// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains some utility functions to help define Funcs for testing.
// As an example, the following func
//
// b1:
// v1 = InitMem <mem>
// Plain -> b2
// b2:
// Exit v1
// b3:
// v2 = Const <bool> [true]
// If v2 -> b3 b2
//
// can be defined as
//
// fun := Fun("entry",
// Bloc("entry",
// Valu("mem", OpInitMem, types.TypeMem, 0, nil),
// Goto("exit")),
// Bloc("exit",
// Exit("mem")),
// Bloc("deadblock",
// Valu("deadval", OpConstBool, c.config.Types.Bool, 0, true),
// If("deadval", "deadblock", "exit")))
//
// and the Blocks or Values used in the Func can be accessed
// like this:
// fun.blocks["entry"] or fun.values["deadval"]
package ssa
// TODO(matloob): Choose better names for Fun, Bloc, Goto, etc.
// TODO(matloob): Write a parser for the Func disassembly. Maybe
// the parser can be used instead of Fun.
import (
"cmd/compile/internal/types"
"cmd/internal/src"
"fmt"
"reflect"
"testing"
)
// Compare two Funcs for equivalence. Their CFGs must be isomorphic,
// and their values must correspond.
// Requires that values and predecessors are in the same order, even
// though Funcs could be equivalent when they are not.
// TODO(matloob): Allow values and predecessors to be in different
// orders if the CFG are otherwise equivalent.
func Equiv(f, g *Func) bool {
valcor := make(map[*Value]*Value)
var checkVal func(fv, gv *Value) bool
checkVal = func(fv, gv *Value) bool {
if fv == nil && gv == nil {
return true
}
if valcor[fv] == nil && valcor[gv] == nil {
valcor[fv] = gv
valcor[gv] = fv
// Ignore ids. Ops and Types are compared for equality.
// TODO(matloob): Make sure types are canonical and can
// be compared for equality.
if fv.Op != gv.Op || fv.Type != gv.Type || fv.AuxInt != gv.AuxInt {
return false
}
if !reflect.DeepEqual(fv.Aux, gv.Aux) {
// This makes the assumption that aux values can be compared
// using DeepEqual.
// TODO(matloob): Aux values may be *gc.Sym pointers in the near
// future. Make sure they are canonical.
return false
}
if len(fv.Args) != len(gv.Args) {
return false
}
for i := range fv.Args {
if !checkVal(fv.Args[i], gv.Args[i]) {
return false
}
}
}
return valcor[fv] == gv && valcor[gv] == fv
}
blkcor := make(map[*Block]*Block)
var checkBlk func(fb, gb *Block) bool
checkBlk = func(fb, gb *Block) bool {
if blkcor[fb] == nil && blkcor[gb] == nil {
blkcor[fb] = gb
blkcor[gb] = fb
// ignore ids
if fb.Kind != gb.Kind {
return false
}
if len(fb.Values) != len(gb.Values) {
return false
}
for i := range fb.Values {
if !checkVal(fb.Values[i], gb.Values[i]) {
return false
}
}
if len(fb.Succs) != len(gb.Succs) {
return false
}
for i := range fb.Succs {
if !checkBlk(fb.Succs[i].b, gb.Succs[i].b) {
return false
}
}
if len(fb.Preds) != len(gb.Preds) {
return false
}
for i := range fb.Preds {
if !checkBlk(fb.Preds[i].b, gb.Preds[i].b) {
return false
}
}
return true
}
return blkcor[fb] == gb && blkcor[gb] == fb
}
return checkBlk(f.Entry, g.Entry)
}
// fun is the return type of Fun. It contains the created func
// itself as well as indexes from block and value names into the
// corresponding Blocks and Values.
type fun struct {
f *Func
blocks map[string]*Block
values map[string]*Value
}
var emptyPass pass = pass{
name: "empty pass",
}
// Fun takes the name of an entry bloc and a series of Bloc calls, and
// returns a fun containing the composed Func. entry must be a name
// supplied to one of the Bloc functions. Each of the bloc names and
// valu names should be unique across the Fun.
func (c *Conf) Fun(entry string, blocs ...bloc) fun {
f := NewFunc(c.Frontend())
f.Config = c.config
// TODO: Either mark some SSA tests as t.Parallel,
// or set up a shared Cache and Reset it between tests.
// But not both.
f.Cache = new(Cache)
f.pass = &emptyPass
f.cachedLineStarts = newBiasedSparseMap(0, 100)
blocks := make(map[string]*Block)
values := make(map[string]*Value)
// Create all the blocks and values.
for _, bloc := range blocs {
b := f.NewBlock(bloc.control.kind)
blocks[bloc.name] = b
for _, valu := range bloc.valus {
// args are filled in the second pass.
values[valu.name] = b.NewValue0IA(src.NoXPos, valu.op, valu.t, valu.auxint, valu.aux)
}
}
// Connect the blocks together and specify control values.
f.Entry = blocks[entry]
for _, bloc := range blocs {
b := blocks[bloc.name]
c := bloc.control
// Specify control values.
if c.control != "" {
cval, ok := values[c.control]
if !ok {
f.Fatalf("control value for block %s missing", bloc.name)
}
b.SetControl(cval)
}
// Fill in args.
for _, valu := range bloc.valus {
v := values[valu.name]
for _, arg := range valu.args {
a, ok := values[arg]
if !ok {
b.Fatalf("arg %s missing for value %s in block %s",
arg, valu.name, bloc.name)
}
v.AddArg(a)
}
}
// Connect to successors.
for _, succ := range c.succs {
b.AddEdgeTo(blocks[succ])
}
}
return fun{f, blocks, values}
}
// Bloc defines a block for Fun. The bloc name should be unique
// across the containing Fun. entries should consist of calls to valu,
// as well as one call to Goto, If, or Exit to specify the block kind.
func Bloc(name string, entries ...interface{}) bloc {
b := bloc{}
b.name = name
seenCtrl := false
for _, e := range entries {
switch v := e.(type) {
case ctrl:
// there should be exactly one Ctrl entry.
if seenCtrl {
panic(fmt.Sprintf("already seen control for block %s", name))
}
b.control = v
seenCtrl = true
case valu:
b.valus = append(b.valus, v)
}
}
if !seenCtrl {
panic(fmt.Sprintf("block %s doesn't have control", b.name))
}
return b
}
// Valu defines a value in a block.
func Valu(name string, op Op, t *types.Type, auxint int64, aux interface{}, args ...string) valu {
return valu{name, op, t, auxint, aux, args}
}
// Goto specifies that this is a BlockPlain and names the single successor.
// TODO(matloob): choose a better name.
func Goto(succ string) ctrl {
return ctrl{BlockPlain, "", []string{succ}}
}
// If specifies a BlockIf.
func If(cond, sub, alt string) ctrl {
return ctrl{BlockIf, cond, []string{sub, alt}}
}
// Exit specifies a BlockExit.
func Exit(arg string) ctrl {
return ctrl{BlockExit, arg, []string{}}
}
// Eq specifies a BlockAMD64EQ.
func Eq(cond, sub, alt string) ctrl {
return ctrl{BlockAMD64EQ, cond, []string{sub, alt}}
}
// bloc, ctrl, and valu are internal structures used by Bloc, Valu, Goto,
// If, and Exit to help define blocks.
type bloc struct {
name string
control ctrl
valus []valu
}
type ctrl struct {
kind BlockKind
control string
succs []string
}
type valu struct {
name string
op Op
t *types.Type
auxint int64
aux interface{}
args []string
}
func TestArgs(t *testing.T) {
c := testConfig(t)
fun := c.Fun("entry",
Bloc("entry",
Valu("a", OpConst64, c.config.Types.Int64, 14, nil),
Valu("b", OpConst64, c.config.Types.Int64, 26, nil),
Valu("sum", OpAdd64, c.config.Types.Int64, 0, nil, "a", "b"),
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Goto("exit")),
Bloc("exit",
Exit("mem")))
sum := fun.values["sum"]
for i, name := range []string{"a", "b"} {
if sum.Args[i] != fun.values[name] {
t.Errorf("arg %d for sum is incorrect: want %s, got %s",
i, sum.Args[i], fun.values[name])
}
}
}
func TestEquiv(t *testing.T) {
cfg := testConfig(t)
equivalentCases := []struct{ f, g fun }{
// simple case
{
cfg.Fun("entry",
Bloc("entry",
Valu("a", OpConst64, cfg.config.Types.Int64, 14, nil),
Valu("b", OpConst64, cfg.config.Types.Int64, 26, nil),
Valu("sum", OpAdd64, cfg.config.Types.Int64, 0, nil, "a", "b"),
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Goto("exit")),
Bloc("exit",
Exit("mem"))),
cfg.Fun("entry",
Bloc("entry",
Valu("a", OpConst64, cfg.config.Types.Int64, 14, nil),
Valu("b", OpConst64, cfg.config.Types.Int64, 26, nil),
Valu("sum", OpAdd64, cfg.config.Types.Int64, 0, nil, "a", "b"),
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Goto("exit")),
Bloc("exit",
Exit("mem"))),
},
// block order changed
{
cfg.Fun("entry",
Bloc("entry",
Valu("a", OpConst64, cfg.config.Types.Int64, 14, nil),
Valu("b", OpConst64, cfg.config.Types.Int64, 26, nil),
Valu("sum", OpAdd64, cfg.config.Types.Int64, 0, nil, "a", "b"),
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Goto("exit")),
Bloc("exit",
Exit("mem"))),
cfg.Fun("entry",
Bloc("exit",
Exit("mem")),
Bloc("entry",
Valu("a", OpConst64, cfg.config.Types.Int64, 14, nil),
Valu("b", OpConst64, cfg.config.Types.Int64, 26, nil),
Valu("sum", OpAdd64, cfg.config.Types.Int64, 0, nil, "a", "b"),
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Goto("exit"))),
},
}
for _, c := range equivalentCases {
if !Equiv(c.f.f, c.g.f) {
t.Error("expected equivalence. Func definitions:")
t.Error(c.f.f)
t.Error(c.g.f)
}
}
differentCases := []struct{ f, g fun }{
// different shape
{
cfg.Fun("entry",
Bloc("entry",
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Goto("exit")),
Bloc("exit",
Exit("mem"))),
cfg.Fun("entry",
Bloc("entry",
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Exit("mem"))),
},
// value order changed
{
cfg.Fun("entry",
Bloc("entry",
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Valu("b", OpConst64, cfg.config.Types.Int64, 26, nil),
Valu("a", OpConst64, cfg.config.Types.Int64, 14, nil),
Exit("mem"))),
cfg.Fun("entry",
Bloc("entry",
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Valu("a", OpConst64, cfg.config.Types.Int64, 14, nil),
Valu("b", OpConst64, cfg.config.Types.Int64, 26, nil),
Exit("mem"))),
},
// value auxint different
{
cfg.Fun("entry",
Bloc("entry",
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Valu("a", OpConst64, cfg.config.Types.Int64, 14, nil),
Exit("mem"))),
cfg.Fun("entry",
Bloc("entry",
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Valu("a", OpConst64, cfg.config.Types.Int64, 26, nil),
Exit("mem"))),
},
// value aux different
{
cfg.Fun("entry",
Bloc("entry",
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Valu("a", OpConst64, cfg.config.Types.Int64, 0, 14),
Exit("mem"))),
cfg.Fun("entry",
Bloc("entry",
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Valu("a", OpConst64, cfg.config.Types.Int64, 0, 26),
Exit("mem"))),
},
// value args different
{
cfg.Fun("entry",
Bloc("entry",
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Valu("a", OpConst64, cfg.config.Types.Int64, 14, nil),
Valu("b", OpConst64, cfg.config.Types.Int64, 26, nil),
Valu("sum", OpAdd64, cfg.config.Types.Int64, 0, nil, "a", "b"),
Exit("mem"))),
cfg.Fun("entry",
Bloc("entry",
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Valu("a", OpConst64, cfg.config.Types.Int64, 0, nil),
Valu("b", OpConst64, cfg.config.Types.Int64, 14, nil),
Valu("sum", OpAdd64, cfg.config.Types.Int64, 0, nil, "b", "a"),
Exit("mem"))),
},
}
for _, c := range differentCases {
if Equiv(c.f.f, c.g.f) {
t.Error("expected difference. Func definitions:")
t.Error(c.f.f)
t.Error(c.g.f)
}
}
}
// TestConstCache ensures that the cache will not return
// reused free'd values with a non-matching AuxInt
func TestConstCache(t *testing.T) {
c := testConfig(t)
f := c.Fun("entry",
Bloc("entry",
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Exit("mem")))
v1 := f.f.ConstBool(c.config.Types.Bool, false)
v2 := f.f.ConstBool(c.config.Types.Bool, true)
f.f.freeValue(v1)
f.f.freeValue(v2)
v3 := f.f.ConstBool(c.config.Types.Bool, false)
v4 := f.f.ConstBool(c.config.Types.Bool, true)
if v3.AuxInt != 0 {
t.Errorf("expected %s to have auxint of 0\n", v3.LongString())
}
if v4.AuxInt != 1 {
t.Errorf("expected %s to have auxint of 1\n", v4.LongString())
}
}
// opcodeMap returns a map from opcode to the number of times that opcode
// appears in the function.
func opcodeMap(f *Func) map[Op]int {
m := map[Op]int{}
for _, b := range f.Blocks {
for _, v := range b.Values {
m[v.Op]++
}
}
return m
}
// opcodeCounts checks that the number of opcodes listed in m agree with the
// number of opcodes that appear in the function.
func checkOpcodeCounts(t *testing.T, f *Func, m map[Op]int) {
n := opcodeMap(f)
for op, cnt := range m {
if n[op] != cnt {
t.Errorf("%s appears %d times, want %d times", op, n[op], cnt)
}
}
}