/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "connect_benchmark"
/*
* See README.md for general notes.
*
* This set of benchmarks measures the throughput of connect() calls on a single thread for IPv4 and
* IPv6.
*
* Realtime timed tests
* ====================
*
* The tests named *_high_load record the following useful information:
*
* - real_time: the mean roundtrip time for one connect() call under load
*
* - iterations: the number of times the test was run within the timelimit --- approximately
* MinTime / real_time
*
* Manually timed tests
* ====================
*
* All other sets of tests apart from *_high_load run with manual timing. The purpose of these is to
* measure 90th-percentile latency for connect() calls compared to mean latency.
*
* (TODO: ideally this should be against median latency, but google-benchmark only supports one
* custom 'label' output for graphing. Stddev isn't appropriate because the latency
* distribution is usually spiky, not in a nice neat normal-like distribution.)
*
* The manually timed tests record the following useful information:
*
* - real_time: the average time taken to complete a test run. Unlike the real_time used in high
* load tests, this is calculated from before-and-after values of the realtime clock
* over many iterations so may be less accurate than the under-load times.
*
* - iterations: the number of times the test was run within the timelimit --- approximately
* MinTime / real_time, although as explained, may not be as meaningful because of
* overhead from timing.
*
* - label: a manually-recorded time giving the 90th-percentile value of real_time over all
* individual runs. Should be compared to real_time.
*
*/
#include <arpa/inet.h>
#include <cutils/sockets.h>
#include <errno.h>
#include <netinet/in.h>
#include <time.h>
#include <map>
#include <functional>
#include <thread>
#include <android-base/stringprintf.h>
#include <benchmark/benchmark.h>
#include <log/log.h>
#include <netdutils/Stopwatch.h>
#include <utils/StrongPointer.h>
#include "FwmarkClient.h"
#include "SockDiag.h"
using android::base::StringPrintf;
using android::netdutils::Stopwatch;
static int bindAndListen(int s) {
sockaddr_in6 sin6 = { .sin6_family = AF_INET6 };
if (bind(s, (sockaddr*) &sin6, sizeof(sin6)) == 0) {
if (listen(s, 1)) {
return -1;
}
sockaddr_in sin = {};
socklen_t len = sizeof(sin);
if (getsockname(s, (sockaddr*) &sin, &len)) {
return -1;
}
return ntohs(sin.sin_port);
} else {
return -1;
}
}
static void ipv4_loopback(benchmark::State& state, const bool waitBetweenRuns) {
const int listensocket = socket(AF_INET6, SOCK_STREAM | SOCK_CLOEXEC, 0);
const int port = bindAndListen(listensocket);
if (port == -1) {
state.SkipWithError("Unable to bind server socket");
return;
}
// ALOGW("Listening on port = %d", port);
std::vector<uint64_t> latencies(state.max_iterations);
uint64_t iterations = 0;
while (state.KeepRunning()) {
int sock = socket(AF_INET, SOCK_STREAM | SOCK_CLOEXEC, 0);
if (sock < 0) {
state.SkipWithError(StringPrintf("socket() failed with errno=%d", errno).c_str());
break;
}
const Stopwatch stopwatch;
sockaddr_in server = { .sin_family = AF_INET, .sin_port = htons(port) };
if (connect(sock, (sockaddr*) &server, sizeof(server))) {
state.SkipWithError(StringPrintf("connect() failed with errno=%d", errno).c_str());
close(sock);
break;
}
if (waitBetweenRuns) {
latencies[iterations] = stopwatch.timeTaken() * 1e6L;
state.SetIterationTime(latencies[iterations] / 1e9L);
std::this_thread::sleep_for(std::chrono::milliseconds(10));
++iterations;
}
sockaddr_in6 client;
socklen_t clientlen = sizeof(client);
int accepted = accept4(listensocket, (sockaddr*) &client, &clientlen, SOCK_CLOEXEC);
if (accepted < 0) {
state.SkipWithError(StringPrintf("accept() failed with errno=%d", errno).c_str());
close(sock);
break;
}
close(accepted);
close(sock);
}
close(listensocket);
// ALOGI("Finished test on port = %d", port);
if (iterations > 0) {
latencies.resize(iterations);
sort(latencies.begin(), latencies.end());
state.SetLabel(StringPrintf("%lld", (long long) latencies[iterations * 9 / 10]));
}
}
static void ipv6_loopback(benchmark::State& state, const bool waitBetweenRuns) {
const int listensocket = socket(AF_INET6, SOCK_STREAM | SOCK_CLOEXEC, 0);
const int port = bindAndListen(listensocket);
if (port == -1) {
state.SkipWithError("Unable to bind server socket");
return;
}
// ALOGW("Listening on port = %d", port);
std::vector<uint64_t> latencies(state.max_iterations);
uint64_t iterations = 0;
while (state.KeepRunning()) {
int sock = socket(AF_INET6, SOCK_STREAM | SOCK_CLOEXEC, 0);
if (sock < 0) {
state.SkipWithError(StringPrintf("socket() failed with errno=%d", errno).c_str());
break;
}
const Stopwatch stopwatch;
sockaddr_in6 server = { .sin6_family = AF_INET6, .sin6_port = htons(port) };
if (connect(sock, (sockaddr*) &server, sizeof(server))) {
state.SkipWithError(StringPrintf("connect() failed with errno=%d", errno).c_str());
close(sock);
break;
}
if (waitBetweenRuns) {
latencies[iterations] = stopwatch.timeTaken() * 1e6L;
state.SetIterationTime(latencies[iterations] / 1e9L);
std::this_thread::sleep_for(std::chrono::milliseconds(10));
++iterations;
}
sockaddr_in6 client;
socklen_t clientlen = sizeof(client);
int accepted = accept4(listensocket, (sockaddr*) &client, &clientlen, SOCK_CLOEXEC);
if (accepted < 0) {
state.SkipWithError(StringPrintf("accept() failed with errno=%d", errno).c_str());
close(sock);
break;
}
close(accepted);
close(sock);
}
close(listensocket);
// ALOGI("Finished test on port = %d", port);
if (iterations > 0) {
latencies.resize(iterations);
sort(latencies.begin(), latencies.end());
state.SetLabel(StringPrintf("%lld", (long long) latencies[iterations * 9 / 10]));
}
}
static void run(decltype(ipv4_loopback) benchmarkFunction, ::benchmark::State& state,
const bool waitBetweenRuns) {
benchmarkFunction(state, waitBetweenRuns);
}
constexpr int MIN_THREADS = 1;
constexpr int MAX_THREADS = 1;
constexpr double MIN_TIME = 0.5 /* seconds */;
// IPv4 benchmarks under no load
static void ipv4_no_load(::benchmark::State& state) {
run(ipv4_loopback, state, true);
}
BENCHMARK(ipv4_no_load)->MinTime(MIN_TIME)->UseManualTime();
// IPv4 benchmarks under high load
static void ipv4_high_load(::benchmark::State& state) {
run(ipv4_loopback, state, false);
}
BENCHMARK(ipv4_high_load)->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime();
// IPv6 raw connect() without using fwmark
static void ipv6_no_load(::benchmark::State& state) {
run(ipv6_loopback, state, true);
}
BENCHMARK(ipv6_no_load)->MinTime(MIN_TIME)->UseManualTime();
// IPv6 benchmarks under high load
static void ipv6_high_load(::benchmark::State& state) {
run(ipv6_loopback, state, false);
}
BENCHMARK(ipv6_high_load)->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime();