/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <set>
#include <errno.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cstdint>
#define LOG_TAG "FirewallController"
#define LOG_NDEBUG 0
#include <android-base/file.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <log/log.h>
#include "Controllers.h"
#include "FirewallController.h"
#include "NetdConstants.h"
#include "bpf/BpfUtils.h"
using android::base::Join;
using android::base::ReadFileToString;
using android::base::Split;
using android::base::StringAppendF;
using android::base::StringPrintf;
using android::bpf::BpfLevel;
using android::net::gCtls;
namespace {
// Default maximum valid uid in a normal root user namespace. The maximum valid uid is used in
// rules that exclude all possible UIDs in the namespace in order to match packets that have
// no socket associated with them.
constexpr const uid_t kDefaultMaximumUid = UID_MAX - 1; // UID_MAX defined as UINT_MAX
// Proc file containing the uid mapping for the user namespace of the current process.
const char kUidMapProcFile[] = "/proc/self/uid_map";
android::bpf::BpfLevel getBpfOwnerStatus() {
return gCtls->trafficCtrl.getBpfLevel();
}
} // namespace
namespace android {
namespace net {
auto FirewallController::execIptablesRestore = ::execIptablesRestore;
const char* FirewallController::TABLE = "filter";
const char* FirewallController::LOCAL_INPUT = "fw_INPUT";
const char* FirewallController::LOCAL_OUTPUT = "fw_OUTPUT";
const char* FirewallController::LOCAL_FORWARD = "fw_FORWARD";
const char* FirewallController::LOCAL_DOZABLE = "fw_dozable";
const char* FirewallController::LOCAL_STANDBY = "fw_standby";
const char* FirewallController::LOCAL_POWERSAVE = "fw_powersave";
// ICMPv6 types that are required for any form of IPv6 connectivity to work. Note that because the
// fw_dozable chain is called from both INPUT and OUTPUT, this includes both packets that we need
// to be able to send (e.g., RS, NS), and packets that we need to receive (e.g., RA, NA).
const char* FirewallController::ICMPV6_TYPES[] = {
"packet-too-big",
"router-solicitation",
"router-advertisement",
"neighbour-solicitation",
"neighbour-advertisement",
"redirect",
};
FirewallController::FirewallController(void) : mMaxUid(discoverMaximumValidUid(kUidMapProcFile)) {
// If no rules are set, it's in BLACKLIST mode
mFirewallType = BLACKLIST;
mIfaceRules = {};
}
int FirewallController::setupIptablesHooks(void) {
int res = 0;
mUseBpfOwnerMatch = getBpfOwnerStatus();
if (mUseBpfOwnerMatch != BpfLevel::NONE) {
return res;
}
res |= createChain(LOCAL_DOZABLE, getFirewallType(DOZABLE));
res |= createChain(LOCAL_STANDBY, getFirewallType(STANDBY));
res |= createChain(LOCAL_POWERSAVE, getFirewallType(POWERSAVE));
return res;
}
int FirewallController::setFirewallType(FirewallType ftype) {
int res = 0;
if (mFirewallType != ftype) {
// flush any existing rules
resetFirewall();
if (ftype == WHITELIST) {
// create default rule to drop all traffic
std::string command =
"*filter\n"
"-A fw_INPUT -j DROP\n"
"-A fw_OUTPUT -j REJECT\n"
"-A fw_FORWARD -j REJECT\n"
"COMMIT\n";
res = execIptablesRestore(V4V6, command.c_str());
}
// Set this after calling disableFirewall(), since it defaults to WHITELIST there
mFirewallType = ftype;
}
return res ? -EREMOTEIO : 0;
}
int FirewallController::resetFirewall(void) {
mFirewallType = WHITELIST;
mIfaceRules.clear();
// flush any existing rules
std::string command =
"*filter\n"
":fw_INPUT -\n"
":fw_OUTPUT -\n"
":fw_FORWARD -\n"
"COMMIT\n";
return (execIptablesRestore(V4V6, command.c_str()) == 0) ? 0 : -EREMOTEIO;
}
int FirewallController::enableChildChains(ChildChain chain, bool enable) {
int res = 0;
const char* name;
switch(chain) {
case DOZABLE:
name = LOCAL_DOZABLE;
break;
case STANDBY:
name = LOCAL_STANDBY;
break;
case POWERSAVE:
name = LOCAL_POWERSAVE;
break;
default:
return res;
}
if (mUseBpfOwnerMatch != BpfLevel::NONE) {
return gCtls->trafficCtrl.toggleUidOwnerMap(chain, enable);
}
std::string command = "*filter\n";
for (const char *parent : { LOCAL_INPUT, LOCAL_OUTPUT }) {
StringAppendF(&command, "%s %s -j %s\n", (enable ? "-A" : "-D"), parent, name);
}
StringAppendF(&command, "COMMIT\n");
return execIptablesRestore(V4V6, command);
}
int FirewallController::isFirewallEnabled(void) {
// TODO: verify that rules are still in place near top
return -1;
}
int FirewallController::setInterfaceRule(const char* iface, FirewallRule rule) {
if (mFirewallType == BLACKLIST) {
// Unsupported in BLACKLIST mode
return -EINVAL;
}
if (!isIfaceName(iface)) {
errno = ENOENT;
return -ENOENT;
}
// Only delete rules if we actually added them, because otherwise our iptables-restore
// processes will terminate with "no such rule" errors and cause latency penalties while we
// spin up new ones.
const char* op;
if (rule == ALLOW && mIfaceRules.find(iface) == mIfaceRules.end()) {
op = "-I";
mIfaceRules.insert(iface);
} else if (rule == DENY && mIfaceRules.find(iface) != mIfaceRules.end()) {
op = "-D";
mIfaceRules.erase(iface);
} else {
return 0;
}
std::string command = Join(std::vector<std::string> {
"*filter",
StringPrintf("%s fw_INPUT -i %s -j RETURN", op, iface),
StringPrintf("%s fw_OUTPUT -o %s -j RETURN", op, iface),
"COMMIT\n"
}, "\n");
return (execIptablesRestore(V4V6, command) == 0) ? 0 : -EREMOTEIO;
}
FirewallType FirewallController::getFirewallType(ChildChain chain) {
switch(chain) {
case DOZABLE:
return WHITELIST;
case STANDBY:
return BLACKLIST;
case POWERSAVE:
return WHITELIST;
case NONE:
return mFirewallType;
default:
return BLACKLIST;
}
}
int FirewallController::setUidRule(ChildChain chain, int uid, FirewallRule rule) {
const char* op;
const char* target;
FirewallType firewallType = getFirewallType(chain);
if (firewallType == WHITELIST) {
target = "RETURN";
// When adding, insert RETURN rules at the front, before the catch-all DROP at the end.
op = (rule == ALLOW)? "-I" : "-D";
} else { // BLACKLIST mode
target = "DROP";
// When adding, append DROP rules at the end, after the RETURN rule that matches TCP RSTs.
op = (rule == DENY)? "-A" : "-D";
}
std::vector<std::string> chainNames;
switch(chain) {
case DOZABLE:
chainNames = { LOCAL_DOZABLE };
break;
case STANDBY:
chainNames = { LOCAL_STANDBY };
break;
case POWERSAVE:
chainNames = { LOCAL_POWERSAVE };
break;
case NONE:
chainNames = { LOCAL_INPUT, LOCAL_OUTPUT };
break;
default:
ALOGW("Unknown child chain: %d", chain);
return -EINVAL;
}
if (mUseBpfOwnerMatch != BpfLevel::NONE) {
return gCtls->trafficCtrl.changeUidOwnerRule(chain, uid, rule, firewallType);
}
std::string command = "*filter\n";
for (const std::string& chainName : chainNames) {
StringAppendF(&command, "%s %s -m owner --uid-owner %d -j %s\n",
op, chainName.c_str(), uid, target);
}
StringAppendF(&command, "COMMIT\n");
return (execIptablesRestore(V4V6, command) == 0) ? 0 : -EREMOTEIO;
}
int FirewallController::createChain(const char* chain, FirewallType type) {
static const std::vector<int32_t> NO_UIDS;
return replaceUidChain(chain, type == WHITELIST, NO_UIDS);
}
/* static */
std::string FirewallController::makeCriticalCommands(IptablesTarget target, const char* chainName) {
// Allow ICMPv6 packets necessary to make IPv6 connectivity work. http://b/23158230 .
std::string commands;
if (target == V6) {
for (size_t i = 0; i < ARRAY_SIZE(ICMPV6_TYPES); i++) {
StringAppendF(&commands, "-A %s -p icmpv6 --icmpv6-type %s -j RETURN\n",
chainName, ICMPV6_TYPES[i]);
}
}
return commands;
}
std::string FirewallController::makeUidRules(IptablesTarget target, const char *name,
bool isWhitelist, const std::vector<int32_t>& uids) {
std::string commands;
StringAppendF(&commands, "*filter\n:%s -\n", name);
// Whitelist chains have UIDs at the beginning, and new UIDs are added with '-I'.
if (isWhitelist) {
for (auto uid : uids) {
StringAppendF(&commands, "-A %s -m owner --uid-owner %d -j RETURN\n", name, uid);
}
// Always whitelist system UIDs.
StringAppendF(&commands,
"-A %s -m owner --uid-owner %d-%d -j RETURN\n", name, 0, MAX_SYSTEM_UID);
// This rule inverts the match for all UIDs; ie, if there is no UID match here,
// there is no socket to be found
StringAppendF(&commands,
"-A %s -m owner ! --uid-owner %d-%u -j RETURN\n", name, 0, mMaxUid);
// Always whitelist traffic with protocol ESP, or no known socket - required for IPSec
StringAppendF(&commands, "-A %s -p esp -j RETURN\n", name);
}
// Always allow networking on loopback.
StringAppendF(&commands, "-A %s -i lo -j RETURN\n", name);
StringAppendF(&commands, "-A %s -o lo -j RETURN\n", name);
// Allow TCP RSTs so we can cleanly close TCP connections of apps that no longer have network
// access. Both incoming and outgoing RSTs are allowed.
StringAppendF(&commands, "-A %s -p tcp --tcp-flags RST RST -j RETURN\n", name);
if (isWhitelist) {
commands.append(makeCriticalCommands(target, name));
}
// Blacklist chains have UIDs at the end, and new UIDs are added with '-A'.
if (!isWhitelist) {
for (auto uid : uids) {
StringAppendF(&commands, "-A %s -m owner --uid-owner %d -j DROP\n", name, uid);
}
}
// If it's a whitelist chain, add a default DROP at the end. This is not necessary for a
// blacklist chain, because all user-defined chains implicitly RETURN at the end.
if (isWhitelist) {
StringAppendF(&commands, "-A %s -j DROP\n", name);
}
StringAppendF(&commands, "COMMIT\n");
return commands;
}
int FirewallController::replaceUidChain(
const std::string &name, bool isWhitelist, const std::vector<int32_t>& uids) {
if (mUseBpfOwnerMatch != BpfLevel::NONE) {
return gCtls->trafficCtrl.replaceUidOwnerMap(name, isWhitelist, uids);
}
std::string commands4 = makeUidRules(V4, name.c_str(), isWhitelist, uids);
std::string commands6 = makeUidRules(V6, name.c_str(), isWhitelist, uids);
return execIptablesRestore(V4, commands4.c_str()) | execIptablesRestore(V6, commands6.c_str());
}
/* static */
uid_t FirewallController::discoverMaximumValidUid(const std::string& fileName) {
std::string content;
if (!ReadFileToString(fileName, &content, false)) {
// /proc/self/uid_map only exists if a uid mapping has been set.
ALOGD("Could not read %s, max uid defaulting to %u", fileName.c_str(), kDefaultMaximumUid);
return kDefaultMaximumUid;
}
std::vector<std::string> lines = Split(content, "\n");
if (lines.empty()) {
ALOGD("%s was empty, max uid defaulting to %u", fileName.c_str(), kDefaultMaximumUid);
return kDefaultMaximumUid;
}
uint32_t maxUid = 0;
for (const auto& line : lines) {
if (line.empty()) {
continue;
}
// Choose the end of the largest range found in the file.
uint32_t start;
uint32_t ignored;
uint32_t rangeLength;
int items = sscanf(line.c_str(), "%u %u %u", &start, &ignored, &rangeLength);
if (items != 3) {
// uid_map lines must have 3 items, see the man page of 'user_namespaces' for details.
ALOGD("Format of %s unrecognized, max uid defaulting to %u", fileName.c_str(),
kDefaultMaximumUid);
return kDefaultMaximumUid;
}
maxUid = std::max(maxUid, start + rangeLength - 1);
}
if (maxUid == 0) {
ALOGD("No max uid found, max uid defaulting to %u", kDefaultMaximumUid);
return kDefaultMaximumUid;
}
return maxUid;
}
} // namespace net
} // namespace android