/*
**
** Copyright 2017, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <keymaster/key_blob_utils/software_keyblobs.h>
#include <stdint.h>
#include <hardware/keymaster_defs.h>
#include <keymaster/android_keymaster_utils.h>
#include <keymaster/authorization_set.h>
#include <keymaster/key.h>
#include <keymaster/key_blob_utils/auth_encrypted_key_blob.h>
#include <keymaster/key_blob_utils/integrity_assured_key_blob.h>
#include <keymaster/key_blob_utils/ocb_utils.h>
#include <keymaster/km_openssl/openssl_utils.h>
#include <keymaster/km_openssl/openssl_err.h>
#include <keymaster/logger.h>
#include <keymaster/UniquePtr.h>
#include <openssl/aes.h>
namespace keymaster {
static uint8_t SWROT[2] = {'S', 'W'};
KeymasterBlob softwareRootOfTrust(SWROT);
namespace {
bool UpgradeIntegerTag(keymaster_tag_t tag, uint32_t value, AuthorizationSet* set,
bool* set_changed) {
int index = set->find(tag);
if (index == -1) {
keymaster_key_param_t param;
param.tag = tag;
param.integer = value;
set->push_back(param);
*set_changed = true;
return true;
}
if (set->params[index].integer > value)
return false;
if (set->params[index].integer != value) {
set->params[index].integer = value;
*set_changed = true;
}
return true;
}
keymaster_error_t TranslateAuthorizationSetError(AuthorizationSet::Error err) {
switch (err) {
case AuthorizationSet::OK:
return KM_ERROR_OK;
case AuthorizationSet::ALLOCATION_FAILURE:
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
case AuthorizationSet::MALFORMED_DATA:
return KM_ERROR_UNKNOWN_ERROR;
}
return KM_ERROR_OK;
}
} // anonymous namespace
keymaster_error_t BuildHiddenAuthorizations(const AuthorizationSet& input_set,
AuthorizationSet* hidden,
const KeymasterBlob& root_of_trust) {
keymaster_blob_t entry;
if (input_set.GetTagValue(TAG_APPLICATION_ID, &entry))
hidden->push_back(TAG_APPLICATION_ID, entry.data, entry.data_length);
if (input_set.GetTagValue(TAG_APPLICATION_DATA, &entry))
hidden->push_back(TAG_APPLICATION_DATA, entry.data, entry.data_length);
hidden->push_back(TAG_ROOT_OF_TRUST, root_of_trust);
return TranslateAuthorizationSetError(hidden->is_valid());
}
keymaster_error_t FakeKeyAuthorizations(EVP_PKEY* pubkey,
AuthorizationSet* hw_enforced,
AuthorizationSet* sw_enforced) {
hw_enforced->Clear();
sw_enforced->Clear();
switch (EVP_PKEY_type(pubkey->type)) {
case EVP_PKEY_RSA: {
hw_enforced->push_back(TAG_ALGORITHM, KM_ALGORITHM_RSA);
hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_NONE);
hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_MD5);
hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA1);
hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_224);
hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256);
hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_384);
hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_512);
hw_enforced->push_back(TAG_PADDING, KM_PAD_NONE);
hw_enforced->push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_SIGN);
hw_enforced->push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_ENCRYPT);
hw_enforced->push_back(TAG_PADDING, KM_PAD_RSA_PSS);
hw_enforced->push_back(TAG_PADDING, KM_PAD_RSA_OAEP);
sw_enforced->push_back(TAG_PURPOSE, KM_PURPOSE_SIGN);
sw_enforced->push_back(TAG_PURPOSE, KM_PURPOSE_VERIFY);
sw_enforced->push_back(TAG_PURPOSE, KM_PURPOSE_ENCRYPT);
sw_enforced->push_back(TAG_PURPOSE, KM_PURPOSE_DECRYPT);
RSA_Ptr rsa(EVP_PKEY_get1_RSA(pubkey));
if (!rsa)
return TranslateLastOpenSslError();
hw_enforced->push_back(TAG_KEY_SIZE, RSA_size(rsa.get()) * 8);
uint64_t public_exponent = BN_get_word(rsa->e);
if (public_exponent == 0xffffffffL)
return KM_ERROR_INVALID_KEY_BLOB;
hw_enforced->push_back(TAG_RSA_PUBLIC_EXPONENT, public_exponent);
break;
}
case EVP_PKEY_EC: {
hw_enforced->push_back(TAG_ALGORITHM, KM_ALGORITHM_RSA);
hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_NONE);
hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_MD5);
hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA1);
hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_224);
hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256);
hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_384);
hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_512);
sw_enforced->push_back(TAG_PURPOSE, KM_PURPOSE_SIGN);
sw_enforced->push_back(TAG_PURPOSE, KM_PURPOSE_VERIFY);
UniquePtr<EC_KEY, EC_KEY_Delete> ec_key(EVP_PKEY_get1_EC_KEY(pubkey));
if (!ec_key.get())
return TranslateLastOpenSslError();
size_t key_size_bits;
keymaster_error_t error =
ec_get_group_size(EC_KEY_get0_group(ec_key.get()), &key_size_bits);
if (error != KM_ERROR_OK)
return error;
hw_enforced->push_back(TAG_KEY_SIZE, key_size_bits);
break;
}
default:
return KM_ERROR_UNSUPPORTED_ALGORITHM;
}
sw_enforced->push_back(TAG_ALL_USERS);
sw_enforced->push_back(TAG_NO_AUTH_REQUIRED);
return KM_ERROR_OK;
}
// Note: This parsing code in below is from system/security/softkeymaster/keymaster_openssl.cpp's
// unwrap_key function, modified for the preferred function signature and formatting. It does some
// odd things, but they have been left unchanged to avoid breaking compatibility.
static const uint8_t SOFT_KEY_MAGIC[] = {'P', 'K', '#', '8'};
keymaster_error_t ParseOldSoftkeymasterBlob(
const KeymasterKeyBlob& blob, KeymasterKeyBlob* key_material, AuthorizationSet* hw_enforced,
AuthorizationSet* sw_enforced) {
long publicLen = 0;
long privateLen = 0;
const uint8_t* p = blob.key_material;
const uint8_t* end = blob.key_material + blob.key_material_size;
int type = 0;
ptrdiff_t min_size =
sizeof(SOFT_KEY_MAGIC) + sizeof(type) + sizeof(publicLen) + 1 + sizeof(privateLen) + 1;
if (end - p < min_size) {
LOG_W("key blob appears to be truncated (if an old SW key)", 0);
return KM_ERROR_INVALID_KEY_BLOB;
}
if (memcmp(p, SOFT_KEY_MAGIC, sizeof(SOFT_KEY_MAGIC)) != 0)
return KM_ERROR_INVALID_KEY_BLOB;
p += sizeof(SOFT_KEY_MAGIC);
for (size_t i = 0; i < sizeof(type); i++)
type = (type << 8) | *p++;
for (size_t i = 0; i < sizeof(type); i++)
publicLen = (publicLen << 8) | *p++;
if (p + publicLen > end) {
LOG_W("public key length encoding error: size=%ld, end=%td", publicLen, end - p);
return KM_ERROR_INVALID_KEY_BLOB;
}
p += publicLen;
if (end - p < 2) {
LOG_W("key blob appears to be truncated (if an old SW key)", 0);
return KM_ERROR_INVALID_KEY_BLOB;
}
for (size_t i = 0; i < sizeof(type); i++)
privateLen = (privateLen << 8) | *p++;
if (p + privateLen > end) {
LOG_W("private key length encoding error: size=%ld, end=%td", privateLen, end - p);
return KM_ERROR_INVALID_KEY_BLOB;
}
// Just to be sure, make sure that the ASN.1 structure parses correctly. We don't actually use
// the EVP_PKEY here.
const uint8_t* key_start = p;
EVP_PKEY_Ptr pkey(d2i_PrivateKey(type, nullptr, &p, privateLen));
if (pkey.get() == nullptr) {
LOG_W("Failed to parse PKCS#8 key material (if old SW key)", 0);
return KM_ERROR_INVALID_KEY_BLOB;
}
// All auths go into sw_enforced, including those that would be HW-enforced if we were faking
// auths for a HW-backed key.
hw_enforced->Clear();
keymaster_error_t error = FakeKeyAuthorizations(pkey.get(), sw_enforced, sw_enforced);
if (error != KM_ERROR_OK)
return error;
if (!key_material->Reset(privateLen))
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
memcpy(key_material->writable_data(), key_start, privateLen);
return KM_ERROR_OK;
}
static uint8_t master_key_bytes[AES_BLOCK_SIZE] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
const KeymasterKeyBlob MASTER_KEY(master_key_bytes, array_length(master_key_bytes));
keymaster_error_t ParseOcbAuthEncryptedBlob(const KeymasterKeyBlob& blob,
const AuthorizationSet& hidden,
KeymasterKeyBlob* key_material,
AuthorizationSet* hw_enforced,
AuthorizationSet* sw_enforced) {
Buffer nonce, tag;
KeymasterKeyBlob encrypted_key_material;
keymaster_error_t error = DeserializeAuthEncryptedBlob(blob, &encrypted_key_material,
hw_enforced, sw_enforced, &nonce, &tag);
if (error != KM_ERROR_OK)
return error;
if (nonce.available_read() != OCB_NONCE_LENGTH || tag.available_read() != OCB_TAG_LENGTH)
return KM_ERROR_INVALID_KEY_BLOB;
return OcbDecryptKey(*hw_enforced, *sw_enforced, hidden, MASTER_KEY, encrypted_key_material,
nonce, tag, key_material);
}
keymaster_error_t SetKeyBlobAuthorizations(const AuthorizationSet& key_description,
keymaster_key_origin_t origin, uint32_t os_version,
uint32_t os_patchlevel, AuthorizationSet* hw_enforced,
AuthorizationSet* sw_enforced) {
sw_enforced->Clear();
for (auto& entry : key_description) {
switch (entry.tag) {
// These cannot be specified by the client.
case KM_TAG_ROOT_OF_TRUST:
case KM_TAG_ORIGIN:
LOG_E("Root of trust and origin tags may not be specified", 0);
return KM_ERROR_INVALID_TAG;
// These don't work.
case KM_TAG_ROLLBACK_RESISTANT:
LOG_E("KM_TAG_ROLLBACK_RESISTANT not supported", 0);
return KM_ERROR_UNSUPPORTED_TAG;
// These are hidden.
case KM_TAG_APPLICATION_ID:
case KM_TAG_APPLICATION_DATA:
break;
// Everything else we just copy into sw_enforced, unless the KeyFactory has placed it in
// hw_enforced, in which case we defer to its decision.
default:
if (hw_enforced->GetTagCount(entry.tag) == 0)
sw_enforced->push_back(entry);
break;
}
}
sw_enforced->push_back(TAG_CREATION_DATETIME, java_time(time(nullptr)));
sw_enforced->push_back(TAG_ORIGIN, origin);
sw_enforced->push_back(TAG_OS_VERSION, os_version);
sw_enforced->push_back(TAG_OS_PATCHLEVEL, os_patchlevel);
return TranslateAuthorizationSetError(sw_enforced->is_valid());
}
keymaster_error_t UpgradeSoftKeyBlob(const UniquePtr<Key>& key,
const uint32_t os_version, const uint32_t os_patchlevel,
const AuthorizationSet& upgrade_params,
KeymasterKeyBlob* upgraded_key) {
bool set_changed = false;
if (os_version == 0) {
// We need to allow "upgrading" OS version to zero, to support upgrading from proper
// numbered releases to unnumbered development and preview releases.
int key_os_version_pos = key->sw_enforced().find(TAG_OS_VERSION);
if (key_os_version_pos != -1) {
uint32_t key_os_version = key->sw_enforced()[key_os_version_pos].integer;
if (key_os_version != 0) {
key->sw_enforced()[key_os_version_pos].integer = os_version;
set_changed = true;
}
}
}
if (!UpgradeIntegerTag(TAG_OS_VERSION, os_version, &key->sw_enforced(), &set_changed) ||
!UpgradeIntegerTag(TAG_OS_PATCHLEVEL, os_patchlevel, &key->sw_enforced(), &set_changed))
// One of the version fields would have been a downgrade. Not allowed.
return KM_ERROR_INVALID_ARGUMENT;
if (!set_changed)
// Dont' need an upgrade.
return KM_ERROR_OK;
AuthorizationSet hidden;
auto error = BuildHiddenAuthorizations(upgrade_params, &hidden, softwareRootOfTrust);
if (error != KM_ERROR_OK)
return error;
return SerializeIntegrityAssuredBlob(key->key_material(), hidden, key->hw_enforced(),
key->sw_enforced(), upgraded_key);
}
} // namespace keymaster