore); LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile = false, Instruction *InsertBefore = nullptr); LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile = false, Instruction *InsertBefore = nullptr) : LoadInst(cast
(Ptr->getType())->getElementType(), Ptr, NameStr, isVolatile, InsertBefore) {} LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, BasicBlock *InsertAtEnd); LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, Instruction *InsertBefore = nullptr) : LoadInst(cast
(Ptr->getType())->getElementType(), Ptr, NameStr, isVolatile, Align, InsertBefore) {} LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, Instruction *InsertBefore = nullptr); LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, BasicBlock *InsertAtEnd); LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, Instruction *InsertBefore = nullptr) : LoadInst(cast
(Ptr->getType())->getElementType(), Ptr, NameStr, isVolatile, Align, Order, SSID, InsertBefore) {} LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, Instruction *InsertBefore = nullptr); LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd); LoadInst(Value *Ptr, const char *NameStr, Instruction *InsertBefore); LoadInst(Value *Ptr, const char *NameStr, BasicBlock *InsertAtEnd); LoadInst(Type *Ty, Value *Ptr, const char *NameStr = nullptr, bool isVolatile = false, Instruction *InsertBefore = nullptr); explicit LoadInst(Value *Ptr, const char *NameStr = nullptr, bool isVolatile = false, Instruction *InsertBefore = nullptr) : LoadInst(cast
(Ptr->getType())->getElementType(), Ptr, NameStr, isVolatile, InsertBefore) {} LoadInst(Value *Ptr, const char *NameStr, bool isVolatile, BasicBlock *InsertAtEnd); /// Return true if this is a load from a volatile memory location. bool isVolatile() const { return getSubclassDataFromInstruction() & 1; } /// Specify whether this is a volatile load or not. void setVolatile(bool V) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | (V ? 1 : 0)); } /// Return the alignment of the access that is being performed. unsigned getAlignment() const { return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1; } void setAlignment(unsigned Align); /// Returns the ordering constraint of this load instruction. AtomicOrdering getOrdering() const { return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7); } /// Sets the ordering constraint of this load instruction. May not be Release /// or AcquireRelease. void setOrdering(AtomicOrdering Ordering) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) | ((unsigned)Ordering << 7)); } /// Returns the synchronization scope ID of this load instruction. SyncScope::ID getSyncScopeID() const { return SSID; } /// Sets the synchronization scope ID of this load instruction. void setSyncScopeID(SyncScope::ID SSID) { this->SSID = SSID; } /// Sets the ordering constraint and the synchronization scope ID of this load /// instruction. void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID = SyncScope::System) { setOrdering(Ordering); setSyncScopeID(SSID); } bool isSimple() const { return !isAtomic() && !isVolatile(); } bool isUnordered() const { return (getOrdering() == AtomicOrdering::NotAtomic || getOrdering() == AtomicOrdering::Unordered) && !isVolatile(); } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; } Type *getPointerOperandType() const { return getPointerOperand()->getType(); } /// Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperandType()->getPointerAddressSpace(); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Load; } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } /// The synchronization scope ID of this load instruction. Not quite enough /// room in SubClassData for everything, so synchronization scope ID gets its /// own field. SyncScope::ID SSID; }; //===----------------------------------------------------------------------===// // StoreInst Class //===----------------------------------------------------------------------===// /// An instruction for storing to memory. class StoreInst : public Instruction { void AssertOK(); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; StoreInst *cloneImpl() const; public: StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); StoreInst(Value *Val, Value *Ptr, bool isVolatile = false, Instruction *InsertBefore = nullptr); StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); StoreInst(Value *Val, Value *Ptr, bool isVolatile, unsigned Align, Instruction *InsertBefore = nullptr); StoreInst(Value *Val, Value *Ptr, bool isVolatile, unsigned Align, BasicBlock *InsertAtEnd); StoreInst(Value *Val, Value *Ptr, bool isVolatile, unsigned Align, AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, Instruction *InsertBefore = nullptr); StoreInst(Value *Val, Value *Ptr, bool isVolatile, unsigned Align, AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd); // allocate space for exactly two operands void *operator new(size_t s) { return User::operator new(s, 2); } /// Return true if this is a store to a volatile memory location. bool isVolatile() const { return getSubclassDataFromInstruction() & 1; } /// Specify whether this is a volatile store or not. void setVolatile(bool V) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | (V ? 1 : 0)); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Return the alignment of the access that is being performed unsigned getAlignment() const { return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1; } void setAlignment(unsigned Align); /// Returns the ordering constraint of this store instruction. AtomicOrdering getOrdering() const { return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7); } /// Sets the ordering constraint of this store instruction. May not be /// Acquire or AcquireRelease. void setOrdering(AtomicOrdering Ordering) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) | ((unsigned)Ordering << 7)); } /// Returns the synchronization scope ID of this store instruction. SyncScope::ID getSyncScopeID() const { return SSID; } /// Sets the synchronization scope ID of this store instruction. void setSyncScopeID(SyncScope::ID SSID) { this->SSID = SSID; } /// Sets the ordering constraint and the synchronization scope ID of this /// store instruction. void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID = SyncScope::System) { setOrdering(Ordering); setSyncScopeID(SSID); } bool isSimple() const { return !isAtomic() && !isVolatile(); } bool isUnordered() const { return (getOrdering() == AtomicOrdering::NotAtomic || getOrdering() == AtomicOrdering::Unordered) && !isVolatile(); } Value *getValueOperand() { return getOperand(0); } const Value *getValueOperand() const { return getOperand(0); } Value *getPointerOperand() { return getOperand(1); } const Value *getPointerOperand() const { return getOperand(1); } static unsigned getPointerOperandIndex() { return 1U; } Type *getPointerOperandType() const { return getPointerOperand()->getType(); } /// Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperandType()->getPointerAddressSpace(); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Store; } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } /// The synchronization scope ID of this store instruction. Not quite enough /// room in SubClassData for everything, so synchronization scope ID gets its /// own field. SyncScope::ID SSID; }; template <> struct OperandTraits
: public FixedNumOperandTraits
{ }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value) //===----------------------------------------------------------------------===// // FenceInst Class //===----------------------------------------------------------------------===// /// An instruction for ordering other memory operations. class FenceInst : public Instruction { void Init(AtomicOrdering Ordering, SyncScope::ID SSID); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; FenceInst *cloneImpl() const; public: // Ordering may only be Acquire, Release, AcquireRelease, or // SequentiallyConsistent. FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID = SyncScope::System, Instruction *InsertBefore = nullptr); FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID, BasicBlock *InsertAtEnd); // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } /// Returns the ordering constraint of this fence instruction. AtomicOrdering getOrdering() const { return AtomicOrdering(getSubclassDataFromInstruction() >> 1); } /// Sets the ordering constraint of this fence instruction. May only be /// Acquire, Release, AcquireRelease, or SequentiallyConsistent. void setOrdering(AtomicOrdering Ordering) { setInstructionSubclassData((getSubclassDataFromInstruction() & 1) | ((unsigned)Ordering << 1)); } /// Returns the synchronization scope ID of this fence instruction. SyncScope::ID getSyncScopeID() const { return SSID; } /// Sets the synchronization scope ID of this fence instruction. void setSyncScopeID(SyncScope::ID SSID) { this->SSID = SSID; } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Fence; } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } /// The synchronization scope ID of this fence instruction. Not quite enough /// room in SubClassData for everything, so synchronization scope ID gets its /// own field. SyncScope::ID SSID; }; //===----------------------------------------------------------------------===// // AtomicCmpXchgInst Class //===----------------------------------------------------------------------===// /// an instruction that atomically checks whether a /// specified value is in a memory location, and, if it is, stores a new value /// there. Returns the value that was loaded. /// class AtomicCmpXchgInst : public Instruction { void Init(Value *Ptr, Value *Cmp, Value *NewVal, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; AtomicCmpXchgInst *cloneImpl() const; public: AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID, Instruction *InsertBefore = nullptr); AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID, BasicBlock *InsertAtEnd); // allocate space for exactly three operands void *operator new(size_t s) { return User::operator new(s, 3); } /// Return true if this is a cmpxchg from a volatile memory /// location. /// bool isVolatile() const { return getSubclassDataFromInstruction() & 1; } /// Specify whether this is a volatile cmpxchg. /// void setVolatile(bool V) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | (unsigned)V); } /// Return true if this cmpxchg may spuriously fail. bool isWeak() const { return getSubclassDataFromInstruction() & 0x100; } void setWeak(bool IsWeak) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) | (IsWeak << 8)); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Returns the success ordering constraint of this cmpxchg instruction. AtomicOrdering getSuccessOrdering() const { return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7); } /// Sets the success ordering constraint of this cmpxchg instruction. void setSuccessOrdering(AtomicOrdering Ordering) { assert(Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."); setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) | ((unsigned)Ordering << 2)); } /// Returns the failure ordering constraint of this cmpxchg instruction. AtomicOrdering getFailureOrdering() const { return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7); } /// Sets the failure ordering constraint of this cmpxchg instruction. void setFailureOrdering(AtomicOrdering Ordering) { assert(Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."); setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) | ((unsigned)Ordering << 5)); } /// Returns the synchronization scope ID of this cmpxchg instruction. SyncScope::ID getSyncScopeID() const { return SSID; } /// Sets the synchronization scope ID of this cmpxchg instruction. void setSyncScopeID(SyncScope::ID SSID) { this->SSID = SSID; } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; } Value *getCompareOperand() { return getOperand(1); } const Value *getCompareOperand() const { return getOperand(1); } Value *getNewValOperand() { return getOperand(2); } const Value *getNewValOperand() const { return getOperand(2); } /// Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); } /// Returns the strongest permitted ordering on failure, given the /// desired ordering on success. /// /// If the comparison in a cmpxchg operation fails, there is no atomic store /// so release semantics cannot be provided. So this function drops explicit /// Release requests from the AtomicOrdering. A SequentiallyConsistent /// operation would remain SequentiallyConsistent. static AtomicOrdering getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { switch (SuccessOrdering) { default: llvm_unreachable("invalid cmpxchg success ordering"); case AtomicOrdering::Release: case AtomicOrdering::Monotonic: return AtomicOrdering::Monotonic; case AtomicOrdering::AcquireRelease: case AtomicOrdering::Acquire: return AtomicOrdering::Acquire; case AtomicOrdering::SequentiallyConsistent: return AtomicOrdering::SequentiallyConsistent; } } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::AtomicCmpXchg; } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } /// The synchronization scope ID of this cmpxchg instruction. Not quite /// enough room in SubClassData for everything, so synchronization scope ID /// gets its own field. SyncScope::ID SSID; }; template <> struct OperandTraits
: public FixedNumOperandTraits
{ }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value) //===----------------------------------------------------------------------===// // AtomicRMWInst Class //===----------------------------------------------------------------------===// /// an instruction that atomically reads a memory location, /// combines it with another value, and then stores the result back. Returns /// the old value. /// class AtomicRMWInst : public Instruction { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; AtomicRMWInst *cloneImpl() const; public: /// This enumeration lists the possible modifications atomicrmw can make. In /// the descriptions, 'p' is the pointer to the instruction's memory location, /// 'old' is the initial value of *p, and 'v' is the other value passed to the /// instruction. These instructions always return 'old'. enum BinOp { /// *p = v Xchg, /// *p = old + v Add, /// *p = old - v Sub, /// *p = old & v And, /// *p = ~(old & v) Nand, /// *p = old | v Or, /// *p = old ^ v Xor, /// *p = old >signed v ? old : v Max, /// *p = old
unsigned v ? old : v UMax, /// *p = old
(getSubclassDataFromInstruction() >> 5); } void setOperation(BinOp Operation) { unsigned short SubclassData = getSubclassDataFromInstruction(); setInstructionSubclassData((SubclassData & 31) | (Operation << 5)); } /// Return true if this is a RMW on a volatile memory location. /// bool isVolatile() const { return getSubclassDataFromInstruction() & 1; } /// Specify whether this is a volatile RMW or not. /// void setVolatile(bool V) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | (unsigned)V); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Returns the ordering constraint of this rmw instruction. AtomicOrdering getOrdering() const { return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7); } /// Sets the ordering constraint of this rmw instruction. void setOrdering(AtomicOrdering Ordering) { assert(Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."); setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) | ((unsigned)Ordering << 2)); } /// Returns the synchronization scope ID of this rmw instruction. SyncScope::ID getSyncScopeID() const { return SSID; } /// Sets the synchronization scope ID of this rmw instruction. void setSyncScopeID(SyncScope::ID SSID) { this->SSID = SSID; } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; } Value *getValOperand() { return getOperand(1); } const Value *getValOperand() const { return getOperand(1); } /// Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::AtomicRMW; } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } private: void Init(BinOp Operation, Value *Ptr, Value *Val, AtomicOrdering Ordering, SyncScope::ID SSID); // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } /// The synchronization scope ID of this rmw instruction. Not quite enough /// room in SubClassData for everything, so synchronization scope ID gets its /// own field. SyncScope::ID SSID; }; template <> struct OperandTraits
: public FixedNumOperandTraits
{ }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value) //===----------------------------------------------------------------------===// // GetElementPtrInst Class //===----------------------------------------------------------------------===// // checkGEPType - Simple wrapper function to give a better assertion failure // message on bad indexes for a gep instruction. // inline Type *checkGEPType(Type *Ty) { assert(Ty && "Invalid GetElementPtrInst indices for type!"); return Ty; } /// an instruction for type-safe pointer arithmetic to /// access elements of arrays and structs /// class GetElementPtrInst : public Instruction { Type *SourceElementType; Type *ResultElementType; GetElementPtrInst(const GetElementPtrInst &GEPI); /// Constructors - Create a getelementptr instruction with a base pointer an /// list of indices. The first ctor can optionally insert before an existing /// instruction, the second appends the new instruction to the specified /// BasicBlock. inline GetElementPtrInst(Type *PointeeType, Value *Ptr, ArrayRef
IdxList, unsigned Values, const Twine &NameStr, Instruction *InsertBefore); inline GetElementPtrInst(Type *PointeeType, Value *Ptr, ArrayRef
IdxList, unsigned Values, const Twine &NameStr, BasicBlock *InsertAtEnd); void init(Value *Ptr, ArrayRef
IdxList, const Twine &NameStr); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; GetElementPtrInst *cloneImpl() const; public: static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, ArrayRef
IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { unsigned Values = 1 + unsigned(IdxList.size()); if (!PointeeType) PointeeType = cast
(Ptr->getType()->getScalarType())->getElementType(); else assert( PointeeType == cast
(Ptr->getType()->getScalarType())->getElementType()); return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, NameStr, InsertBefore); } static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, ArrayRef
IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { unsigned Values = 1 + unsigned(IdxList.size()); if (!PointeeType) PointeeType = cast
(Ptr->getType()->getScalarType())->getElementType(); else assert( PointeeType == cast
(Ptr->getType()->getScalarType())->getElementType()); return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, NameStr, InsertAtEnd); } /// Create an "inbounds" getelementptr. See the documentation for the /// "inbounds" flag in LangRef.html for details. static GetElementPtrInst *CreateInBounds(Value *Ptr, ArrayRef
IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr){ return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore); } static GetElementPtrInst * CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef
IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { GetElementPtrInst *GEP = Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); GEP->setIsInBounds(true); return GEP; } static GetElementPtrInst *CreateInBounds(Value *Ptr, ArrayRef
IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd); } static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef
IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { GetElementPtrInst *GEP = Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd); GEP->setIsInBounds(true); return GEP; } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); Type *getSourceElementType() const { return SourceElementType; } void setSourceElementType(Type *Ty) { SourceElementType = Ty; } void setResultElementType(Type *Ty) { ResultElementType = Ty; } Type *getResultElementType() const { assert(ResultElementType == cast
(getType()->getScalarType())->getElementType()); return ResultElementType; } /// Returns the address space of this instruction's pointer type. unsigned getAddressSpace() const { // Note that this is always the same as the pointer operand's address space // and that is cheaper to compute, so cheat here. return getPointerAddressSpace(); } /// Returns the type of the element that would be loaded with /// a load instruction with the specified parameters. /// /// Null is returned if the indices are invalid for the specified /// pointer type. /// static Type *getIndexedType(Type *Ty, ArrayRef
IdxList); static Type *getIndexedType(Type *Ty, ArrayRef
IdxList); static Type *getIndexedType(Type *Ty, ArrayRef
IdxList); inline op_iterator idx_begin() { return op_begin()+1; } inline const_op_iterator idx_begin() const { return op_begin()+1; } inline op_iterator idx_end() { return op_end(); } inline const_op_iterator idx_end() const { return op_end(); } inline iterator_range
indices() { return make_range(idx_begin(), idx_end()); } inline iterator_range
indices() const { return make_range(idx_begin(), idx_end()); } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; // get index for modifying correct operand. } /// Method to return the pointer operand as a /// PointerType. Type *getPointerOperandType() const { return getPointerOperand()->getType(); } /// Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperandType()->getPointerAddressSpace(); } /// Returns the pointer type returned by the GEP /// instruction, which may be a vector of pointers. static Type *getGEPReturnType(Value *Ptr, ArrayRef
IdxList) { return getGEPReturnType( cast
(Ptr->getType()->getScalarType())->getElementType(), Ptr, IdxList); } static Type *getGEPReturnType(Type *ElTy, Value *Ptr, ArrayRef
IdxList) { Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)), Ptr->getType()->getPointerAddressSpace()); // Vector GEP if (Ptr->getType()->isVectorTy()) { unsigned NumElem = Ptr->getType()->getVectorNumElements(); return VectorType::get(PtrTy, NumElem); } for (Value *Index : IdxList) if (Index->getType()->isVectorTy()) { unsigned NumElem = Index->getType()->getVectorNumElements(); return VectorType::get(PtrTy, NumElem); } // Scalar GEP return PtrTy; } unsigned getNumIndices() const { // Note: always non-negative return getNumOperands() - 1; } bool hasIndices() const { return getNumOperands() > 1; } /// Return true if all of the indices of this GEP are /// zeros. If so, the result pointer and the first operand have the same /// value, just potentially different types. bool hasAllZeroIndices() const; /// Return true if all of the indices of this GEP are /// constant integers. If so, the result pointer and the first operand have /// a constant offset between them. bool hasAllConstantIndices() const; /// Set or clear the inbounds flag on this GEP instruction. /// See LangRef.html for the meaning of inbounds on a getelementptr. void setIsInBounds(bool b = true); /// Determine whether the GEP has the inbounds flag. bool isInBounds() const; /// Accumulate the constant address offset of this GEP if possible. /// /// This routine accepts an APInt into which it will accumulate the constant /// offset of this GEP if the GEP is in fact constant. If the GEP is not /// all-constant, it returns false and the value of the offset APInt is /// undefined (it is *not* preserved!). The APInt passed into this routine /// must be at least as wide as the IntPtr type for the address space of /// the base GEP pointer. bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::GetElementPtr); } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } }; template <> struct OperandTraits
: public VariadicOperandTraits
{ }; GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, ArrayRef
IdxList, unsigned Values, const Twine &NameStr, Instruction *InsertBefore) : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, OperandTraits
::op_end(this) - Values, Values, InsertBefore), SourceElementType(PointeeType), ResultElementType(getIndexedType(PointeeType, IdxList)) { assert(ResultElementType == cast
(getType()->getScalarType())->getElementType()); init(Ptr, IdxList, NameStr); } GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, ArrayRef
IdxList, unsigned Values, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, OperandTraits
::op_end(this) - Values, Values, InsertAtEnd), SourceElementType(PointeeType), ResultElementType(getIndexedType(PointeeType, IdxList)) { assert(ResultElementType == cast
(getType()->getScalarType())->getElementType()); init(Ptr, IdxList, NameStr); } DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value) //===----------------------------------------------------------------------===// // ICmpInst Class //===----------------------------------------------------------------------===// /// This instruction compares its operands according to the predicate given /// to the constructor. It only operates on integers or pointers. The operands /// must be identical types. /// Represent an integer comparison operator. class ICmpInst: public CmpInst { void AssertOK() { assert(isIntPredicate() && "Invalid ICmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to ICmp instruction are not of the same type!"); // Check that the operands are the right type assert((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"); } protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Clone an identical ICmpInst ICmpInst *cloneImpl() const; public: /// Constructor with insert-before-instruction semantics. ICmpInst( Instruction *InsertBefore, ///< Where to insert Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS, RHS, NameStr, InsertBefore) { #ifndef NDEBUG AssertOK(); #endif } /// Constructor with insert-at-end semantics. ICmpInst( BasicBlock &InsertAtEnd, ///< Block to insert into. Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS, RHS, NameStr, &InsertAtEnd) { #ifndef NDEBUG AssertOK(); #endif } /// Constructor with no-insertion semantics ICmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS, RHS, NameStr) { #ifndef NDEBUG AssertOK(); #endif } /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. /// @returns the predicate that would be the result if the operand were /// regarded as signed. /// Return the signed version of the predicate Predicate getSignedPredicate() const { return getSignedPredicate(getPredicate()); } /// This is a static version that you can use without an instruction. /// Return the signed version of the predicate. static Predicate getSignedPredicate(Predicate pred); /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. /// @returns the predicate that would be the result if the operand were /// regarded as unsigned. /// Return the unsigned version of the predicate Predicate getUnsignedPredicate() const { return getUnsignedPredicate(getPredicate()); } /// This is a static version that you can use without an instruction. /// Return the unsigned version of the predicate. static Predicate getUnsignedPredicate(Predicate pred); /// Return true if this predicate is either EQ or NE. This also /// tests for commutativity. static bool isEquality(Predicate P) { return P == ICMP_EQ || P == ICMP_NE; } /// Return true if this predicate is either EQ or NE. This also /// tests for commutativity. bool isEquality() const { return isEquality(getPredicate()); } /// @returns true if the predicate of this ICmpInst is commutative /// Determine if this relation is commutative. bool isCommutative() const { return isEquality(); } /// Return true if the predicate is relational (not EQ or NE). /// bool isRelational() const { return !isEquality(); } /// Return true if the predicate is relational (not EQ or NE). /// static bool isRelational(Predicate P) { return !isEquality(P); } /// Exchange the two operands to this instruction in such a way that it does /// not modify the semantics of the instruction. The predicate value may be /// changed to retain the same result if the predicate is order dependent /// (e.g. ult). /// Swap operands and adjust predicate. void swapOperands() { setPredicate(getSwappedPredicate()); Op<0>().swap(Op<1>()); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ICmp; } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } }; //===----------------------------------------------------------------------===// // FCmpInst Class //===----------------------------------------------------------------------===// /// This instruction compares its operands according to the predicate given /// to the constructor. It only operates on floating point values or packed /// vectors of floating point values. The operands must be identical types. /// Represents a floating point comparison operator. class FCmpInst: public CmpInst { void AssertOK() { assert(isFPPredicate() && "Invalid FCmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to FCmp instruction are not of the same type!"); // Check that the operands are the right type assert(getOperand(0)->getType()->isFPOrFPVectorTy() && "Invalid operand types for FCmp instruction"); } protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Clone an identical FCmpInst FCmpInst *cloneImpl() const; public: /// Constructor with insert-before-instruction semantics. FCmpInst( Instruction *InsertBefore, ///< Where to insert Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, pred, LHS, RHS, NameStr, InsertBefore) { AssertOK(); } /// Constructor with insert-at-end semantics. FCmpInst( BasicBlock &InsertAtEnd, ///< Block to insert into. Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, pred, LHS, RHS, NameStr, &InsertAtEnd) { AssertOK(); } /// Constructor with no-insertion semantics FCmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, pred, LHS, RHS, NameStr) { AssertOK(); } /// @returns true if the predicate of this instruction is EQ or NE. /// Determine if this is an equality predicate. static bool isEquality(Predicate Pred) { return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || Pred == FCMP_UNE; } /// @returns true if the predicate of this instruction is EQ or NE. /// Determine if this is an equality predicate. bool isEquality() const { return isEquality(getPredicate()); } /// @returns true if the predicate of this instruction is commutative. /// Determine if this is a commutative predicate. bool isCommutative() const { return isEquality() || getPredicate() == FCMP_FALSE || getPredicate() == FCMP_TRUE || getPredicate() == FCMP_ORD || getPredicate() == FCMP_UNO; } /// @returns true if the predicate is relational (not EQ or NE). /// Determine if this a relational predicate. bool isRelational() const { return !isEquality(); } /// Exchange the two operands to this instruction in such a way that it does /// not modify the semantics of the instruction. The predicate value may be /// changed to retain the same result if the predicate is order dependent /// (e.g. ult). /// Swap operands and adjust predicate. void swapOperands() { setPredicate(getSwappedPredicate()); Op<0>().swap(Op<1>()); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::FCmp; } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } }; class CallInst; class InvokeInst; template
struct CallBaseParent { using type = Instruction; }; template <> struct CallBaseParent
{ using type = TerminatorInst; }; //===----------------------------------------------------------------------===// /// Base class for all callable instructions (InvokeInst and CallInst) /// Holds everything related to calling a function, abstracting from the base /// type @p BaseInstTy and the concrete instruction @p InstTy /// template
class CallBase : public CallBaseParent
::type, public OperandBundleUser
{ protected: AttributeList Attrs; ///< parameter attributes for callable FunctionType *FTy; using BaseInstTy = typename CallBaseParent
::type; template
CallBase(AttributeList const &A, FunctionType *FT, ArgsTy &&... Args) : BaseInstTy(std::forward
(Args)...), Attrs(A), FTy(FT) {} bool hasDescriptor() const { return Value::HasDescriptor; } using BaseInstTy::BaseInstTy; using OperandBundleUser
::isFnAttrDisallowedByOpBundle; using OperandBundleUser
::getNumTotalBundleOperands; using OperandBundleUser
::bundleOperandHasAttr; using Instruction::getSubclassDataFromInstruction; using Instruction::setInstructionSubclassData; public: using Instruction::getContext; using OperandBundleUser
::hasOperandBundles; using OperandBundleUser
::getBundleOperandsStartIndex; static bool classof(const Instruction *I) { llvm_unreachable( "CallBase is not meant to be used as part of the classof hierarchy"); } public: /// Return the parameter attributes for this call. /// AttributeList getAttributes() const { return Attrs; } /// Set the parameter attributes for this call. /// void setAttributes(AttributeList A) { Attrs = A; } FunctionType *getFunctionType() const { return FTy; } void mutateFunctionType(FunctionType *FTy) { Value::mutateType(FTy->getReturnType()); this->FTy = FTy; } /// Return the number of call arguments. /// unsigned getNumArgOperands() const { return getNumOperands() - getNumTotalBundleOperands() - InstTy::ArgOffset; } /// getArgOperand/setArgOperand - Return/set the i-th call argument. /// Value *getArgOperand(unsigned i) const { assert(i < getNumArgOperands() && "Out of bounds!"); return getOperand(i); } void setArgOperand(unsigned i, Value *v) { assert(i < getNumArgOperands() && "Out of bounds!"); setOperand(i, v); } /// Return the iterator pointing to the beginning of the argument list. User::op_iterator arg_begin() { return op_begin(); } /// Return the iterator pointing to the end of the argument list. User::op_iterator arg_end() { // [ call args ], [ operand bundles ], callee return op_end() - getNumTotalBundleOperands() - InstTy::ArgOffset; } /// Iteration adapter for range-for loops. iterator_range
arg_operands() { return make_range(arg_begin(), arg_end()); } /// Return the iterator pointing to the beginning of the argument list. User::const_op_iterator arg_begin() const { return op_begin(); } /// Return the iterator pointing to the end of the argument list. User::const_op_iterator arg_end() const { // [ call args ], [ operand bundles ], callee return op_end() - getNumTotalBundleOperands() - InstTy::ArgOffset; } /// Iteration adapter for range-for loops. iterator_range
arg_operands() const { return make_range(arg_begin(), arg_end()); } /// Wrappers for getting the \c Use of a call argument. const Use &getArgOperandUse(unsigned i) const { assert(i < getNumArgOperands() && "Out of bounds!"); return User::getOperandUse(i); } Use &getArgOperandUse(unsigned i) { assert(i < getNumArgOperands() && "Out of bounds!"); return User::getOperandUse(i); } /// If one of the arguments has the 'returned' attribute, return its /// operand value. Otherwise, return nullptr. Value *getReturnedArgOperand() const { unsigned Index; if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index) return getArgOperand(Index - AttributeList::FirstArgIndex); if (const Function *F = getCalledFunction()) if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) && Index) return getArgOperand(Index - AttributeList::FirstArgIndex); return nullptr; } User::op_iterator op_begin() { return OperandTraits
::op_begin(this); } User::const_op_iterator op_begin() const { return OperandTraits
::op_begin(const_cast
(this)); } User::op_iterator op_end() { return OperandTraits
::op_end(this); } User::const_op_iterator op_end() const { return OperandTraits
::op_end(const_cast
(this)); } Value *getOperand(unsigned i_nocapture) const { assert(i_nocapture < OperandTraits
::operands(this) && "getOperand() out of range!"); return cast_or_null
(OperandTraits
::op_begin( const_cast
(this))[i_nocapture] .get()); } void setOperand(unsigned i_nocapture, Value *Val_nocapture) { assert(i_nocapture < OperandTraits
::operands(this) && "setOperand() out of range!"); OperandTraits
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned getNumOperands() const { return OperandTraits
::operands(this); } template
Use &Op() { return User::OpFrom
(this); } template
const Use &Op() const { return User::OpFrom
(this); } /// Return the function called, or null if this is an /// indirect function invocation. /// Function *getCalledFunction() const { return dyn_cast
(Op<-InstTy::ArgOffset>()); } /// Determine whether this call has the given attribute. bool hasFnAttr(Attribute::AttrKind Kind) const { assert(Kind != Attribute::NoBuiltin && "Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin"); return hasFnAttrImpl(Kind); } /// Determine whether this call has the given attribute. bool hasFnAttr(StringRef Kind) const { return hasFnAttrImpl(Kind); } /// getCallingConv/setCallingConv - Get or set the calling convention of this /// function call. CallingConv::ID getCallingConv() const { return static_cast
(getSubclassDataFromInstruction() >> 2); } void setCallingConv(CallingConv::ID CC) { auto ID = static_cast
(CC); assert(!(ID & ~CallingConv::MaxID) && "Unsupported calling convention"); setInstructionSubclassData((getSubclassDataFromInstruction() & 3) | (ID << 2)); } /// adds the attribute to the list of attributes. void addAttribute(unsigned i, Attribute::AttrKind Kind) { AttributeList PAL = getAttributes(); PAL = PAL.addAttribute(getContext(), i, Kind); setAttributes(PAL); } /// adds the attribute to the list of attributes. void addAttribute(unsigned i, Attribute Attr) { AttributeList PAL = getAttributes(); PAL = PAL.addAttribute(getContext(), i, Attr); setAttributes(PAL); } /// Adds the attribute to the indicated argument void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { assert(ArgNo < getNumArgOperands() && "Out of bounds"); AttributeList PAL = getAttributes(); PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); setAttributes(PAL); } /// Adds the attribute to the indicated argument void addParamAttr(unsigned ArgNo, Attribute Attr) { assert(ArgNo < getNumArgOperands() && "Out of bounds"); AttributeList PAL = getAttributes(); PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); setAttributes(PAL); } /// removes the attribute from the list of attributes. void removeAttribute(unsigned i, Attribute::AttrKind Kind) { AttributeList PAL = getAttributes(); PAL = PAL.removeAttribute(getContext(), i, Kind); setAttributes(PAL); } /// removes the attribute from the list of attributes. void removeAttribute(unsigned i, StringRef Kind) { AttributeList PAL = getAttributes(); PAL = PAL.removeAttribute(getContext(), i, Kind); setAttributes(PAL); } /// Removes the attribute from the given argument void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { assert(ArgNo < getNumArgOperands() && "Out of bounds"); AttributeList PAL = getAttributes(); PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); setAttributes(PAL); } /// Removes the attribute from the given argument void removeParamAttr(unsigned ArgNo, StringRef Kind) { assert(ArgNo < getNumArgOperands() && "Out of bounds"); AttributeList PAL = getAttributes(); PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); setAttributes(PAL); } /// adds the dereferenceable attribute to the list of attributes. void addDereferenceableAttr(unsigned i, uint64_t Bytes) { AttributeList PAL = getAttributes(); PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); setAttributes(PAL); } /// adds the dereferenceable_or_null attribute to the list of /// attributes. void addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { AttributeList PAL = getAttributes(); PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); setAttributes(PAL); } /// Determine whether the return value has the given attribute. bool hasRetAttr(Attribute::AttrKind Kind) const { if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind)) return true; // Look at the callee, if available. if (const Function *F = getCalledFunction()) return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind); return false; } /// Determine whether the argument or parameter has the given attribute. bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const { assert(ArgNo < getNumArgOperands() && "Param index out of bounds!"); if (Attrs.hasParamAttribute(ArgNo, Kind)) return true; if (const Function *F = getCalledFunction()) return F->getAttributes().hasParamAttribute(ArgNo, Kind); return false; } /// Get the attribute of a given kind at a position. Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const { return getAttributes().getAttribute(i, Kind); } /// Get the attribute of a given kind at a position. Attribute getAttribute(unsigned i, StringRef Kind) const { return getAttributes().getAttribute(i, Kind); } /// Get the attribute of a given kind from a given arg Attribute getParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const { assert(ArgNo < getNumArgOperands() && "Out of bounds"); return getAttributes().getParamAttr(ArgNo, Kind); } /// Get the attribute of a given kind from a given arg Attribute getParamAttr(unsigned ArgNo, StringRef Kind) const { assert(ArgNo < getNumArgOperands() && "Out of bounds"); return getAttributes().getParamAttr(ArgNo, Kind); } /// Return true if the data operand at index \p i has the attribute \p /// A. /// /// Data operands include call arguments and values used in operand bundles, /// but does not include the callee operand. This routine dispatches to the /// underlying AttributeList or the OperandBundleUser as appropriate. /// /// The index \p i is interpreted as /// /// \p i == Attribute::ReturnIndex -> the return value /// \p i in [1, arg_size + 1) -> argument number (\p i - 1) /// \p i in [arg_size + 1, data_operand_size + 1) -> bundle operand at index /// (\p i - 1) in the operand list. bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const { // There are getNumOperands() - (InstTy::ArgOffset - 1) data operands. // The last operand is the callee. assert(i < (getNumOperands() - InstTy::ArgOffset + 1) && "Data operand index out of bounds!"); // The attribute A can either be directly specified, if the operand in // question is a call argument; or be indirectly implied by the kind of its // containing operand bundle, if the operand is a bundle operand. if (i == AttributeList::ReturnIndex) return hasRetAttr(Kind); // FIXME: Avoid these i - 1 calculations and update the API to use // zero-based indices. if (i < (getNumArgOperands() + 1)) return paramHasAttr(i - 1, Kind); assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) && "Must be either a call argument or an operand bundle!"); return bundleOperandHasAttr(i - 1, Kind); } /// Extract the alignment of the return value. unsigned getRetAlignment() const { return Attrs.getRetAlignment(); } /// Extract the alignment for a call or parameter (0=unknown). unsigned getParamAlignment(unsigned ArgNo) const { return Attrs.getParamAlignment(ArgNo); } /// Extract the number of dereferenceable bytes for a call or /// parameter (0=unknown). uint64_t getDereferenceableBytes(unsigned i) const { return Attrs.getDereferenceableBytes(i); } /// Extract the number of dereferenceable_or_null bytes for a call or /// parameter (0=unknown). uint64_t getDereferenceableOrNullBytes(unsigned i) const { return Attrs.getDereferenceableOrNullBytes(i); } /// Determine if the return value is marked with NoAlias attribute. bool returnDoesNotAlias() const { return Attrs.hasAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); } /// Return true if the call should not be treated as a call to a /// builtin. bool isNoBuiltin() const { return hasFnAttrImpl(Attribute::NoBuiltin) && !hasFnAttrImpl(Attribute::Builtin); } /// Determine if the call requires strict floating point semantics. bool isStrictFP() const { return hasFnAttr(Attribute::StrictFP); } /// Return true if the call should not be inlined. bool isNoInline() const { return hasFnAttr(Attribute::NoInline); } void setIsNoInline() { addAttribute(AttributeList::FunctionIndex, Attribute::NoInline); } /// Determine if the call does not access memory. bool doesNotAccessMemory() const { return hasFnAttr(Attribute::ReadNone); } void setDoesNotAccessMemory() { addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone); } /// Determine if the call does not access or only reads memory. bool onlyReadsMemory() const { return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly); } void setOnlyReadsMemory() { addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly); } /// Determine if the call does not access or only writes memory. bool doesNotReadMemory() const { return doesNotAccessMemory() || hasFnAttr(Attribute::WriteOnly); } void setDoesNotReadMemory() { addAttribute(AttributeList::FunctionIndex, Attribute::WriteOnly); } /// Determine if the call can access memmory only using pointers based /// on its arguments. bool onlyAccessesArgMemory() const { return hasFnAttr(Attribute::ArgMemOnly); } void setOnlyAccessesArgMemory() { addAttribute(AttributeList::FunctionIndex, Attribute::ArgMemOnly); } /// Determine if the function may only access memory that is /// inaccessible from the IR. bool onlyAccessesInaccessibleMemory() const { return hasFnAttr(Attribute::InaccessibleMemOnly); } void setOnlyAccessesInaccessibleMemory() { addAttribute(AttributeList::FunctionIndex, Attribute::InaccessibleMemOnly); } /// Determine if the function may only access memory that is /// either inaccessible from the IR or pointed to by its arguments. bool onlyAccessesInaccessibleMemOrArgMem() const { return hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly); } void setOnlyAccessesInaccessibleMemOrArgMem() { addAttribute(AttributeList::FunctionIndex, Attribute::InaccessibleMemOrArgMemOnly); } /// Determine if the call cannot return. bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); } void setDoesNotReturn() { addAttribute(AttributeList::FunctionIndex, Attribute::NoReturn); } /// Determine if the call should not perform indirect branch tracking. bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); } /// Determine if the call cannot unwind. bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); } void setDoesNotThrow() { addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind); } /// Determine if the invoke cannot be duplicated. bool cannotDuplicate() const {return hasFnAttr(Attribute::NoDuplicate); } void setCannotDuplicate() { addAttribute(AttributeList::FunctionIndex, Attribute::NoDuplicate); } /// Determine if the invoke is convergent bool isConvergent() const { return hasFnAttr(Attribute::Convergent); } void setConvergent() { addAttribute(AttributeList::FunctionIndex, Attribute::Convergent); } void setNotConvergent() { removeAttribute(AttributeList::FunctionIndex, Attribute::Convergent); } /// Determine if the call returns a structure through first /// pointer argument. bool hasStructRetAttr() const { if (getNumArgOperands() == 0) return false; // Be friendly and also check the callee. return paramHasAttr(0, Attribute::StructRet); } /// Determine if any call argument is an aggregate passed by value. bool hasByValArgument() const { return Attrs.hasAttrSomewhere(Attribute::ByVal); } /// Get a pointer to the function that is invoked by this /// instruction. const Value *getCalledValue() const { return Op<-InstTy::ArgOffset>(); } Value *getCalledValue() { return Op<-InstTy::ArgOffset>(); } /// Set the function called. void setCalledFunction(Value* Fn) { setCalledFunction( cast
(cast
(Fn->getType())->getElementType()), Fn); } void setCalledFunction(FunctionType *FTy, Value *Fn) { this->FTy = FTy; assert(FTy == cast
( cast
(Fn->getType())->getElementType())); Op<-InstTy::ArgOffset>() = Fn; } protected: template
bool hasFnAttrImpl(AttrKind Kind) const { if (Attrs.hasAttribute(AttributeList::FunctionIndex, Kind)) return true; // Operand bundles override attributes on the called function, but don't // override attributes directly present on the call instruction. if (isFnAttrDisallowedByOpBundle(Kind)) return false; if (const Function *F = getCalledFunction()) return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind); return false; } }; //===----------------------------------------------------------------------===// /// This class represents a function call, abstracting a target /// machine's calling convention. This class uses low bit of the SubClassData /// field to indicate whether or not this is a tail call. The rest of the bits /// hold the calling convention of the call. /// class CallInst : public CallBase
{ friend class OperandBundleUser
; CallInst(const CallInst &CI); /// Construct a CallInst given a range of arguments. /// Construct a CallInst from a range of arguments inline CallInst(FunctionType *Ty, Value *Func, ArrayRef
Args, ArrayRef
Bundles, const Twine &NameStr, Instruction *InsertBefore); inline CallInst(Value *Func, ArrayRef
Args, ArrayRef
Bundles, const Twine &NameStr, Instruction *InsertBefore) : CallInst(cast
( cast
(Func->getType())->getElementType()), Func, Args, Bundles, NameStr, InsertBefore) {} inline CallInst(Value *Func, ArrayRef
Args, const Twine &NameStr, Instruction *InsertBefore) : CallInst(Func, Args, None, NameStr, InsertBefore) {} /// Construct a CallInst given a range of arguments. /// Construct a CallInst from a range of arguments inline CallInst(Value *Func, ArrayRef
Args, ArrayRef
Bundles, const Twine &NameStr, BasicBlock *InsertAtEnd); explicit CallInst(Value *F, const Twine &NameStr, Instruction *InsertBefore); CallInst(Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd); void init(Value *Func, ArrayRef
Args, ArrayRef
Bundles, const Twine &NameStr) { init(cast
( cast
(Func->getType())->getElementType()), Func, Args, Bundles, NameStr); } void init(FunctionType *FTy, Value *Func, ArrayRef
Args, ArrayRef
Bundles, const Twine &NameStr); void init(Value *Func, const Twine &NameStr); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; CallInst *cloneImpl() const; public: static constexpr int ArgOffset = 1; static CallInst *Create(Value *Func, ArrayRef
Args, ArrayRef
Bundles = None, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return Create(cast
( cast
(Func->getType())->getElementType()), Func, Args, Bundles, NameStr, InsertBefore); } static CallInst *Create(Value *Func, ArrayRef
Args, const Twine &NameStr, Instruction *InsertBefore = nullptr) { return Create(cast
( cast
(Func->getType())->getElementType()), Func, Args, None, NameStr, InsertBefore); } static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef
Args, const Twine &NameStr, Instruction *InsertBefore = nullptr) { return new (unsigned(Args.size() + 1)) CallInst(Ty, Func, Args, None, NameStr, InsertBefore); } static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef
Args, ArrayRef
Bundles = None, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { const unsigned TotalOps = unsigned(Args.size()) + CountBundleInputs(Bundles) + 1; const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); return new (TotalOps, DescriptorBytes) CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); } static CallInst *Create(Value *Func, ArrayRef
Args, ArrayRef
Bundles, const Twine &NameStr, BasicBlock *InsertAtEnd) { const unsigned TotalOps = unsigned(Args.size()) + CountBundleInputs(Bundles) + 1; const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); return new (TotalOps, DescriptorBytes) CallInst(Func, Args, Bundles, NameStr, InsertAtEnd); } static CallInst *Create(Value *Func, ArrayRef
Args, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new (unsigned(Args.size() + 1)) CallInst(Func, Args, None, NameStr, InsertAtEnd); } static CallInst *Create(Value *F, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return new (1) CallInst(F, NameStr, InsertBefore); } static CallInst *Create(Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new (1) CallInst(F, NameStr, InsertAtEnd); } /// Create a clone of \p CI with a different set of operand bundles and /// insert it before \p InsertPt. /// /// The returned call instruction is identical \p CI in every way except that /// the operand bundles for the new instruction are set to the operand bundles /// in \p Bundles. static CallInst *Create(CallInst *CI, ArrayRef
Bundles, Instruction *InsertPt = nullptr); /// Generate the IR for a call to malloc: /// 1. Compute the malloc call's argument as the specified type's size, /// possibly multiplied by the array size if the array size is not /// constant 1. /// 2. Call malloc with that argument. /// 3. Bitcast the result of the malloc call to the specified type. static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize = nullptr, Function *MallocF = nullptr, const Twine &Name = ""); static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize = nullptr, Function *MallocF = nullptr, const Twine &Name = ""); static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize = nullptr, ArrayRef
Bundles = None, Function *MallocF = nullptr, const Twine &Name = ""); static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize = nullptr, ArrayRef
Bundles = None, Function *MallocF = nullptr, const Twine &Name = ""); /// Generate the IR for a call to the builtin free function. static Instruction *CreateFree(Value *Source, Instruction *InsertBefore); static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd); static Instruction *CreateFree(Value *Source, ArrayRef
Bundles, Instruction *InsertBefore); static Instruction *CreateFree(Value *Source, ArrayRef
Bundles, BasicBlock *InsertAtEnd); // Note that 'musttail' implies 'tail'. enum TailCallKind { TCK_None = 0, TCK_Tail = 1, TCK_MustTail = 2, TCK_NoTail = 3 }; TailCallKind getTailCallKind() const { return TailCallKind(getSubclassDataFromInstruction() & 3); } bool isTailCall() const { unsigned Kind = getSubclassDataFromInstruction() & 3; return Kind == TCK_Tail || Kind == TCK_MustTail; } bool isMustTailCall() const { return (getSubclassDataFromInstruction() & 3) == TCK_MustTail; } bool isNoTailCall() const { return (getSubclassDataFromInstruction() & 3) == TCK_NoTail; } void setTailCall(bool isTC = true) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) | unsigned(isTC ? TCK_Tail : TCK_None)); } void setTailCallKind(TailCallKind TCK) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) | unsigned(TCK)); } /// Return true if the call can return twice bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } void setCanReturnTwice() { addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice); } /// Check if this call is an inline asm statement. bool isInlineAsm() const { return isa
(Op<-1>()); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Call; } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } }; template <> struct OperandTraits
> : public VariadicOperandTraits
, 1> {}; CallInst::CallInst(Value *Func, ArrayRef
Args, ArrayRef
Bundles, const Twine &NameStr, BasicBlock *InsertAtEnd) : CallBase
( cast
( cast
(Func->getType())->getElementType()) ->getReturnType(), Instruction::Call, OperandTraits
>::op_end(this) - (Args.size() + CountBundleInputs(Bundles) + 1), unsigned(Args.size() + CountBundleInputs(Bundles) + 1), InsertAtEnd) { init(Func, Args, Bundles, NameStr); } CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef
Args, ArrayRef
Bundles, const Twine &NameStr, Instruction *InsertBefore) : CallBase
(Ty->getReturnType(), Instruction::Call, OperandTraits
>::op_end(this) - (Args.size() + CountBundleInputs(Bundles) + 1), unsigned(Args.size() + CountBundleInputs(Bundles) + 1), InsertBefore) { init(Ty, Func, Args, Bundles, NameStr); } //===----------------------------------------------------------------------===// // SelectInst Class //===----------------------------------------------------------------------===// /// This class represents the LLVM 'select' instruction. /// class SelectInst : public Instruction { SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, Instruction *InsertBefore) : Instruction(S1->getType(), Instruction::Select, &Op<0>(), 3, InsertBefore) { init(C, S1, S2); setName(NameStr); } SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(S1->getType(), Instruction::Select, &Op<0>(), 3, InsertAtEnd) { init(C, S1, S2); setName(NameStr); } void init(Value *C, Value *S1, Value *S2) { assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select"); Op<0>() = C; Op<1>() = S1; Op<2>() = S2; } protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; SelectInst *cloneImpl() const; public: static SelectInst *Create(Value *C, Value *S1, Value *S2, const Twine &NameStr = "", Instruction *InsertBefore = nullptr, Instruction *MDFrom = nullptr) { SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); if (MDFrom) Sel->copyMetadata(*MDFrom); return Sel; } static SelectInst *Create(Value *C, Value *S1, Value *S2, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); } const Value *getCondition() const { return Op<0>(); } const Value *getTrueValue() const { return Op<1>(); } const Value *getFalseValue() const { return Op<2>(); } Value *getCondition() { return Op<0>(); } Value *getTrueValue() { return Op<1>(); } Value *getFalseValue() { return Op<2>(); } void setCondition(Value *V) { Op<0>() = V; } void setTrueValue(Value *V) { Op<1>() = V; } void setFalseValue(Value *V) { Op<2>() = V; } /// Return a string if the specified operands are invalid /// for a select operation, otherwise return null. static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); OtherOps getOpcode() const { return static_cast
(Instruction::getOpcode()); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Select; } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } }; template <> struct OperandTraits
: public FixedNumOperandTraits
{ }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value) //===----------------------------------------------------------------------===// // VAArgInst Class //===----------------------------------------------------------------------===// /// This class represents the va_arg llvm instruction, which returns /// an argument of the specified type given a va_list and increments that list /// class VAArgInst : public UnaryInstruction { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; VAArgInst *cloneImpl() const; public: VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) : UnaryInstruction(Ty, VAArg, List, InsertBefore) { setName(NameStr); } VAArgInst(Value *List, Type *Ty, const Twine &NameStr, BasicBlock *InsertAtEnd) : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { setName(NameStr); } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == VAArg; } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } }; //===----------------------------------------------------------------------===// // ExtractElementInst Class //===----------------------------------------------------------------------===// /// This instruction extracts a single (scalar) /// element from a VectorType value /// class ExtractElementInst : public Instruction { ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", Instruction *InsertBefore = nullptr); ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; ExtractElementInst *cloneImpl() const; public: static ExtractElementInst *Create(Value *Vec, Value *Idx, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); } static ExtractElementInst *Create(Value *Vec, Value *Idx, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); } /// Return true if an extractelement instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *Vec, const Value *Idx); Value *getVectorOperand() { return Op<0>(); } Value *getIndexOperand() { return Op<1>(); } const Value *getVectorOperand() const { return Op<0>(); } const Value *getIndexOperand() const { return Op<1>(); } VectorType *getVectorOperandType() const { return cast
(getVectorOperand()->getType()); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ExtractElement; } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } }; template <> struct OperandTraits
: public FixedNumOperandTraits
{ }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value) //===----------------------------------------------------------------------===// // InsertElementInst Class //===----------------------------------------------------------------------===// /// This instruction inserts a single (scalar) /// element into a VectorType value /// class InsertElementInst : public Instruction { InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr = "", Instruction *InsertBefore = nullptr); InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; InsertElementInst *cloneImpl() const; public: static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); } static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); } /// Return true if an insertelement instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx); /// Overload to return most specific vector type. /// VectorType *getType() const { return cast
(Instruction::getType()); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::InsertElement; } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } }; template <> struct OperandTraits
: public FixedNumOperandTraits
{ }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value) //===----------------------------------------------------------------------===// // ShuffleVectorInst Class //===----------------------------------------------------------------------===// /// This instruction constructs a fixed permutation of two /// input vectors. /// class ShuffleVectorInst : public Instruction { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; ShuffleVectorInst *cloneImpl() const; public: ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const Twine &NameStr = "", Instruction *InsertBefor = nullptr); ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const Twine &NameStr, BasicBlock *InsertAtEnd); // allocate space for exactly three operands void *operator new(size_t s) { return User::operator new(s, 3); } /// Return true if a shufflevector instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask); /// Overload to return most specific vector type. /// VectorType *getType() const { return cast
(Instruction::getType()); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); Constant *getMask() const { return cast
(getOperand(2)); } /// Return the shuffle mask value for the specified element of the mask. /// Return -1 if the element is undef. static int getMaskValue(const Constant *Mask, unsigned Elt); /// Return the shuffle mask value of this instruction for the given element /// index. Return -1 if the element is undef. int getMaskValue(unsigned Elt) const { return getMaskValue(getMask(), Elt); } /// Convert the input shuffle mask operand to a vector of integers. Undefined /// elements of the mask are returned as -1. static void getShuffleMask(const Constant *Mask, SmallVectorImpl
&Result); /// Return the mask for this instruction as a vector of integers. Undefined /// elements of the mask are returned as -1. void getShuffleMask(SmallVectorImpl
&Result) const { return getShuffleMask(getMask(), Result); } SmallVector
getShuffleMask() const { SmallVector
Mask; getShuffleMask(Mask); return Mask; } /// Return true if this shuffle returns a vector with a different number of /// elements than its source elements. /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2> bool changesLength() const { unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements(); unsigned NumMaskElts = getMask()->getType()->getVectorNumElements(); return NumSourceElts != NumMaskElts; } /// Return true if this shuffle mask chooses elements from exactly one source /// vector. /// Example: <7,5,undef,7> /// This assumes that vector operands are the same length as the mask. static bool isSingleSourceMask(ArrayRef
Mask); static bool isSingleSourceMask(const Constant *Mask) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector
MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isSingleSourceMask(MaskAsInts); } /// Return true if this shuffle chooses elements from exactly one source /// vector without changing the length of that vector. /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3> /// TODO: Optionally allow length-changing shuffles. bool isSingleSource() const { return !changesLength() && isSingleSourceMask(getMask()); } /// Return true if this shuffle mask chooses elements from exactly one source /// vector without lane crossings. A shuffle using this mask is not /// necessarily a no-op because it may change the number of elements from its /// input vectors or it may provide demanded bits knowledge via undef lanes. /// Example:
static bool isIdentityMask(ArrayRef
Mask); static bool isIdentityMask(const Constant *Mask) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector
MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isIdentityMask(MaskAsInts); } /// Return true if this shuffle mask chooses elements from exactly one source /// vector without lane crossings and does not change the number of elements /// from its input vectors. /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef> /// TODO: Optionally allow length-changing shuffles. bool isIdentity() const { return !changesLength() && isIdentityMask(getShuffleMask()); } /// Return true if this shuffle mask chooses elements from its source vectors /// without lane crossings. A shuffle using this mask would be /// equivalent to a vector select with a constant condition operand. /// Example: <4,1,6,undef> /// This returns false if the mask does not choose from both input vectors. /// In that case, the shuffle is better classified as an identity shuffle. /// This assumes that vector operands are the same length as the mask /// (a length-changing shuffle can never be equivalent to a vector select). static bool isSelectMask(ArrayRef
Mask); static bool isSelectMask(const Constant *Mask) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector
MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isSelectMask(MaskAsInts); } /// Return true if this shuffle chooses elements from its source vectors /// without lane crossings and all operands have the same number of elements. /// In other words, this shuffle is equivalent to a vector select with a /// constant condition operand. /// Example: shufflevector <4 x n> A, <4 x n> B,
/// This returns false if the mask does not choose from both input vectors. /// In that case, the shuffle is better classified as an identity shuffle. /// TODO: Optionally allow length-changing shuffles. bool isSelect() const { return !changesLength() && isSelectMask(getMask()); } /// Return true if this shuffle mask swaps the order of elements from exactly /// one source vector. /// Example: <7,6,undef,4> /// This assumes that vector operands are the same length as the mask. static bool isReverseMask(ArrayRef
Mask); static bool isReverseMask(const Constant *Mask) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector
MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isReverseMask(MaskAsInts); } /// Return true if this shuffle swaps the order of elements from exactly /// one source vector. /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef> /// TODO: Optionally allow length-changing shuffles. bool isReverse() const { return !changesLength() && isReverseMask(getMask()); } /// Return true if this shuffle mask chooses all elements with the same value /// as the first element of exactly one source vector. /// Example: <4,undef,undef,4> /// This assumes that vector operands are the same length as the mask. static bool isZeroEltSplatMask(ArrayRef
Mask); static bool isZeroEltSplatMask(const Constant *Mask) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector
MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isZeroEltSplatMask(MaskAsInts); } /// Return true if all elements of this shuffle are the same value as the /// first element of exactly one source vector without changing the length /// of that vector. /// Example: shufflevector <4 x n> A, <4 x n> B,
/// TODO: Optionally allow length-changing shuffles. /// TODO: Optionally allow splats from other elements. bool isZeroEltSplat() const { return !changesLength() && isZeroEltSplatMask(getMask()); } /// Return true if this shuffle mask is a transpose mask. /// Transpose vector masks transpose a 2xn matrix. They read corresponding /// even- or odd-numbered vector elements from two n-dimensional source /// vectors and write each result into consecutive elements of an /// n-dimensional destination vector. Two shuffles are necessary to complete /// the transpose, one for the even elements and another for the odd elements. /// This description closely follows how the TRN1 and TRN2 AArch64 /// instructions operate. /// /// For example, a simple 2x2 matrix can be transposed with: /// /// ; Original matrix /// m0 = < a, b > /// m1 = < c, d > /// /// ; Transposed matrix /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 > /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 > /// /// For matrices having greater than n columns, the resulting nx2 transposed /// matrix is stored in two result vectors such that one vector contains /// interleaved elements from all the even-numbered rows and the other vector /// contains interleaved elements from all the odd-numbered rows. For example, /// a 2x4 matrix can be transposed with: /// /// ; Original matrix /// m0 = < a, b, c, d > /// m1 = < e, f, g, h > /// /// ; Transposed matrix /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 > /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 > static bool isTransposeMask(ArrayRef
Mask); static bool isTransposeMask(const Constant *Mask) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector
MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isTransposeMask(MaskAsInts); } /// Return true if this shuffle transposes the elements of its inputs without /// changing the length of the vectors. This operation may also be known as a /// merge or interleave. See the description for isTransposeMask() for the /// exact specification. /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6> bool isTranspose() const { return !changesLength() && isTransposeMask(getMask()); } /// Change values in a shuffle permute mask assuming the two vector operands /// of length InVecNumElts have swapped position. static void commuteShuffleMask(MutableArrayRef
Mask, unsigned InVecNumElts) { for (int &Idx : Mask) { if (Idx == -1) continue; Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts; assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 && "shufflevector mask index out of range"); } } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ShuffleVector; } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } }; template <> struct OperandTraits
: public FixedNumOperandTraits
{ }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value) //===----------------------------------------------------------------------===// // ExtractValueInst Class //===----------------------------------------------------------------------===// /// This instruction extracts a struct member or array /// element value from an aggregate value. /// class ExtractValueInst : public UnaryInstruction { SmallVector
Indices; ExtractValueInst(const ExtractValueInst &EVI); /// Constructors - Create a extractvalue instruction with a base aggregate /// value and a list of indices. The first ctor can optionally insert before /// an existing instruction, the second appends the new instruction to the /// specified BasicBlock. inline ExtractValueInst(Value *Agg, ArrayRef
Idxs, const Twine &NameStr, Instruction *InsertBefore); inline ExtractValueInst(Value *Agg, ArrayRef
Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd); void init(ArrayRef
Idxs, const Twine &NameStr); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; ExtractValueInst *cloneImpl() const; public: static ExtractValueInst *Create(Value *Agg, ArrayRef
Idxs, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return new ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); } static ExtractValueInst *Create(Value *Agg, ArrayRef
Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); } /// Returns the type of the element that would be extracted /// with an extractvalue instruction with the specified parameters. /// /// Null is returned if the indices are invalid for the specified type. static Type *getIndexedType(Type *Agg, ArrayRef
Idxs); using idx_iterator = const unsigned*; inline idx_iterator idx_begin() const { return Indices.begin(); } inline idx_iterator idx_end() const { return Indices.end(); } inline iterator_range
indices() const { return make_range(idx_begin(), idx_end()); } Value *getAggregateOperand() { return getOperand(0); } const Value *getAggregateOperand() const { return getOperand(0); } static unsigned getAggregateOperandIndex() { return 0U; // get index for modifying correct operand } ArrayRef
getIndices() const { return Indices; } unsigned getNumIndices() const { return (unsigned)Indices.size(); } bool hasIndices() const { return true; } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ExtractValue; } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } }; ExtractValueInst::ExtractValueInst(Value *Agg, ArrayRef
Idxs, const Twine &NameStr, Instruction *InsertBefore) : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), ExtractValue, Agg, InsertBefore) { init(Idxs, NameStr); } ExtractValueInst::ExtractValueInst(Value *Agg, ArrayRef
Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd) : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), ExtractValue, Agg, InsertAtEnd) { init(Idxs, NameStr); } //===----------------------------------------------------------------------===// // InsertValueInst Class //===----------------------------------------------------------------------===// /// This instruction inserts a struct field of array element /// value into an aggregate value. /// class InsertValueInst : public Instruction { SmallVector
Indices; InsertValueInst(const InsertValueInst &IVI); /// Constructors - Create a insertvalue instruction with a base aggregate /// value, a value to insert, and a list of indices. The first ctor can /// optionally insert before an existing instruction, the second appends /// the new instruction to the specified BasicBlock. inline InsertValueInst(Value *Agg, Value *Val, ArrayRef
Idxs, const Twine &NameStr, Instruction *InsertBefore); inline InsertValueInst(Value *Agg, Value *Val, ArrayRef
Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd); /// Constructors - These two constructors are convenience methods because one /// and two index insertvalue instructions are so common. InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr = "", Instruction *InsertBefore = nullptr); InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, BasicBlock *InsertAtEnd); void init(Value *Agg, Value *Val, ArrayRef
Idxs, const Twine &NameStr); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; InsertValueInst *cloneImpl() const; public: // allocate space for exactly two operands void *operator new(size_t s) { return User::operator new(s, 2); } static InsertValueInst *Create(Value *Agg, Value *Val, ArrayRef
Idxs, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); } static InsertValueInst *Create(Value *Agg, Value *Val, ArrayRef
Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); using idx_iterator = const unsigned*; inline idx_iterator idx_begin() const { return Indices.begin(); } inline idx_iterator idx_end() const { return Indices.end(); } inline iterator_range
indices() const { return make_range(idx_begin(), idx_end()); } Value *getAggregateOperand() { return getOperand(0); } const Value *getAggregateOperand() const { return getOperand(0); } static unsigned getAggregateOperandIndex() { return 0U; // get index for modifying correct operand } Value *getInsertedValueOperand() { return getOperand(1); } const Value *getInsertedValueOperand() const { return getOperand(1); } static unsigned getInsertedValueOperandIndex() { return 1U; // get index for modifying correct operand } ArrayRef
getIndices() const { return Indices; } unsigned getNumIndices() const { return (unsigned)Indices.size(); } bool hasIndices() const { return true; } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::InsertValue; } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } }; template <> struct OperandTraits
: public FixedNumOperandTraits
{ }; InsertValueInst::InsertValueInst(Value *Agg, Value *Val, ArrayRef
Idxs, const Twine &NameStr, Instruction *InsertBefore) : Instruction(Agg->getType(), InsertValue, OperandTraits
::op_begin(this), 2, InsertBefore) { init(Agg, Val, Idxs, NameStr); } InsertValueInst::InsertValueInst(Value *Agg, Value *Val, ArrayRef
Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(Agg->getType(), InsertValue, OperandTraits
::op_begin(this), 2, InsertAtEnd) { init(Agg, Val, Idxs, NameStr); } DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value) //===----------------------------------------------------------------------===// // PHINode Class //===----------------------------------------------------------------------===// // PHINode - The PHINode class is used to represent the magical mystical PHI // node, that can not exist in nature, but can be synthesized in a computer // scientist's overactive imagination. // class PHINode : public Instruction { /// The number of operands actually allocated. NumOperands is /// the number actually in use. unsigned ReservedSpace; PHINode(const PHINode &PN); explicit PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), ReservedSpace(NumReservedValues) { setName(NameStr); allocHungoffUses(ReservedSpace); } PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd), ReservedSpace(NumReservedValues) { setName(NameStr); allocHungoffUses(ReservedSpace); } protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; PHINode *cloneImpl() const; // allocHungoffUses - this is more complicated than the generic // User::allocHungoffUses, because we have to allocate Uses for the incoming // values and pointers to the incoming blocks, all in one allocation. void allocHungoffUses(unsigned N) { User::allocHungoffUses(N, /* IsPhi */ true); } public: /// Constructors - NumReservedValues is a hint for the number of incoming /// edges that this phi node will have (use 0 if you really have no idea). static PHINode *Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); } static PHINode *Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); } /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Block iterator interface. This provides access to the list of incoming // basic blocks, which parallels the list of incoming values. using block_iterator = BasicBlock **; using const_block_iterator = BasicBlock * const *; block_iterator block_begin() { Use::UserRef *ref = reinterpret_cast
(op_begin() + ReservedSpace); return reinterpret_cast
(ref + 1); } const_block_iterator block_begin() const { const Use::UserRef *ref = reinterpret_cast
(op_begin() + ReservedSpace); return reinterpret_cast
(ref + 1); } block_iterator block_end() { return block_begin() + getNumOperands(); } const_block_iterator block_end() const { return block_begin() + getNumOperands(); } iterator_range
blocks() { return make_range(block_begin(), block_end()); } iterator_range
blocks() const { return make_range(block_begin(), block_end()); } op_range incoming_values() { return operands(); } const_op_range incoming_values() const { return operands(); } /// Return the number of incoming edges /// unsigned getNumIncomingValues() const { return getNumOperands(); } /// Return incoming value number x /// Value *getIncomingValue(unsigned i) const { return getOperand(i); } void setIncomingValue(unsigned i, Value *V) { assert(V && "PHI node got a null value!"); assert(getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"); setOperand(i, V); } static unsigned getOperandNumForIncomingValue(unsigned i) { return i; } static unsigned getIncomingValueNumForOperand(unsigned i) { return i; } /// Return incoming basic block number @p i. /// BasicBlock *getIncomingBlock(unsigned i) const { return block_begin()[i]; } /// Return incoming basic block corresponding /// to an operand of the PHI. /// BasicBlock *getIncomingBlock(const Use &U) const { assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?"); return getIncomingBlock(unsigned(&U - op_begin())); } /// Return incoming basic block corresponding /// to value use iterator. /// BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { return getIncomingBlock(I.getUse()); } void setIncomingBlock(unsigned i, BasicBlock *BB) { assert(BB && "PHI node got a null basic block!"); block_begin()[i] = BB; } /// Add an incoming value to the end of the PHI list /// void addIncoming(Value *V, BasicBlock *BB) { if (getNumOperands() == ReservedSpace) growOperands(); // Get more space! // Initialize some new operands. setNumHungOffUseOperands(getNumOperands() + 1); setIncomingValue(getNumOperands() - 1, V); setIncomingBlock(getNumOperands() - 1, BB); } /// Remove an incoming value. This is useful if a /// predecessor basic block is deleted. The value removed is returned. /// /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty /// is true), the PHI node is destroyed and any uses of it are replaced with /// dummy values. The only time there should be zero incoming values to a PHI /// node is when the block is dead, so this strategy is sound. /// Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { int Idx = getBasicBlockIndex(BB); assert(Idx >= 0 && "Invalid basic block argument to remove!"); return removeIncomingValue(Idx, DeletePHIIfEmpty); } /// Return the first index of the specified basic /// block in the value list for this PHI. Returns -1 if no instance. /// int getBasicBlockIndex(const BasicBlock *BB) const { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (block_begin()[i] == BB) return i; return -1; } Value *getIncomingValueForBlock(const BasicBlock *BB) const { int Idx = getBasicBlockIndex(BB); assert(Idx >= 0 && "Invalid basic block argument!"); return getIncomingValue(Idx); } /// If the specified PHI node always merges together the /// same value, return the value, otherwise return null. Value *hasConstantValue() const; /// Whether the specified PHI node always merges /// together the same value, assuming undefs are equal to a unique /// non-undef value. bool hasConstantOrUndefValue() const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::PHI; } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } private: void growOperands(); }; template <> struct OperandTraits
: public HungoffOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value) //===----------------------------------------------------------------------===// // LandingPadInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// The landingpad instruction holds all of the information /// necessary to generate correct exception handling. The landingpad instruction /// cannot be moved from the top of a landing pad block, which itself is /// accessible only from the 'unwind' edge of an invoke. This uses the /// SubclassData field in Value to store whether or not the landingpad is a /// cleanup. /// class LandingPadInst : public Instruction { /// The number of operands actually allocated. NumOperands is /// the number actually in use. unsigned ReservedSpace; LandingPadInst(const LandingPadInst &LP); public: enum ClauseType { Catch, Filter }; private: explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, const Twine &NameStr, Instruction *InsertBefore); explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, const Twine &NameStr, BasicBlock *InsertAtEnd); // Allocate space for exactly zero operands. void *operator new(size_t s) { return User::operator new(s); } void growOperands(unsigned Size); void init(unsigned NumReservedValues, const Twine &NameStr); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; LandingPadInst *cloneImpl() const; public: /// Constructors - NumReservedClauses is a hint for the number of incoming /// clauses that this landingpad will have (use 0 if you really have no idea). static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr = "", Instruction *InsertBefore = nullptr); static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr, BasicBlock *InsertAtEnd); /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Return 'true' if this landingpad instruction is a /// cleanup. I.e., it should be run when unwinding even if its landing pad /// doesn't catch the exception. bool isCleanup() const { return getSubclassDataFromInstruction() & 1; } /// Indicate that this landingpad instruction is a cleanup. void setCleanup(bool V) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | (V ? 1 : 0)); } /// Add a catch or filter clause to the landing pad. void addClause(Constant *ClauseVal); /// Get the value of the clause at index Idx. Use isCatch/isFilter to /// determine what type of clause this is. Constant *getClause(unsigned Idx) const { return cast
(getOperandList()[Idx]); } /// Return 'true' if the clause and index Idx is a catch clause. bool isCatch(unsigned Idx) const { return !isa
(getOperandList()[Idx]->getType()); } /// Return 'true' if the clause and index Idx is a filter clause. bool isFilter(unsigned Idx) const { return isa
(getOperandList()[Idx]->getType()); } /// Get the number of clauses for this landing pad. unsigned getNumClauses() const { return getNumOperands(); } /// Grow the size of the operand list to accommodate the new /// number of clauses. void reserveClauses(unsigned Size) { growOperands(Size); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::LandingPad; } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } }; template <> struct OperandTraits
: public HungoffOperandTraits<1> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value) //===----------------------------------------------------------------------===// // ReturnInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// Return a value (possibly void), from a function. Execution /// does not continue in this function any longer. /// class ReturnInst : public TerminatorInst { ReturnInst(const ReturnInst &RI); private: // ReturnInst constructors: // ReturnInst() - 'ret void' instruction // ReturnInst( null) - 'ret void' instruction // ReturnInst(Value* X) - 'ret X' instruction // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B // // NOTE: If the Value* passed is of type void then the constructor behaves as // if it was passed NULL. explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, Instruction *InsertBefore = nullptr); ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; ReturnInst *cloneImpl() const; public: static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr, Instruction *InsertBefore = nullptr) { return new(!!retVal) ReturnInst(C, retVal, InsertBefore); } static ReturnInst* Create(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) { return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); } static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { return new(0) ReturnInst(C, InsertAtEnd); } /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Convenience accessor. Returns null if there is no return value. Value *getReturnValue() const { return getNumOperands() != 0 ? getOperand(0) : nullptr; } unsigned getNumSuccessors() const { return 0; } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Ret); } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } private: friend TerminatorInst; BasicBlock *getSuccessor(unsigned idx) const { llvm_unreachable("ReturnInst has no successors!"); } void setSuccessor(unsigned idx, BasicBlock *B) { llvm_unreachable("ReturnInst has no successors!"); } }; template <> struct OperandTraits
: public VariadicOperandTraits
{ }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value) //===----------------------------------------------------------------------===// // BranchInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// Conditional or Unconditional Branch instruction. /// class BranchInst : public TerminatorInst { /// Ops list - Branches are strange. The operands are ordered: /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because /// they don't have to check for cond/uncond branchness. These are mostly /// accessed relative from op_end(). BranchInst(const BranchInst &BI); // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): // BranchInst(BB *B) - 'br B' // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' // BranchInst(BB* B, Inst *I) - 'br B' insert before I // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I // BranchInst(BB* B, BB *I) - 'br B' insert at end // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr); BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, Instruction *InsertBefore = nullptr); BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, BasicBlock *InsertAtEnd); void AssertOK(); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; BranchInst *cloneImpl() const; public: static BranchInst *Create(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr) { return new(1) BranchInst(IfTrue, InsertBefore); } static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, Instruction *InsertBefore = nullptr) { return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); } static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { return new(1) BranchInst(IfTrue, InsertAtEnd); } static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, BasicBlock *InsertAtEnd) { return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); bool isUnconditional() const { return getNumOperands() == 1; } bool isConditional() const { return getNumOperands() == 3; } Value *getCondition() const { assert(isConditional() && "Cannot get condition of an uncond branch!"); return Op<-3>(); } void setCondition(Value *V) { assert(isConditional() && "Cannot set condition of unconditional branch!"); Op<-3>() = V; } unsigned getNumSuccessors() const { return 1+isConditional(); } BasicBlock *getSuccessor(unsigned i) const { assert(i < getNumSuccessors() && "Successor # out of range for Branch!"); return cast_or_null
((&Op<-1>() - i)->get()); } void setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(idx < getNumSuccessors() && "Successor # out of range for Branch!"); *(&Op<-1>() - idx) = NewSucc; } /// Swap the successors of this branch instruction. /// /// Swaps the successors of the branch instruction. This also swaps any /// branch weight metadata associated with the instruction so that it /// continues to map correctly to each operand. void swapSuccessors(); // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Br); } static bool classof(const Value *V) { return isa
(V) && classof(cast
(V)); } }; template <> struct OperandTraits
: public VariadicOperandTraits
{ }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value) //===----------------------------------------------------------------------===// // SwitchInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// Multiway switch /// class SwitchInst : public TerminatorInst { unsigned ReservedSpace; // Operand[0] = Value to switch on // Operand[1] = Default basic block destination // Operand[2n ] = Value to match // Operand[2n+1] = BasicBlock to go to on match SwitchInst(const SwitchInst &SI); /// Create a new switch instruction, specifying a value to switch on and a /// default destination. The number of additional cases can be specified here /// to make memory allocation more efficient. This constructor can also /// auto-insert before another instruction. SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, Instruction *InsertBefore); /// Create a new switch instruction, specifying a value to switch on and a /// default destination. The number of additional cases can be specified here /// to make memory allocation more efficient. This constructor also /// auto-inserts at the end of the specified BasicBlock. SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, BasicBlock *InsertAtEnd); // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s); } void init(Value *Value, BasicBlock *Default, unsigned NumReserved); void growOperands(); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; SwitchInst *cloneImpl() const; public: // -2 static const unsigned DefaultPseudoIndex = static_cast
(~0L-1); template