//===- llvm/IR/Statepoint.h - gc.statepoint utilities -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains utility functions and a wrapper class analogous to
// CallBase for accessing the fields of gc.statepoint, gc.relocate,
// gc.result intrinsics; and some general utilities helpful when dealing with
// gc.statepoint.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_STATEPOINT_H
#define LLVM_IR_STATEPOINT_H
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <vector>
namespace llvm {
/// The statepoint intrinsic accepts a set of flags as its third argument.
/// Valid values come out of this set.
enum class StatepointFlags {
None = 0,
GCTransition = 1, ///< Indicates that this statepoint is a transition from
///< GC-aware code to code that is not GC-aware.
/// Mark the deopt arguments associated with the statepoint as only being
/// "live-in". By default, deopt arguments are "live-through". "live-through"
/// requires that they the value be live on entry, on exit, and at any point
/// during the call. "live-in" only requires the value be available at the
/// start of the call. In particular, "live-in" values can be placed in
/// unused argument registers or other non-callee saved registers.
DeoptLiveIn = 2,
MaskAll = 3 ///< A bitmask that includes all valid flags.
};
class GCRelocateInst;
class GCResultInst;
bool isStatepoint(const CallBase *Call);
bool isStatepoint(const Value *V);
bool isStatepoint(const Value &V);
bool isGCRelocate(const CallBase *Call);
bool isGCRelocate(const Value *V);
bool isGCResult(const CallBase *Call);
bool isGCResult(const Value *V);
/// A wrapper around a GC intrinsic call, this provides most of the actual
/// functionality for Statepoint and ImmutableStatepoint. It is
/// templatized to allow easily specializing of const and non-const
/// concrete subtypes.
template <typename FunTy, typename InstructionTy, typename ValueTy,
typename CallBaseTy>
class StatepointBase {
CallBaseTy *StatepointCall;
protected:
explicit StatepointBase(InstructionTy *I) {
if (isStatepoint(I)) {
StatepointCall = cast<CallBaseTy>(I);
}
}
explicit StatepointBase(CallBaseTy *Call) {
if (isStatepoint(Call))
StatepointCall = Call;
}
public:
using arg_iterator = typename CallBaseTy::const_op_iterator;
enum {
IDPos = 0,
NumPatchBytesPos = 1,
CalledFunctionPos = 2,
NumCallArgsPos = 3,
FlagsPos = 4,
CallArgsBeginPos = 5,
};
void *operator new(size_t, unsigned) = delete;
void *operator new(size_t s) = delete;
explicit operator bool() const {
// We do not assign non-statepoint call instructions to StatepointCall.
return (bool)StatepointCall;
}
/// Return the underlying call instruction.
CallBaseTy *getCall() const {
assert(*this && "check validity first!");
return StatepointCall;
}
uint64_t getFlags() const {
return cast<ConstantInt>(getCall()->getArgOperand(FlagsPos))
->getZExtValue();
}
/// Return the ID associated with this statepoint.
uint64_t getID() const {
const Value *IDVal = getCall()->getArgOperand(IDPos);
return cast<ConstantInt>(IDVal)->getZExtValue();
}
/// Return the number of patchable bytes associated with this statepoint.
uint32_t getNumPatchBytes() const {
const Value *NumPatchBytesVal = getCall()->getArgOperand(NumPatchBytesPos);
uint64_t NumPatchBytes =
cast<ConstantInt>(NumPatchBytesVal)->getZExtValue();
assert(isInt<32>(NumPatchBytes) && "should fit in 32 bits!");
return NumPatchBytes;
}
/// Return the value actually being called or invoked.
ValueTy *getCalledValue() const {
return getCall()->getArgOperand(CalledFunctionPos);
}
// FIXME: Migrate users of this to `getCall` and remove it.
InstructionTy *getInstruction() const { return getCall(); }
/// Return the function being called if this is a direct call, otherwise
/// return null (if it's an indirect call).
FunTy *getCalledFunction() const {
return dyn_cast<Function>(getCalledValue());
}
/// Return the caller function for this statepoint.
FunTy *getCaller() const { return getCall()->getCaller(); }
/// Determine if the statepoint cannot unwind.
bool doesNotThrow() const {
Function *F = getCalledFunction();
return getCall()->doesNotThrow() || (F ? F->doesNotThrow() : false);
}
/// Return the type of the value returned by the call underlying the
/// statepoint.
Type *getActualReturnType() const {
auto *FTy = cast<FunctionType>(
cast<PointerType>(getCalledValue()->getType())->getElementType());
return FTy->getReturnType();
}
/// Number of arguments to be passed to the actual callee.
int getNumCallArgs() const {
const Value *NumCallArgsVal = getCall()->getArgOperand(NumCallArgsPos);
return cast<ConstantInt>(NumCallArgsVal)->getZExtValue();
}
size_t arg_size() const { return getNumCallArgs(); }
arg_iterator arg_begin() const {
assert(CallArgsBeginPos <= (int)getCall()->arg_size());
return getCall()->arg_begin() + CallArgsBeginPos;
}
arg_iterator arg_end() const {
auto I = arg_begin() + arg_size();
assert((getCall()->arg_end() - I) >= 0);
return I;
}
ValueTy *getArgument(unsigned Index) {
assert(Index < arg_size() && "out of bounds!");
return *(arg_begin() + Index);
}
/// range adapter for call arguments
iterator_range<arg_iterator> call_args() const {
return make_range(arg_begin(), arg_end());
}
/// Return true if the call or the callee has the given attribute.
bool paramHasAttr(unsigned i, Attribute::AttrKind A) const {
Function *F = getCalledFunction();
return getCall()->paramHasAttr(i + CallArgsBeginPos, A) ||
(F ? F->getAttributes().hasAttribute(i, A) : false);
}
/// Number of GC transition args.
int getNumTotalGCTransitionArgs() const {
const Value *NumGCTransitionArgs = *arg_end();
return cast<ConstantInt>(NumGCTransitionArgs)->getZExtValue();
}
arg_iterator gc_transition_args_begin() const {
auto I = arg_end() + 1;
assert((getCall()->arg_end() - I) >= 0);
return I;
}
arg_iterator gc_transition_args_end() const {
auto I = gc_transition_args_begin() + getNumTotalGCTransitionArgs();
assert((getCall()->arg_end() - I) >= 0);
return I;
}
/// range adapter for GC transition arguments
iterator_range<arg_iterator> gc_transition_args() const {
return make_range(gc_transition_args_begin(), gc_transition_args_end());
}
/// Number of additional arguments excluding those intended
/// for garbage collection.
int getNumTotalVMSArgs() const {
const Value *NumVMSArgs = *gc_transition_args_end();
return cast<ConstantInt>(NumVMSArgs)->getZExtValue();
}
arg_iterator deopt_begin() const {
auto I = gc_transition_args_end() + 1;
assert((getCall()->arg_end() - I) >= 0);
return I;
}
arg_iterator deopt_end() const {
auto I = deopt_begin() + getNumTotalVMSArgs();
assert((getCall()->arg_end() - I) >= 0);
return I;
}
/// range adapter for vm state arguments
iterator_range<arg_iterator> deopt_operands() const {
return make_range(deopt_begin(), deopt_end());
}
arg_iterator gc_args_begin() const { return deopt_end(); }
arg_iterator gc_args_end() const { return getCall()->arg_end(); }
unsigned gcArgsStartIdx() const {
return gc_args_begin() - getCall()->op_begin();
}
/// range adapter for gc arguments
iterator_range<arg_iterator> gc_args() const {
return make_range(gc_args_begin(), gc_args_end());
}
/// Get list of all gc reloactes linked to this statepoint
/// May contain several relocations for the same base/derived pair.
/// For example this could happen due to relocations on unwinding
/// path of invoke.
std::vector<const GCRelocateInst *> getRelocates() const;
/// Get the experimental_gc_result call tied to this statepoint. Can be
/// nullptr if there isn't a gc_result tied to this statepoint. Guaranteed to
/// be a CallInst if non-null.
const GCResultInst *getGCResult() const {
for (auto *U : getInstruction()->users())
if (auto *GRI = dyn_cast<GCResultInst>(U))
return GRI;
return nullptr;
}
#ifndef NDEBUG
/// Asserts if this statepoint is malformed. Common cases for failure
/// include incorrect length prefixes for variable length sections or
/// illegal values for parameters.
void verify() {
assert(getNumCallArgs() >= 0 &&
"number of arguments to actually callee can't be negative");
// The internal asserts in the iterator accessors do the rest.
(void)arg_begin();
(void)arg_end();
(void)gc_transition_args_begin();
(void)gc_transition_args_end();
(void)deopt_begin();
(void)deopt_end();
(void)gc_args_begin();
(void)gc_args_end();
}
#endif
};
/// A specialization of it's base class for read only access
/// to a gc.statepoint.
class ImmutableStatepoint
: public StatepointBase<const Function, const Instruction, const Value,
const CallBase> {
using Base = StatepointBase<const Function, const Instruction, const Value,
const CallBase>;
public:
explicit ImmutableStatepoint(const Instruction *I) : Base(I) {}
explicit ImmutableStatepoint(const CallBase *Call) : Base(Call) {}
};
/// A specialization of it's base class for read-write access
/// to a gc.statepoint.
class Statepoint
: public StatepointBase<Function, Instruction, Value, CallBase> {
using Base = StatepointBase<Function, Instruction, Value, CallBase>;
public:
explicit Statepoint(Instruction *I) : Base(I) {}
explicit Statepoint(CallBase *Call) : Base(Call) {}
};
/// Common base class for representing values projected from a statepoint.
/// Currently, the only projections available are gc.result and gc.relocate.
class GCProjectionInst : public IntrinsicInst {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::experimental_gc_relocate ||
I->getIntrinsicID() == Intrinsic::experimental_gc_result;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
/// Return true if this relocate is tied to the invoke statepoint.
/// This includes relocates which are on the unwinding path.
bool isTiedToInvoke() const {
const Value *Token = getArgOperand(0);
return isa<LandingPadInst>(Token) || isa<InvokeInst>(Token);
}
/// The statepoint with which this gc.relocate is associated.
const CallBase *getStatepoint() const {
const Value *Token = getArgOperand(0);
// This takes care both of relocates for call statepoints and relocates
// on normal path of invoke statepoint.
if (!isa<LandingPadInst>(Token)) {
assert(isStatepoint(Token));
return cast<CallBase>(Token);
}
// This relocate is on exceptional path of an invoke statepoint
const BasicBlock *InvokeBB =
cast<Instruction>(Token)->getParent()->getUniquePredecessor();
assert(InvokeBB && "safepoints should have unique landingpads");
assert(InvokeBB->getTerminator() &&
"safepoint block should be well formed");
assert(isStatepoint(InvokeBB->getTerminator()));
return cast<CallBase>(InvokeBB->getTerminator());
}
};
/// Represents calls to the gc.relocate intrinsic.
class GCRelocateInst : public GCProjectionInst {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::experimental_gc_relocate;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
/// The index into the associate statepoint's argument list
/// which contains the base pointer of the pointer whose
/// relocation this gc.relocate describes.
unsigned getBasePtrIndex() const {
return cast<ConstantInt>(getArgOperand(1))->getZExtValue();
}
/// The index into the associate statepoint's argument list which
/// contains the pointer whose relocation this gc.relocate describes.
unsigned getDerivedPtrIndex() const {
return cast<ConstantInt>(getArgOperand(2))->getZExtValue();
}
Value *getBasePtr() const {
return *(getStatepoint()->arg_begin() + getBasePtrIndex());
}
Value *getDerivedPtr() const {
return *(getStatepoint()->arg_begin() + getDerivedPtrIndex());
}
};
/// Represents calls to the gc.result intrinsic.
class GCResultInst : public GCProjectionInst {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::experimental_gc_result;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
template <typename FunTy, typename InstructionTy, typename ValueTy,
typename CallBaseTy>
std::vector<const GCRelocateInst *>
StatepointBase<FunTy, InstructionTy, ValueTy, CallBaseTy>::getRelocates()
const {
std::vector<const GCRelocateInst *> Result;
// Search for relocated pointers. Note that working backwards from the
// gc_relocates ensures that we only get pairs which are actually relocated
// and used after the statepoint.
for (const User *U : StatepointCall->users())
if (auto *Relocate = dyn_cast<GCRelocateInst>(U))
Result.push_back(Relocate);
auto *StatepointInvoke = dyn_cast<InvokeInst>(StatepointCall);
if (!StatepointInvoke)
return Result;
// We need to scan thorough exceptional relocations if it is invoke statepoint
LandingPadInst *LandingPad = StatepointInvoke->getLandingPadInst();
// Search for gc relocates that are attached to this landingpad.
for (const User *LandingPadUser : LandingPad->users()) {
if (auto *Relocate = dyn_cast<GCRelocateInst>(LandingPadUser))
Result.push_back(Relocate);
}
return Result;
}
/// Call sites that get wrapped by a gc.statepoint (currently only in
/// RewriteStatepointsForGC and potentially in other passes in the future) can
/// have attributes that describe properties of gc.statepoint call they will be
/// eventually be wrapped in. This struct is used represent such directives.
struct StatepointDirectives {
Optional<uint32_t> NumPatchBytes;
Optional<uint64_t> StatepointID;
static const uint64_t DefaultStatepointID = 0xABCDEF00;
static const uint64_t DeoptBundleStatepointID = 0xABCDEF0F;
};
/// Parse out statepoint directives from the function attributes present in \p
/// AS.
StatepointDirectives parseStatepointDirectivesFromAttrs(AttributeList AS);
/// Return \c true if the \p Attr is an attribute that is a statepoint
/// directive.
bool isStatepointDirectiveAttr(Attribute Attr);
} // end namespace llvm
#endif // LLVM_IR_STATEPOINT_H