/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <unistd.h>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <unordered_map>
#include <android-base/file.h>
#include <android-base/parseint.h>
#include <android-base/strings.h>
#include <vintf/AssembleVintf.h>
#include <vintf/KernelConfigParser.h>
#include <vintf/parse_string.h>
#include <vintf/parse_xml.h>
#include "utils.h"
#define BUFFER_SIZE sysconf(_SC_PAGESIZE)
namespace android {
namespace vintf {
static const std::string gConfigPrefix = "android-base-";
static const std::string gConfigSuffix = ".config";
static const std::string gBaseConfig = "android-base.config";
// An input stream with a name.
// The input stream may be an actual file, or a stringstream for testing.
// It takes ownership on the istream.
class NamedIstream {
public:
NamedIstream(const std::string& name, std::unique_ptr<std::istream>&& stream)
: mName(name), mStream(std::move(stream)) {}
const std::string& name() const { return mName; }
std::istream& stream() { return *mStream; }
private:
std::string mName;
std::unique_ptr<std::istream> mStream;
};
/**
* Slurps the device manifest file and add build time flag to it.
*/
class AssembleVintfImpl : public AssembleVintf {
using Condition = std::unique_ptr<KernelConfig>;
using ConditionedConfig = std::pair<Condition, std::vector<KernelConfig> /* configs */>;
public:
void setFakeEnv(const std::string& key, const std::string& value) { mFakeEnv[key] = value; }
std::string getEnv(const std::string& key) const {
auto it = mFakeEnv.find(key);
if (it != mFakeEnv.end()) {
return it->second;
}
const char* envValue = getenv(key.c_str());
return envValue != nullptr ? std::string(envValue) : std::string();
}
// Get environment variable and split with space.
std::vector<std::string> getEnvList(const std::string& key) const {
std::vector<std::string> ret;
for (auto&& v : base::Split(getEnv(key), " ")) {
v = base::Trim(v);
if (!v.empty()) {
ret.push_back(v);
}
}
return ret;
}
template <typename T>
bool getFlag(const std::string& key, T* value, bool log = true) const {
std::string envValue = getEnv(key);
if (envValue.empty()) {
if (log) {
std::cerr << "Warning: " << key << " is missing, defaulted to " << (*value) << "."
<< std::endl;
}
return true;
}
if (!parse(envValue, value)) {
std::cerr << "Cannot parse " << envValue << "." << std::endl;
return false;
}
return true;
}
/**
* Set *out to environment variable only if *out is a dummy value (i.e. default constructed).
* Return true if *out is set to environment variable, otherwise false.
*/
template <typename T>
bool getFlagIfUnset(const std::string& envKey, T* out, bool log = true) const {
bool hasExistingValue = !(*out == T{});
bool hasEnvValue = false;
T envValue;
std::string envStrValue = getEnv(envKey);
if (!envStrValue.empty()) {
if (!parse(envStrValue, &envValue)) {
if (log) {
std::cerr << "Cannot parse " << envValue << "." << std::endl;
}
return false;
}
hasEnvValue = true;
}
if (hasExistingValue) {
if (hasEnvValue && log) {
std::cerr << "Warning: cannot override existing value " << *out << " with "
<< envKey << " (which is " << envValue << ")." << std::endl;
}
return false;
}
if (!hasEnvValue) {
if (log) {
std::cerr << "Warning: " << envKey << " is not specified. Default to " << T{} << "."
<< std::endl;
}
return false;
}
*out = envValue;
return true;
}
bool getBooleanFlag(const std::string& key) const { return getEnv(key) == std::string("true"); }
size_t getIntegerFlag(const std::string& key, size_t defaultValue = 0) const {
std::string envValue = getEnv(key);
if (envValue.empty()) {
return defaultValue;
}
size_t value;
if (!base::ParseUint(envValue, &value)) {
std::cerr << "Error: " << key << " must be a number." << std::endl;
return defaultValue;
}
return value;
}
static std::string read(std::basic_istream<char>& is) {
std::stringstream ss;
ss << is.rdbuf();
return ss.str();
}
static bool isCommonConfig(const std::string& path) {
return ::android::base::Basename(path) == gBaseConfig;
}
// nullptr on any error, otherwise the condition.
static Condition generateCondition(const std::string& path) {
std::string fname = ::android::base::Basename(path);
if (fname.size() <= gConfigPrefix.size() + gConfigSuffix.size() ||
!std::equal(gConfigPrefix.begin(), gConfigPrefix.end(), fname.begin()) ||
!std::equal(gConfigSuffix.rbegin(), gConfigSuffix.rend(), fname.rbegin())) {
return nullptr;
}
std::string sub = fname.substr(gConfigPrefix.size(),
fname.size() - gConfigPrefix.size() - gConfigSuffix.size());
if (sub.empty()) {
return nullptr; // should not happen
}
for (size_t i = 0; i < sub.size(); ++i) {
if (sub[i] == '-') {
sub[i] = '_';
continue;
}
if (isalnum(sub[i])) {
sub[i] = toupper(sub[i]);
continue;
}
std::cerr << "'" << fname << "' (in " << path
<< ") is not a valid kernel config file name. Must match regex: "
<< "android-base(-[0-9a-zA-Z-]+)?\\" << gConfigSuffix
<< std::endl;
return nullptr;
}
sub.insert(0, "CONFIG_");
return std::make_unique<KernelConfig>(std::move(sub), Tristate::YES);
}
static bool parseFileForKernelConfigs(std::basic_istream<char>& stream,
std::vector<KernelConfig>* out) {
KernelConfigParser parser(true /* processComments */, true /* relaxedFormat */);
status_t err = parser.processAndFinish(read(stream));
if (err != OK) {
std::cerr << parser.error();
return false;
}
for (auto& configPair : parser.configs()) {
out->push_back({});
KernelConfig& config = out->back();
config.first = std::move(configPair.first);
if (!parseKernelConfigTypedValue(configPair.second, &config.second)) {
std::cerr << "Unknown value type for key = '" << config.first << "', value = '"
<< configPair.second << "'\n";
return false;
}
}
return true;
}
static bool parseFilesForKernelConfigs(std::vector<NamedIstream>* streams,
std::vector<ConditionedConfig>* out) {
out->clear();
ConditionedConfig commonConfig;
bool foundCommonConfig = false;
bool ret = true;
for (auto& namedStream : *streams) {
if (isCommonConfig(namedStream.name())) {
ret &= parseFileForKernelConfigs(namedStream.stream(), &commonConfig.second);
foundCommonConfig = true;
} else {
Condition condition = generateCondition(namedStream.name());
ret &= (condition != nullptr);
std::vector<KernelConfig> kernelConfigs;
if ((ret &= parseFileForKernelConfigs(namedStream.stream(), &kernelConfigs)))
out->emplace_back(std::move(condition), std::move(kernelConfigs));
}
}
if (!foundCommonConfig) {
std::cerr << "No " << gBaseConfig << " is found in these paths:" << std::endl;
for (auto& namedStream : *streams) {
std::cerr << " " << namedStream.name() << std::endl;
}
}
ret &= foundCommonConfig;
// first element is always common configs (no conditions).
out->insert(out->begin(), std::move(commonConfig));
return ret;
}
std::basic_ostream<char>& out() const { return mOutRef == nullptr ? std::cout : *mOutRef; }
// If -c is provided, check it.
bool checkDualFile(const HalManifest& manifest, const CompatibilityMatrix& matrix) {
if (getBooleanFlag("PRODUCT_ENFORCE_VINTF_MANIFEST")) {
std::string error;
if (!manifest.checkCompatibility(matrix, &error)) {
std::cerr << "Not compatible: " << error << std::endl;
return false;
}
}
// Check HALs in device manifest that are not in framework matrix.
if (getBooleanFlag("VINTF_ENFORCE_NO_UNUSED_HALS")) {
auto unused = manifest.checkUnusedHals(matrix);
if (!unused.empty()) {
std::cerr << "Error: The following instances are in the device manifest but "
<< "not specified in framework compatibility matrix: " << std::endl
<< " " << android::base::Join(unused, "\n ") << std::endl
<< "Suggested fix:" << std::endl
<< "1. Check for any typos in device manifest or framework compatibility "
<< "matrices with FCM version >= " << matrix.level() << "." << std::endl
<< "2. Add them to any framework compatibility matrix with FCM "
<< "version >= " << matrix.level() << " where applicable." << std::endl
<< "3. Add them to DEVICE_FRAMEWORK_COMPATIBILITY_MATRIX_FILE "
<< "or DEVICE_PRODUCT_COMPATIBILITY_MATRIX_FILE." << std::endl;
return false;
}
}
return true;
}
template <typename S>
using Schemas = std::vector<Named<S>>;
using HalManifests = Schemas<HalManifest>;
using CompatibilityMatrices = Schemas<CompatibilityMatrix>;
template <typename M>
void outputInputs(const Schemas<M>& inputs) {
out() << "<!--" << std::endl;
out() << " Input:" << std::endl;
for (const auto& e : inputs) {
if (!e.name.empty()) {
out() << " " << base::Basename(e.name) << std::endl;
}
}
out() << "-->" << std::endl;
}
// Parse --kernel arguments and write to output manifest.
bool setDeviceManifestKernel(HalManifest* manifest) {
if (mKernels.empty()) {
return true;
}
if (mKernels.size() > 1) {
std::cerr << "Warning: multiple --kernel is specified when building device manifest. "
<< "Only the first one will be used." << std::endl;
}
auto& kernelArg = *mKernels.begin();
const auto& kernelVer = kernelArg.first;
auto& kernelConfigFiles = kernelArg.second;
// addKernel() guarantees that !kernelConfigFiles.empty().
if (kernelConfigFiles.size() > 1) {
std::cerr << "Warning: multiple config files are specified in --kernel when building "
<< "device manfiest. Only the first one will be used." << std::endl;
}
KernelConfigParser parser(true /* processComments */, false /* relaxedFormat */);
status_t err = parser.processAndFinish(read(kernelConfigFiles[0].stream()));
if (err != OK) {
std::cerr << parser.error();
return false;
}
manifest->device.mKernel = std::make_optional<KernelInfo>();
manifest->device.mKernel->mVersion = kernelVer;
manifest->device.mKernel->mConfigs = parser.configs();
return true;
}
bool assembleHalManifest(HalManifests* halManifests) {
std::string error;
HalManifest* halManifest = &halManifests->front().object;
for (auto it = halManifests->begin() + 1; it != halManifests->end(); ++it) {
const std::string& path = it->name;
HalManifest& manifestToAdd = it->object;
if (manifestToAdd.level() != Level::UNSPECIFIED) {
if (halManifest->level() == Level::UNSPECIFIED) {
halManifest->mLevel = manifestToAdd.level();
} else if (halManifest->level() != manifestToAdd.level()) {
std::cerr << "Inconsistent FCM Version in HAL manifests:" << std::endl
<< " File '" << halManifests->front().name << "' has level "
<< halManifest->level() << std::endl
<< " File '" << path << "' has level " << manifestToAdd.level()
<< std::endl;
return false;
}
}
if (!halManifest->addAll(&manifestToAdd, &error)) {
std::cerr << "File \"" << path << "\" cannot be added: " << error << std::endl;
return false;
}
}
if (halManifest->mType == SchemaType::DEVICE) {
(void)getFlagIfUnset("BOARD_SEPOLICY_VERS", &halManifest->device.mSepolicyVersion);
if (!setDeviceFcmVersion(halManifest)) {
return false;
}
if (!setDeviceManifestKernel(halManifest)) {
return false;
}
}
if (halManifest->mType == SchemaType::FRAMEWORK) {
for (auto&& v : getEnvList("PROVIDED_VNDK_VERSIONS")) {
halManifest->framework.mVendorNdks.emplace_back(std::move(v));
}
for (auto&& v : getEnvList("PLATFORM_SYSTEMSDK_VERSIONS")) {
halManifest->framework.mSystemSdk.mVersions.emplace(std::move(v));
}
}
outputInputs(*halManifests);
if (mOutputMatrix) {
CompatibilityMatrix generatedMatrix = halManifest->generateCompatibleMatrix();
if (!halManifest->checkCompatibility(generatedMatrix, &error)) {
std::cerr << "FATAL ERROR: cannot generate a compatible matrix: " << error
<< std::endl;
}
out() << "<!-- \n"
" Autogenerated skeleton compatibility matrix. \n"
" Use with caution. Modify it to suit your needs.\n"
" All HALs are set to optional.\n"
" Many entries other than HALs are zero-filled and\n"
" require human attention. \n"
"-->\n"
<< gCompatibilityMatrixConverter(generatedMatrix, mSerializeFlags);
} else {
out() << gHalManifestConverter(*halManifest, mSerializeFlags);
}
out().flush();
if (mCheckFile != nullptr) {
CompatibilityMatrix checkMatrix;
if (!gCompatibilityMatrixConverter(&checkMatrix, read(*mCheckFile), &error)) {
std::cerr << "Cannot parse check file as a compatibility matrix: " << error
<< std::endl;
return false;
}
if (!checkDualFile(*halManifest, checkMatrix)) {
return false;
}
}
return true;
}
// Parse --kernel arguments and write to output matrix.
bool assembleFrameworkCompatibilityMatrixKernels(CompatibilityMatrix* matrix) {
for (auto& pair : mKernels) {
std::vector<ConditionedConfig> conditionedConfigs;
if (!parseFilesForKernelConfigs(&pair.second, &conditionedConfigs)) {
return false;
}
for (ConditionedConfig& conditionedConfig : conditionedConfigs) {
MatrixKernel kernel(KernelVersion{pair.first}, std::move(conditionedConfig.second));
if (conditionedConfig.first != nullptr)
kernel.mConditions.push_back(std::move(*conditionedConfig.first));
std::string error;
if (!matrix->addKernel(std::move(kernel), &error)) {
std::cerr << "Error:" << error << std::endl;
return false;
};
}
}
return true;
}
bool setDeviceFcmVersion(HalManifest* manifest) {
// Not needed for generating empty manifest for DEVICE_FRAMEWORK_COMPATIBILITY_MATRIX_FILE.
if (getBooleanFlag("VINTF_IGNORE_TARGET_FCM_VERSION")) {
return true;
}
size_t shippingApiLevel = getIntegerFlag("PRODUCT_SHIPPING_API_LEVEL");
if (manifest->level() != Level::UNSPECIFIED) {
return true;
}
if (!getBooleanFlag("PRODUCT_ENFORCE_VINTF_MANIFEST")) {
manifest->mLevel = Level::LEGACY;
return true;
}
// TODO(b/70628538): Do not infer from Shipping API level.
if (shippingApiLevel) {
std::cerr << "Warning: Shipping FCM Version is inferred from Shipping API level. "
<< "Declare Shipping FCM Version in device manifest directly." << std::endl;
manifest->mLevel = details::convertFromApiLevel(shippingApiLevel);
if (manifest->mLevel == Level::UNSPECIFIED) {
std::cerr << "Error: Shipping FCM Version cannot be inferred from Shipping API "
<< "level " << shippingApiLevel << "."
<< "Declare Shipping FCM Version in device manifest directly."
<< std::endl;
return false;
}
return true;
}
// TODO(b/69638851): should be an error if Shipping API level is not defined.
// For now, just leave it empty; when framework compatibility matrix is built,
// lowest FCM Version is assumed.
std::cerr << "Warning: Shipping FCM Version cannot be inferred, because:" << std::endl
<< " (1) It is not explicitly declared in device manifest;" << std::endl
<< " (2) PRODUCT_ENFORCE_VINTF_MANIFEST is set to true;" << std::endl
<< " (3) PRODUCT_SHIPPING_API_LEVEL is undefined." << std::endl
<< "Assuming 'unspecified' Shipping FCM Version. " << std::endl
<< "To remove this warning, define 'level' attribute in device manifest."
<< std::endl;
return true;
}
Level getLowestFcmVersion(const CompatibilityMatrices& matrices) {
Level ret = Level::UNSPECIFIED;
for (const auto& e : matrices) {
if (ret == Level::UNSPECIFIED || ret > e.object.level()) {
ret = e.object.level();
}
}
return ret;
}
bool assembleCompatibilityMatrix(CompatibilityMatrices* matrices) {
std::string error;
CompatibilityMatrix* matrix = nullptr;
std::unique_ptr<HalManifest> checkManifest;
std::unique_ptr<CompatibilityMatrix> builtMatrix;
if (mCheckFile != nullptr) {
checkManifest = std::make_unique<HalManifest>();
if (!gHalManifestConverter(checkManifest.get(), read(*mCheckFile), &error)) {
std::cerr << "Cannot parse check file as a HAL manifest: " << error << std::endl;
return false;
}
}
if (matrices->front().object.mType == SchemaType::DEVICE) {
builtMatrix = CompatibilityMatrix::combineDeviceMatrices(matrices, &error);
matrix = builtMatrix.get();
if (matrix == nullptr) {
std::cerr << error << std::endl;
return false;
}
auto vndkVersion = base::Trim(getEnv("REQUIRED_VNDK_VERSION"));
if (!vndkVersion.empty()) {
auto& valueInMatrix = matrix->device.mVendorNdk;
if (!valueInMatrix.version().empty() && valueInMatrix.version() != vndkVersion) {
std::cerr << "Hard-coded <vendor-ndk> version in device compatibility matrix ("
<< matrices->front().name << "), '" << valueInMatrix.version()
<< "', does not match value inferred "
<< "from BOARD_VNDK_VERSION '" << vndkVersion << "'" << std::endl;
return false;
}
valueInMatrix = VendorNdk{std::move(vndkVersion)};
}
for (auto&& v : getEnvList("BOARD_SYSTEMSDK_VERSIONS")) {
matrix->device.mSystemSdk.mVersions.emplace(std::move(v));
}
}
if (matrices->front().object.mType == SchemaType::FRAMEWORK) {
Level deviceLevel =
checkManifest != nullptr ? checkManifest->level() : Level::UNSPECIFIED;
if (deviceLevel == Level::UNSPECIFIED) {
deviceLevel = getLowestFcmVersion(*matrices);
if (checkManifest != nullptr && deviceLevel != Level::UNSPECIFIED) {
std::cerr << "Warning: No Target FCM Version for device. Assuming \""
<< to_string(deviceLevel)
<< "\" when building final framework compatibility matrix."
<< std::endl;
}
}
builtMatrix = CompatibilityMatrix::combine(deviceLevel, matrices, &error);
matrix = builtMatrix.get();
if (matrix == nullptr) {
std::cerr << error << std::endl;
return false;
}
if (!assembleFrameworkCompatibilityMatrixKernels(matrix)) {
return false;
}
// Add PLATFORM_SEPOLICY_* to sepolicy.sepolicy-version. Remove dupes.
std::set<Version> sepolicyVersions;
auto sepolicyVersionStrings = getEnvList("PLATFORM_SEPOLICY_COMPAT_VERSIONS");
auto currentSepolicyVersionString = getEnv("PLATFORM_SEPOLICY_VERSION");
if (!currentSepolicyVersionString.empty()) {
sepolicyVersionStrings.push_back(currentSepolicyVersionString);
}
for (auto&& s : sepolicyVersionStrings) {
Version v;
if (!parse(s, &v)) {
std::cerr << "Error: unknown sepolicy version '" << s << "' specified by "
<< (s == currentSepolicyVersionString
? "PLATFORM_SEPOLICY_VERSION"
: "PLATFORM_SEPOLICY_COMPAT_VERSIONS")
<< ".";
return false;
}
sepolicyVersions.insert(v);
}
for (auto&& v : sepolicyVersions) {
matrix->framework.mSepolicy.mSepolicyVersionRanges.emplace_back(v.majorVer,
v.minorVer);
}
getFlagIfUnset("POLICYVERS", &matrix->framework.mSepolicy.mKernelSepolicyVersion,
false /* log */);
getFlagIfUnset("FRAMEWORK_VBMETA_VERSION", &matrix->framework.mAvbMetaVersion,
false /* log */);
// Hard-override existing AVB version
getFlag("FRAMEWORK_VBMETA_VERSION_OVERRIDE", &matrix->framework.mAvbMetaVersion,
false /* log */);
}
outputInputs(*matrices);
out() << gCompatibilityMatrixConverter(*matrix, mSerializeFlags);
out().flush();
if (checkManifest != nullptr && !checkDualFile(*checkManifest, *matrix)) {
return false;
}
return true;
}
enum AssembleStatus { SUCCESS, FAIL_AND_EXIT, TRY_NEXT };
template <typename Schema, typename AssembleFunc>
AssembleStatus tryAssemble(const XmlConverter<Schema>& converter, const std::string& schemaName,
AssembleFunc assemble, std::string* error) {
Schemas<Schema> schemas;
Schema schema;
if (!converter(&schema, read(mInFiles.front().stream()), error)) {
return TRY_NEXT;
}
auto firstType = schema.type();
schemas.emplace_back(mInFiles.front().name(), std::move(schema));
for (auto it = mInFiles.begin() + 1; it != mInFiles.end(); ++it) {
Schema additionalSchema;
const std::string& fileName = it->name();
if (!converter(&additionalSchema, read(it->stream()), error)) {
std::cerr << "File \"" << fileName << "\" is not a valid " << firstType << " "
<< schemaName << " (but the first file is a valid " << firstType << " "
<< schemaName << "). Error: " << *error << std::endl;
return FAIL_AND_EXIT;
}
if (additionalSchema.type() != firstType) {
std::cerr << "File \"" << fileName << "\" is a " << additionalSchema.type() << " "
<< schemaName << " (but a " << firstType << " " << schemaName
<< " is expected)." << std::endl;
return FAIL_AND_EXIT;
}
schemas.emplace_back(fileName, std::move(additionalSchema));
}
return assemble(&schemas) ? SUCCESS : FAIL_AND_EXIT;
}
bool assemble() override {
using std::placeholders::_1;
if (mInFiles.empty()) {
std::cerr << "Missing input file." << std::endl;
return false;
}
std::string manifestError;
auto status = tryAssemble(gHalManifestConverter, "manifest",
std::bind(&AssembleVintfImpl::assembleHalManifest, this, _1),
&manifestError);
if (status == SUCCESS) return true;
if (status == FAIL_AND_EXIT) return false;
resetInFiles();
std::string matrixError;
status = tryAssemble(gCompatibilityMatrixConverter, "compatibility matrix",
std::bind(&AssembleVintfImpl::assembleCompatibilityMatrix, this, _1),
&matrixError);
if (status == SUCCESS) return true;
if (status == FAIL_AND_EXIT) return false;
std::cerr << "Input file has unknown format." << std::endl
<< "Error when attempting to convert to manifest: " << manifestError << std::endl
<< "Error when attempting to convert to compatibility matrix: " << matrixError
<< std::endl;
return false;
}
std::ostream& setOutputStream(Ostream&& out) override {
mOutRef = std::move(out);
return *mOutRef;
}
std::istream& addInputStream(const std::string& name, Istream&& in) override {
auto it = mInFiles.emplace(mInFiles.end(), name, std::move(in));
return it->stream();
}
std::istream& setCheckInputStream(Istream&& in) override {
mCheckFile = std::move(in);
return *mCheckFile;
}
bool hasKernelVersion(const KernelVersion& kernelVer) const override {
return mKernels.find(kernelVer) != mKernels.end();
}
std::istream& addKernelConfigInputStream(const KernelVersion& kernelVer,
const std::string& name, Istream&& in) override {
auto&& kernel = mKernels[kernelVer];
auto it = kernel.emplace(kernel.end(), name, std::move(in));
return it->stream();
}
void resetInFiles() {
for (auto& inFile : mInFiles) {
inFile.stream().clear();
inFile.stream().seekg(0);
}
}
void setOutputMatrix() override { mOutputMatrix = true; }
bool setHalsOnly() override {
if (mHasSetHalsOnlyFlag) {
std::cerr << "Error: Cannot set --hals-only with --no-hals." << std::endl;
return false;
}
// Just override it with HALS_ONLY because other flags that modify mSerializeFlags
// does not interfere with this (except --no-hals).
mSerializeFlags = SerializeFlags::HALS_ONLY;
mHasSetHalsOnlyFlag = true;
return true;
}
bool setNoHals() override {
if (mHasSetHalsOnlyFlag) {
std::cerr << "Error: Cannot set --hals-only with --no-hals." << std::endl;
return false;
}
mSerializeFlags = mSerializeFlags.disableHals();
mHasSetHalsOnlyFlag = true;
return true;
}
bool setNoKernelRequirements() override {
mSerializeFlags = mSerializeFlags.disableKernelConfigs().disableKernelMinorRevision();
return true;
}
private:
std::vector<NamedIstream> mInFiles;
Ostream mOutRef;
Istream mCheckFile;
bool mOutputMatrix = false;
bool mHasSetHalsOnlyFlag = false;
SerializeFlags::Type mSerializeFlags = SerializeFlags::EVERYTHING;
std::map<KernelVersion, std::vector<NamedIstream>> mKernels;
std::map<std::string, std::string> mFakeEnv;
};
bool AssembleVintf::openOutFile(const std::string& path) {
return static_cast<std::ofstream&>(setOutputStream(std::make_unique<std::ofstream>(path)))
.is_open();
}
bool AssembleVintf::openInFile(const std::string& path) {
return static_cast<std::ifstream&>(addInputStream(path, std::make_unique<std::ifstream>(path)))
.is_open();
}
bool AssembleVintf::openCheckFile(const std::string& path) {
return static_cast<std::ifstream&>(setCheckInputStream(std::make_unique<std::ifstream>(path)))
.is_open();
}
bool AssembleVintf::addKernel(const std::string& kernelArg) {
auto tokens = base::Split(kernelArg, ":");
if (tokens.size() <= 1) {
std::cerr << "Unrecognized --kernel option '" << kernelArg << "'" << std::endl;
return false;
}
KernelVersion kernelVer;
if (!parse(tokens.front(), &kernelVer)) {
std::cerr << "Unrecognized kernel version '" << tokens.front() << "'" << std::endl;
return false;
}
if (hasKernelVersion(kernelVer)) {
std::cerr << "Multiple --kernel for " << kernelVer << " is specified." << std::endl;
return false;
}
for (auto it = tokens.begin() + 1; it != tokens.end(); ++it) {
bool opened =
static_cast<std::ifstream&>(
addKernelConfigInputStream(kernelVer, *it, std::make_unique<std::ifstream>(*it)))
.is_open();
if (!opened) {
std::cerr << "Cannot open file '" << *it << "'." << std::endl;
return false;
}
}
return true;
}
std::unique_ptr<AssembleVintf> AssembleVintf::newInstance() {
return std::make_unique<AssembleVintfImpl>();
}
} // namespace vintf
} // namespace android