// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// GOMAXPROCS=10 go test
package sync_test
import (
"fmt"
"internal/testenv"
"os"
"os/exec"
"runtime"
"strings"
. "sync"
"testing"
"time"
)
func HammerSemaphore(s *uint32, loops int, cdone chan bool) {
for i := 0; i < loops; i++ {
Runtime_Semacquire(s)
Runtime_Semrelease(s, false)
}
cdone <- true
}
func TestSemaphore(t *testing.T) {
s := new(uint32)
*s = 1
c := make(chan bool)
for i := 0; i < 10; i++ {
go HammerSemaphore(s, 1000, c)
}
for i := 0; i < 10; i++ {
<-c
}
}
func BenchmarkUncontendedSemaphore(b *testing.B) {
s := new(uint32)
*s = 1
HammerSemaphore(s, b.N, make(chan bool, 2))
}
func BenchmarkContendedSemaphore(b *testing.B) {
b.StopTimer()
s := new(uint32)
*s = 1
c := make(chan bool)
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(2))
b.StartTimer()
go HammerSemaphore(s, b.N/2, c)
go HammerSemaphore(s, b.N/2, c)
<-c
<-c
}
func HammerMutex(m *Mutex, loops int, cdone chan bool) {
for i := 0; i < loops; i++ {
m.Lock()
m.Unlock()
}
cdone <- true
}
func TestMutex(t *testing.T) {
if n := runtime.SetMutexProfileFraction(1); n != 0 {
t.Logf("got mutexrate %d expected 0", n)
}
defer runtime.SetMutexProfileFraction(0)
m := new(Mutex)
c := make(chan bool)
for i := 0; i < 10; i++ {
go HammerMutex(m, 1000, c)
}
for i := 0; i < 10; i++ {
<-c
}
}
var misuseTests = []struct {
name string
f func()
}{
{
"Mutex.Unlock",
func() {
var mu Mutex
mu.Unlock()
},
},
{
"Mutex.Unlock2",
func() {
var mu Mutex
mu.Lock()
mu.Unlock()
mu.Unlock()
},
},
{
"RWMutex.Unlock",
func() {
var mu RWMutex
mu.Unlock()
},
},
{
"RWMutex.Unlock2",
func() {
var mu RWMutex
mu.RLock()
mu.Unlock()
},
},
{
"RWMutex.Unlock3",
func() {
var mu RWMutex
mu.Lock()
mu.Unlock()
mu.Unlock()
},
},
{
"RWMutex.RUnlock",
func() {
var mu RWMutex
mu.RUnlock()
},
},
{
"RWMutex.RUnlock2",
func() {
var mu RWMutex
mu.Lock()
mu.RUnlock()
},
},
{
"RWMutex.RUnlock3",
func() {
var mu RWMutex
mu.RLock()
mu.RUnlock()
mu.RUnlock()
},
},
}
func init() {
if len(os.Args) == 3 && os.Args[1] == "TESTMISUSE" {
for _, test := range misuseTests {
if test.name == os.Args[2] {
func() {
defer func() { recover() }()
test.f()
}()
fmt.Printf("test completed\n")
os.Exit(0)
}
}
fmt.Printf("unknown test\n")
os.Exit(0)
}
}
func TestMutexMisuse(t *testing.T) {
testenv.MustHaveExec(t)
for _, test := range misuseTests {
out, err := exec.Command(os.Args[0], "TESTMISUSE", test.name).CombinedOutput()
if err == nil || !strings.Contains(string(out), "unlocked") {
t.Errorf("%s: did not find failure with message about unlocked lock: %s\n%s\n", test.name, err, out)
}
}
}
func TestMutexFairness(t *testing.T) {
var mu Mutex
stop := make(chan bool)
defer close(stop)
go func() {
for {
mu.Lock()
time.Sleep(100 * time.Microsecond)
mu.Unlock()
select {
case <-stop:
return
default:
}
}
}()
done := make(chan bool)
go func() {
for i := 0; i < 10; i++ {
time.Sleep(100 * time.Microsecond)
mu.Lock()
mu.Unlock()
}
done <- true
}()
select {
case <-done:
case <-time.After(10 * time.Second):
t.Fatalf("can't acquire Mutex in 10 seconds")
}
}
func BenchmarkMutexUncontended(b *testing.B) {
type PaddedMutex struct {
Mutex
pad [128]uint8
}
b.RunParallel(func(pb *testing.PB) {
var mu PaddedMutex
for pb.Next() {
mu.Lock()
mu.Unlock()
}
})
}
func benchmarkMutex(b *testing.B, slack, work bool) {
var mu Mutex
if slack {
b.SetParallelism(10)
}
b.RunParallel(func(pb *testing.PB) {
foo := 0
for pb.Next() {
mu.Lock()
mu.Unlock()
if work {
for i := 0; i < 100; i++ {
foo *= 2
foo /= 2
}
}
}
_ = foo
})
}
func BenchmarkMutex(b *testing.B) {
benchmarkMutex(b, false, false)
}
func BenchmarkMutexSlack(b *testing.B) {
benchmarkMutex(b, true, false)
}
func BenchmarkMutexWork(b *testing.B) {
benchmarkMutex(b, false, true)
}
func BenchmarkMutexWorkSlack(b *testing.B) {
benchmarkMutex(b, true, true)
}
func BenchmarkMutexNoSpin(b *testing.B) {
// This benchmark models a situation where spinning in the mutex should be
// non-profitable and allows to confirm that spinning does not do harm.
// To achieve this we create excess of goroutines most of which do local work.
// These goroutines yield during local work, so that switching from
// a blocked goroutine to other goroutines is profitable.
// As a matter of fact, this benchmark still triggers some spinning in the mutex.
var m Mutex
var acc0, acc1 uint64
b.SetParallelism(4)
b.RunParallel(func(pb *testing.PB) {
c := make(chan bool)
var data [4 << 10]uint64
for i := 0; pb.Next(); i++ {
if i%4 == 0 {
m.Lock()
acc0 -= 100
acc1 += 100
m.Unlock()
} else {
for i := 0; i < len(data); i += 4 {
data[i]++
}
// Elaborate way to say runtime.Gosched
// that does not put the goroutine onto global runq.
go func() {
c <- true
}()
<-c
}
}
})
}
func BenchmarkMutexSpin(b *testing.B) {
// This benchmark models a situation where spinning in the mutex should be
// profitable. To achieve this we create a goroutine per-proc.
// These goroutines access considerable amount of local data so that
// unnecessary rescheduling is penalized by cache misses.
var m Mutex
var acc0, acc1 uint64
b.RunParallel(func(pb *testing.PB) {
var data [16 << 10]uint64
for i := 0; pb.Next(); i++ {
m.Lock()
acc0 -= 100
acc1 += 100
m.Unlock()
for i := 0; i < len(data); i += 4 {
data[i]++
}
}
})
}