//===- SampleProf.h - Sampling profiling format support ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains common definitions used in the reading and writing of
// sample profile data.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_PROFILEDATA_SAMPLEPROF_H
#define LLVM_PROFILEDATA_SAMPLEPROF_H
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cstdint>
#include <map>
#include <string>
#include <system_error>
#include <utility>
namespace llvm {
class raw_ostream;
const std::error_category &sampleprof_category();
enum class sampleprof_error {
success = 0,
bad_magic,
unsupported_version,
too_large,
truncated,
malformed,
unrecognized_format,
unsupported_writing_format,
truncated_name_table,
not_implemented,
counter_overflow,
ostream_seek_unsupported
};
inline std::error_code make_error_code(sampleprof_error E) {
return std::error_code(static_cast<int>(E), sampleprof_category());
}
inline sampleprof_error MergeResult(sampleprof_error &Accumulator,
sampleprof_error Result) {
// Prefer first error encountered as later errors may be secondary effects of
// the initial problem.
if (Accumulator == sampleprof_error::success &&
Result != sampleprof_error::success)
Accumulator = Result;
return Accumulator;
}
} // end namespace llvm
namespace std {
template <>
struct is_error_code_enum<llvm::sampleprof_error> : std::true_type {};
} // end namespace std
namespace llvm {
namespace sampleprof {
enum SampleProfileFormat {
SPF_None = 0,
SPF_Text = 0x1,
SPF_Compact_Binary = 0x2,
SPF_GCC = 0x3,
SPF_Binary = 0xff
};
static inline uint64_t SPMagic(SampleProfileFormat Format = SPF_Binary) {
return uint64_t('S') << (64 - 8) | uint64_t('P') << (64 - 16) |
uint64_t('R') << (64 - 24) | uint64_t('O') << (64 - 32) |
uint64_t('F') << (64 - 40) | uint64_t('4') << (64 - 48) |
uint64_t('2') << (64 - 56) | uint64_t(Format);
}
// Get the proper representation of a string in the input Format.
static inline StringRef getRepInFormat(StringRef Name,
SampleProfileFormat Format,
std::string &GUIDBuf) {
if (Name.empty())
return Name;
GUIDBuf = std::to_string(Function::getGUID(Name));
return (Format == SPF_Compact_Binary) ? StringRef(GUIDBuf) : Name;
}
static inline uint64_t SPVersion() { return 103; }
/// Represents the relative location of an instruction.
///
/// Instruction locations are specified by the line offset from the
/// beginning of the function (marked by the line where the function
/// header is) and the discriminator value within that line.
///
/// The discriminator value is useful to distinguish instructions
/// that are on the same line but belong to different basic blocks
/// (e.g., the two post-increment instructions in "if (p) x++; else y++;").
struct LineLocation {
LineLocation(uint32_t L, uint32_t D) : LineOffset(L), Discriminator(D) {}
void print(raw_ostream &OS) const;
void dump() const;
bool operator<(const LineLocation &O) const {
return LineOffset < O.LineOffset ||
(LineOffset == O.LineOffset && Discriminator < O.Discriminator);
}
uint32_t LineOffset;
uint32_t Discriminator;
};
raw_ostream &operator<<(raw_ostream &OS, const LineLocation &Loc);
/// Representation of a single sample record.
///
/// A sample record is represented by a positive integer value, which
/// indicates how frequently was the associated line location executed.
///
/// Additionally, if the associated location contains a function call,
/// the record will hold a list of all the possible called targets. For
/// direct calls, this will be the exact function being invoked. For
/// indirect calls (function pointers, virtual table dispatch), this
/// will be a list of one or more functions.
class SampleRecord {
public:
using CallTargetMap = StringMap<uint64_t>;
SampleRecord() = default;
/// Increment the number of samples for this record by \p S.
/// Optionally scale sample count \p S by \p Weight.
///
/// Sample counts accumulate using saturating arithmetic, to avoid wrapping
/// around unsigned integers.
sampleprof_error addSamples(uint64_t S, uint64_t Weight = 1) {
bool Overflowed;
NumSamples = SaturatingMultiplyAdd(S, Weight, NumSamples, &Overflowed);
return Overflowed ? sampleprof_error::counter_overflow
: sampleprof_error::success;
}
/// Add called function \p F with samples \p S.
/// Optionally scale sample count \p S by \p Weight.
///
/// Sample counts accumulate using saturating arithmetic, to avoid wrapping
/// around unsigned integers.
sampleprof_error addCalledTarget(StringRef F, uint64_t S,
uint64_t Weight = 1) {
uint64_t &TargetSamples = CallTargets[F];
bool Overflowed;
TargetSamples =
SaturatingMultiplyAdd(S, Weight, TargetSamples, &Overflowed);
return Overflowed ? sampleprof_error::counter_overflow
: sampleprof_error::success;
}
/// Return true if this sample record contains function calls.
bool hasCalls() const { return !CallTargets.empty(); }
uint64_t getSamples() const { return NumSamples; }
const CallTargetMap &getCallTargets() const { return CallTargets; }
/// Merge the samples in \p Other into this record.
/// Optionally scale sample counts by \p Weight.
sampleprof_error merge(const SampleRecord &Other, uint64_t Weight = 1) {
sampleprof_error Result = addSamples(Other.getSamples(), Weight);
for (const auto &I : Other.getCallTargets()) {
MergeResult(Result, addCalledTarget(I.first(), I.second, Weight));
}
return Result;
}
void print(raw_ostream &OS, unsigned Indent) const;
void dump() const;
private:
uint64_t NumSamples = 0;
CallTargetMap CallTargets;
};
raw_ostream &operator<<(raw_ostream &OS, const SampleRecord &Sample);
class FunctionSamples;
using BodySampleMap = std::map<LineLocation, SampleRecord>;
// NOTE: Using a StringMap here makes parsed profiles consume around 17% more
// memory, which is *very* significant for large profiles.
using FunctionSamplesMap = std::map<std::string, FunctionSamples>;
using CallsiteSampleMap = std::map<LineLocation, FunctionSamplesMap>;
/// Representation of the samples collected for a function.
///
/// This data structure contains all the collected samples for the body
/// of a function. Each sample corresponds to a LineLocation instance
/// within the body of the function.
class FunctionSamples {
public:
FunctionSamples() = default;
void print(raw_ostream &OS = dbgs(), unsigned Indent = 0) const;
void dump() const;
sampleprof_error addTotalSamples(uint64_t Num, uint64_t Weight = 1) {
bool Overflowed;
TotalSamples =
SaturatingMultiplyAdd(Num, Weight, TotalSamples, &Overflowed);
return Overflowed ? sampleprof_error::counter_overflow
: sampleprof_error::success;
}
sampleprof_error addHeadSamples(uint64_t Num, uint64_t Weight = 1) {
bool Overflowed;
TotalHeadSamples =
SaturatingMultiplyAdd(Num, Weight, TotalHeadSamples, &Overflowed);
return Overflowed ? sampleprof_error::counter_overflow
: sampleprof_error::success;
}
sampleprof_error addBodySamples(uint32_t LineOffset, uint32_t Discriminator,
uint64_t Num, uint64_t Weight = 1) {
return BodySamples[LineLocation(LineOffset, Discriminator)].addSamples(
Num, Weight);
}
sampleprof_error addCalledTargetSamples(uint32_t LineOffset,
uint32_t Discriminator,
StringRef FName, uint64_t Num,
uint64_t Weight = 1) {
return BodySamples[LineLocation(LineOffset, Discriminator)].addCalledTarget(
FName, Num, Weight);
}
/// Return the number of samples collected at the given location.
/// Each location is specified by \p LineOffset and \p Discriminator.
/// If the location is not found in profile, return error.
ErrorOr<uint64_t> findSamplesAt(uint32_t LineOffset,
uint32_t Discriminator) const {
const auto &ret = BodySamples.find(LineLocation(LineOffset, Discriminator));
if (ret == BodySamples.end())
return std::error_code();
else
return ret->second.getSamples();
}
/// Returns the call target map collected at a given location.
/// Each location is specified by \p LineOffset and \p Discriminator.
/// If the location is not found in profile, return error.
ErrorOr<SampleRecord::CallTargetMap>
findCallTargetMapAt(uint32_t LineOffset, uint32_t Discriminator) const {
const auto &ret = BodySamples.find(LineLocation(LineOffset, Discriminator));
if (ret == BodySamples.end())
return std::error_code();
return ret->second.getCallTargets();
}
/// Return the function samples at the given callsite location.
FunctionSamplesMap &functionSamplesAt(const LineLocation &Loc) {
return CallsiteSamples[Loc];
}
/// Returns the FunctionSamplesMap at the given \p Loc.
const FunctionSamplesMap *
findFunctionSamplesMapAt(const LineLocation &Loc) const {
auto iter = CallsiteSamples.find(Loc);
if (iter == CallsiteSamples.end())
return nullptr;
return &iter->second;
}
/// Returns a pointer to FunctionSamples at the given callsite location \p Loc
/// with callee \p CalleeName. If no callsite can be found, relax the
/// restriction to return the FunctionSamples at callsite location \p Loc
/// with the maximum total sample count.
const FunctionSamples *findFunctionSamplesAt(const LineLocation &Loc,
StringRef CalleeName) const {
std::string CalleeGUID;
CalleeName = getRepInFormat(CalleeName, Format, CalleeGUID);
auto iter = CallsiteSamples.find(Loc);
if (iter == CallsiteSamples.end())
return nullptr;
auto FS = iter->second.find(CalleeName);
if (FS != iter->second.end())
return &FS->second;
// If we cannot find exact match of the callee name, return the FS with
// the max total count.
uint64_t MaxTotalSamples = 0;
const FunctionSamples *R = nullptr;
for (const auto &NameFS : iter->second)
if (NameFS.second.getTotalSamples() >= MaxTotalSamples) {
MaxTotalSamples = NameFS.second.getTotalSamples();
R = &NameFS.second;
}
return R;
}
bool empty() const { return TotalSamples == 0; }
/// Return the total number of samples collected inside the function.
uint64_t getTotalSamples() const { return TotalSamples; }
/// Return the total number of branch samples that have the function as the
/// branch target. This should be equivalent to the sample of the first
/// instruction of the symbol. But as we directly get this info for raw
/// profile without referring to potentially inaccurate debug info, this
/// gives more accurate profile data and is preferred for standalone symbols.
uint64_t getHeadSamples() const { return TotalHeadSamples; }
/// Return the sample count of the first instruction of the function.
/// The function can be either a standalone symbol or an inlined function.
uint64_t getEntrySamples() const {
// Use either BodySamples or CallsiteSamples which ever has the smaller
// lineno.
if (!BodySamples.empty() &&
(CallsiteSamples.empty() ||
BodySamples.begin()->first < CallsiteSamples.begin()->first))
return BodySamples.begin()->second.getSamples();
if (!CallsiteSamples.empty()) {
uint64_t T = 0;
// An indirect callsite may be promoted to several inlined direct calls.
// We need to get the sum of them.
for (const auto &N_FS : CallsiteSamples.begin()->second)
T += N_FS.second.getEntrySamples();
return T;
}
return 0;
}
/// Return all the samples collected in the body of the function.
const BodySampleMap &getBodySamples() const { return BodySamples; }
/// Return all the callsite samples collected in the body of the function.
const CallsiteSampleMap &getCallsiteSamples() const {
return CallsiteSamples;
}
/// Merge the samples in \p Other into this one.
/// Optionally scale samples by \p Weight.
sampleprof_error merge(const FunctionSamples &Other, uint64_t Weight = 1) {
sampleprof_error Result = sampleprof_error::success;
Name = Other.getName();
MergeResult(Result, addTotalSamples(Other.getTotalSamples(), Weight));
MergeResult(Result, addHeadSamples(Other.getHeadSamples(), Weight));
for (const auto &I : Other.getBodySamples()) {
const LineLocation &Loc = I.first;
const SampleRecord &Rec = I.second;
MergeResult(Result, BodySamples[Loc].merge(Rec, Weight));
}
for (const auto &I : Other.getCallsiteSamples()) {
const LineLocation &Loc = I.first;
FunctionSamplesMap &FSMap = functionSamplesAt(Loc);
for (const auto &Rec : I.second)
MergeResult(Result, FSMap[Rec.first].merge(Rec.second, Weight));
}
return Result;
}
/// Recursively traverses all children, if the total sample count of the
/// corresponding function is no less than \p Threshold, add its corresponding
/// GUID to \p S. Also traverse the BodySamples to add hot CallTarget's GUID
/// to \p S.
void findInlinedFunctions(DenseSet<GlobalValue::GUID> &S, const Module *M,
uint64_t Threshold) const {
if (TotalSamples <= Threshold)
return;
S.insert(getGUID(Name));
// Import hot CallTargets, which may not be available in IR because full
// profile annotation cannot be done until backend compilation in ThinLTO.
for (const auto &BS : BodySamples)
for (const auto &TS : BS.second.getCallTargets())
if (TS.getValue() > Threshold) {
const Function *Callee =
M->getFunction(getNameInModule(TS.getKey(), M));
if (!Callee || !Callee->getSubprogram())
S.insert(getGUID(TS.getKey()));
}
for (const auto &CS : CallsiteSamples)
for (const auto &NameFS : CS.second)
NameFS.second.findInlinedFunctions(S, M, Threshold);
}
/// Set the name of the function.
void setName(StringRef FunctionName) { Name = FunctionName; }
/// Return the function name.
StringRef getName() const { return Name; }
/// Return the original function name if it exists in Module \p M.
StringRef getFuncNameInModule(const Module *M) const {
return getNameInModule(Name, M);
}
/// Translate \p Name into its original name in Module.
/// When the Format is not SPF_Compact_Binary, \p Name needs no translation.
/// When the Format is SPF_Compact_Binary, \p Name in current FunctionSamples
/// is actually GUID of the original function name. getNameInModule will
/// translate \p Name in current FunctionSamples into its original name.
/// If the original name doesn't exist in \p M, return empty StringRef.
StringRef getNameInModule(StringRef Name, const Module *M) const {
if (Format != SPF_Compact_Binary)
return Name;
// Expect CurrentModule to be initialized by GUIDToFuncNameMapper.
if (M != CurrentModule)
llvm_unreachable("Input Module should be the same as CurrentModule");
auto iter = GUIDToFuncNameMap.find(std::stoull(Name.data()));
if (iter == GUIDToFuncNameMap.end())
return StringRef();
return iter->second;
}
/// Returns the line offset to the start line of the subprogram.
/// We assume that a single function will not exceed 65535 LOC.
static unsigned getOffset(const DILocation *DIL);
/// Get the FunctionSamples of the inline instance where DIL originates
/// from.
///
/// The FunctionSamples of the instruction (Machine or IR) associated to
/// \p DIL is the inlined instance in which that instruction is coming from.
/// We traverse the inline stack of that instruction, and match it with the
/// tree nodes in the profile.
///
/// \returns the FunctionSamples pointer to the inlined instance.
const FunctionSamples *findFunctionSamples(const DILocation *DIL) const;
static SampleProfileFormat Format;
/// GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
/// all the function symbols defined or declared in CurrentModule.
static DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
static Module *CurrentModule;
class GUIDToFuncNameMapper {
public:
GUIDToFuncNameMapper(Module &M) {
if (Format != SPF_Compact_Binary)
return;
for (const auto &F : M) {
StringRef OrigName = F.getName();
GUIDToFuncNameMap.insert({Function::getGUID(OrigName), OrigName});
/// Local to global var promotion used by optimization like thinlto
/// will rename the var and add suffix like ".llvm.xxx" to the
/// original local name. In sample profile, the suffixes of function
/// names are all stripped. Since it is possible that the mapper is
/// built in post-thin-link phase and var promotion has been done,
/// we need to add the substring of function name without the suffix
/// into the GUIDToFuncNameMap.
auto pos = OrigName.find('.');
if (pos != StringRef::npos) {
StringRef NewName = OrigName.substr(0, pos);
GUIDToFuncNameMap.insert({Function::getGUID(NewName), NewName});
}
}
CurrentModule = &M;
}
~GUIDToFuncNameMapper() {
if (Format != SPF_Compact_Binary)
return;
GUIDToFuncNameMap.clear();
CurrentModule = nullptr;
}
};
// Assume the input \p Name is a name coming from FunctionSamples itself.
// If the format is SPF_Compact_Binary, the name is already a GUID and we
// don't want to return the GUID of GUID.
static uint64_t getGUID(StringRef Name) {
if (Format == SPF_Compact_Binary)
errs() << Name << '\n';
return (Format == SPF_Compact_Binary) ? std::stoull(Name.data())
: Function::getGUID(Name);
}
private:
/// Mangled name of the function.
StringRef Name;
/// Total number of samples collected inside this function.
///
/// Samples are cumulative, they include all the samples collected
/// inside this function and all its inlined callees.
uint64_t TotalSamples = 0;
/// Total number of samples collected at the head of the function.
/// This is an approximation of the number of calls made to this function
/// at runtime.
uint64_t TotalHeadSamples = 0;
/// Map instruction locations to collected samples.
///
/// Each entry in this map contains the number of samples
/// collected at the corresponding line offset. All line locations
/// are an offset from the start of the function.
BodySampleMap BodySamples;
/// Map call sites to collected samples for the called function.
///
/// Each entry in this map corresponds to all the samples
/// collected for the inlined function call at the given
/// location. For example, given:
///
/// void foo() {
/// 1 bar();
/// ...
/// 8 baz();
/// }
///
/// If the bar() and baz() calls were inlined inside foo(), this
/// map will contain two entries. One for all the samples collected
/// in the call to bar() at line offset 1, the other for all the samples
/// collected in the call to baz() at line offset 8.
CallsiteSampleMap CallsiteSamples;
};
raw_ostream &operator<<(raw_ostream &OS, const FunctionSamples &FS);
/// Sort a LocationT->SampleT map by LocationT.
///
/// It produces a sorted list of <LocationT, SampleT> records by ascending
/// order of LocationT.
template <class LocationT, class SampleT> class SampleSorter {
public:
using SamplesWithLoc = std::pair<const LocationT, SampleT>;
using SamplesWithLocList = SmallVector<const SamplesWithLoc *, 20>;
SampleSorter(const std::map<LocationT, SampleT> &Samples) {
for (const auto &I : Samples)
V.push_back(&I);
std::stable_sort(V.begin(), V.end(),
[](const SamplesWithLoc *A, const SamplesWithLoc *B) {
return A->first < B->first;
});
}
const SamplesWithLocList &get() const { return V; }
private:
SamplesWithLocList V;
};
} // end namespace sampleprof
} // end namespace llvm
#endif // LLVM_PROFILEDATA_SAMPLEPROF_H