//===- llvm/Support/Parallel.h - Parallel algorithms ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_PARALLEL_H
#define LLVM_SUPPORT_PARALLEL_H
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <condition_variable>
#include <functional>
#include <mutex>
#if defined(_MSC_VER) && LLVM_ENABLE_THREADS
#pragma warning(push)
#pragma warning(disable : 4530)
#include <concrt.h>
#include <ppl.h>
#pragma warning(pop)
#endif
namespace llvm {
namespace parallel {
struct sequential_execution_policy {};
struct parallel_execution_policy {};
template <typename T>
struct is_execution_policy
: public std::integral_constant<
bool, llvm::is_one_of<T, sequential_execution_policy,
parallel_execution_policy>::value> {};
constexpr sequential_execution_policy seq{};
constexpr parallel_execution_policy par{};
namespace detail {
#if LLVM_ENABLE_THREADS
class Latch {
uint32_t Count;
mutable std::mutex Mutex;
mutable std::condition_variable Cond;
public:
explicit Latch(uint32_t Count = 0) : Count(Count) {}
~Latch() { sync(); }
void inc() {
std::lock_guard<std::mutex> lock(Mutex);
++Count;
}
void dec() {
std::lock_guard<std::mutex> lock(Mutex);
if (--Count == 0)
Cond.notify_all();
}
void sync() const {
std::unique_lock<std::mutex> lock(Mutex);
Cond.wait(lock, [&] { return Count == 0; });
}
};
class TaskGroup {
Latch L;
public:
void spawn(std::function<void()> f);
void sync() const { L.sync(); }
};
#if defined(_MSC_VER)
template <class RandomAccessIterator, class Comparator>
void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End,
const Comparator &Comp) {
concurrency::parallel_sort(Start, End, Comp);
}
template <class IterTy, class FuncTy>
void parallel_for_each(IterTy Begin, IterTy End, FuncTy Fn) {
concurrency::parallel_for_each(Begin, End, Fn);
}
template <class IndexTy, class FuncTy>
void parallel_for_each_n(IndexTy Begin, IndexTy End, FuncTy Fn) {
concurrency::parallel_for(Begin, End, Fn);
}
#else
const ptrdiff_t MinParallelSize = 1024;
/// Inclusive median.
template <class RandomAccessIterator, class Comparator>
RandomAccessIterator medianOf3(RandomAccessIterator Start,
RandomAccessIterator End,
const Comparator &Comp) {
RandomAccessIterator Mid = Start + (std::distance(Start, End) / 2);
return Comp(*Start, *(End - 1))
? (Comp(*Mid, *(End - 1)) ? (Comp(*Start, *Mid) ? Mid : Start)
: End - 1)
: (Comp(*Mid, *Start) ? (Comp(*(End - 1), *Mid) ? Mid : End - 1)
: Start);
}
template <class RandomAccessIterator, class Comparator>
void parallel_quick_sort(RandomAccessIterator Start, RandomAccessIterator End,
const Comparator &Comp, TaskGroup &TG, size_t Depth) {
// Do a sequential sort for small inputs.
if (std::distance(Start, End) < detail::MinParallelSize || Depth == 0) {
llvm::sort(Start, End, Comp);
return;
}
// Partition.
auto Pivot = medianOf3(Start, End, Comp);
// Move Pivot to End.
std::swap(*(End - 1), *Pivot);
Pivot = std::partition(Start, End - 1, [&Comp, End](decltype(*Start) V) {
return Comp(V, *(End - 1));
});
// Move Pivot to middle of partition.
std::swap(*Pivot, *(End - 1));
// Recurse.
TG.spawn([=, &Comp, &TG] {
parallel_quick_sort(Start, Pivot, Comp, TG, Depth - 1);
});
parallel_quick_sort(Pivot + 1, End, Comp, TG, Depth - 1);
}
template <class RandomAccessIterator, class Comparator>
void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End,
const Comparator &Comp) {
TaskGroup TG;
parallel_quick_sort(Start, End, Comp, TG,
llvm::Log2_64(std::distance(Start, End)) + 1);
}
template <class IterTy, class FuncTy>
void parallel_for_each(IterTy Begin, IterTy End, FuncTy Fn) {
// TaskGroup has a relatively high overhead, so we want to reduce
// the number of spawn() calls. We'll create up to 1024 tasks here.
// (Note that 1024 is an arbitrary number. This code probably needs
// improving to take the number of available cores into account.)
ptrdiff_t TaskSize = std::distance(Begin, End) / 1024;
if (TaskSize == 0)
TaskSize = 1;
TaskGroup TG;
while (TaskSize < std::distance(Begin, End)) {
TG.spawn([=, &Fn] { std::for_each(Begin, Begin + TaskSize, Fn); });
Begin += TaskSize;
}
std::for_each(Begin, End, Fn);
}
template <class IndexTy, class FuncTy>
void parallel_for_each_n(IndexTy Begin, IndexTy End, FuncTy Fn) {
ptrdiff_t TaskSize = (End - Begin) / 1024;
if (TaskSize == 0)
TaskSize = 1;
TaskGroup TG;
IndexTy I = Begin;
for (; I + TaskSize < End; I += TaskSize) {
TG.spawn([=, &Fn] {
for (IndexTy J = I, E = I + TaskSize; J != E; ++J)
Fn(J);
});
}
for (IndexTy J = I; J < End; ++J)
Fn(J);
}
#endif
#endif
template <typename Iter>
using DefComparator =
std::less<typename std::iterator_traits<Iter>::value_type>;
} // namespace detail
// sequential algorithm implementations.
template <class Policy, class RandomAccessIterator,
class Comparator = detail::DefComparator<RandomAccessIterator>>
void sort(Policy policy, RandomAccessIterator Start, RandomAccessIterator End,
const Comparator &Comp = Comparator()) {
static_assert(is_execution_policy<Policy>::value,
"Invalid execution policy!");
llvm::sort(Start, End, Comp);
}
template <class Policy, class IterTy, class FuncTy>
void for_each(Policy policy, IterTy Begin, IterTy End, FuncTy Fn) {
static_assert(is_execution_policy<Policy>::value,
"Invalid execution policy!");
std::for_each(Begin, End, Fn);
}
template <class Policy, class IndexTy, class FuncTy>
void for_each_n(Policy policy, IndexTy Begin, IndexTy End, FuncTy Fn) {
static_assert(is_execution_policy<Policy>::value,
"Invalid execution policy!");
for (IndexTy I = Begin; I != End; ++I)
Fn(I);
}
// Parallel algorithm implementations, only available when LLVM_ENABLE_THREADS
// is true.
#if LLVM_ENABLE_THREADS
template <class RandomAccessIterator,
class Comparator = detail::DefComparator<RandomAccessIterator>>
void sort(parallel_execution_policy policy, RandomAccessIterator Start,
RandomAccessIterator End, const Comparator &Comp = Comparator()) {
detail::parallel_sort(Start, End, Comp);
}
template <class IterTy, class FuncTy>
void for_each(parallel_execution_policy policy, IterTy Begin, IterTy End,
FuncTy Fn) {
detail::parallel_for_each(Begin, End, Fn);
}
template <class IndexTy, class FuncTy>
void for_each_n(parallel_execution_policy policy, IndexTy Begin, IndexTy End,
FuncTy Fn) {
detail::parallel_for_each_n(Begin, End, Fn);
}
#endif
} // namespace parallel
} // namespace llvm
#endif // LLVM_SUPPORT_PARALLEL_H