/* ******************************************************************************* * * Copyright (C) 2000-2007, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: genmbcs.c * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2000jul06 * created by: Markus W. Scherer */ #include <stdio.h> #include "unicode/utypes.h" #include "cstring.h" #include "cmemory.h" #include "unewdata.h" #include "ucnv_cnv.h" #include "ucnvmbcs.h" #include "ucm.h" #include "makeconv.h" #include "genmbcs.h" /* * TODO: Split this file into toUnicode, SBCSFromUnicode and MBCSFromUnicode files. * Reduce tests for maxCharLength. */ struct MBCSData { NewConverter newConverter; UCMFile *ucm; /* toUnicode (state table in ucm->states) */ _MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT]; int32_t countToUFallbacks; uint16_t *unicodeCodeUnits; /* fromUnicode */ uint16_t stage1[MBCS_STAGE_1_SIZE]; uint16_t stage2Single[MBCS_STAGE_2_SIZE]; /* stage 2 for single-byte codepages */ uint32_t stage2[MBCS_STAGE_2_SIZE]; /* stage 2 for MBCS */ uint8_t *fromUBytes; uint32_t stage2Top, stage3Top; /* fromUTF8 */ uint16_t stageUTF8[0x10000>>MBCS_UTF8_STAGE_SHIFT]; /* allow for utf8Max=0xffff */ /* * Maximum UTF-8-friendly code point. * 0 if !utf8Friendly, otherwise 0x01ff..0xffff in steps of 0x100. * If utf8Friendly, utf8Max is normally either MBCS_UTF8_MAX or 0xffff. */ uint16_t utf8Max; UBool utf8Friendly; UBool omitFromU; }; /* prototypes */ static void MBCSClose(NewConverter *cnvData); static UBool MBCSStartMappings(MBCSData *mbcsData); static UBool MBCSAddToUnicode(MBCSData *mbcsData, const uint8_t *bytes, int32_t length, UChar32 c, int8_t flag); static UBool MBCSIsValid(NewConverter *cnvData, const uint8_t *bytes, int32_t length); static UBool MBCSSingleAddFromUnicode(MBCSData *mbcsData, const uint8_t *bytes, int32_t length, UChar32 c, int8_t flag); static UBool MBCSAddFromUnicode(MBCSData *mbcsData, const uint8_t *bytes, int32_t length, UChar32 c, int8_t flag); static void MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData); static UBool MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData); static uint32_t MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, UNewDataMemory *pData, int32_t tableType); /* helper ------------------------------------------------------------------- */ static U_INLINE char hexDigit(uint8_t digit) { return digit<=9 ? (char)('0'+digit) : (char)('a'-10+digit); } static U_INLINE char * printBytes(char *buffer, const uint8_t *bytes, int32_t length) { char *s=buffer; while(length>0) { *s++=hexDigit((uint8_t)(*bytes>>4)); *s++=hexDigit((uint8_t)(*bytes&0xf)); ++bytes; --length; } *s=0; return buffer; } /* implementation ----------------------------------------------------------- */ static MBCSData gDummy; U_CFUNC const MBCSData * MBCSGetDummy() { uprv_memset(&gDummy, 0, sizeof(MBCSData)); /* * Set "pessimistic" values which may sometimes move too many * mappings to the extension table (but never too few). * These values cause MBCSOkForBaseFromUnicode() to return FALSE for the * largest set of mappings. * Assume maxCharLength>1. */ gDummy.utf8Friendly=TRUE; if(SMALL) { gDummy.utf8Max=0xffff; gDummy.omitFromU=TRUE; } else { gDummy.utf8Max=MBCS_UTF8_MAX; } return &gDummy; } static void MBCSInit(MBCSData *mbcsData, UCMFile *ucm) { uprv_memset(mbcsData, 0, sizeof(MBCSData)); mbcsData->ucm=ucm; /* aliased, not owned */ mbcsData->newConverter.close=MBCSClose; mbcsData->newConverter.isValid=MBCSIsValid; mbcsData->newConverter.addTable=MBCSAddTable; mbcsData->newConverter.write=MBCSWrite; } NewConverter * MBCSOpen(UCMFile *ucm) { MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData)); if(mbcsData==NULL) { printf("out of memory\n"); exit(U_MEMORY_ALLOCATION_ERROR); } MBCSInit(mbcsData, ucm); return &mbcsData->newConverter; } static void MBCSDestruct(MBCSData *mbcsData) { uprv_free(mbcsData->unicodeCodeUnits); uprv_free(mbcsData->fromUBytes); } static void MBCSClose(NewConverter *cnvData) { MBCSData *mbcsData=(MBCSData *)cnvData; if(mbcsData!=NULL) { MBCSDestruct(mbcsData); uprv_free(mbcsData); } } static UBool MBCSStartMappings(MBCSData *mbcsData) { int32_t i, sum, maxCharLength, stage2NullLength, stage2AllocLength, stage3NullLength, stage3AllocLength; /* toUnicode */ /* allocate the code unit array and prefill it with "unassigned" values */ sum=mbcsData->ucm->states.countToUCodeUnits; if(VERBOSE) { printf("the total number of offsets is 0x%lx=%ld\n", (long)sum, (long)sum); } if(sum>0) { mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t)); if(mbcsData->unicodeCodeUnits==NULL) { fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n", (long)sum); return FALSE; } for(i=0; i<sum; ++i) { mbcsData->unicodeCodeUnits[i]=0xfffe; } } /* fromUnicode */ maxCharLength=mbcsData->ucm->states.maxCharLength; /* allocate the codepage mappings and preset the first 16 characters to 0 */ if(maxCharLength==1) { /* allocate 64k 16-bit results for single-byte codepages */ sum=0x20000; } else { /* allocate 1M * maxCharLength bytes for at most 1M mappings */ sum=0x100000*maxCharLength; } mbcsData->fromUBytes=(uint8_t *)uprv_malloc(sum); if(mbcsData->fromUBytes==NULL) { fprintf(stderr, "error: out of memory allocating %ld B for target mappings\n", (long)sum); return FALSE; } uprv_memset(mbcsData->fromUBytes, 0, sum); /* * UTF-8-friendly fromUnicode tries: allocate multiple blocks at a time. * See ucnvmbcs.h for details. * * There is code, for example in ucnv_MBCSGetUnicodeSetForUnicode(), which * assumes that the initial stage 2/3 blocks are the all-unassigned ones. * Therefore, we refine the data structure while maintaining this placement * even though it would be convenient to allocate the ASCII block at the * beginning of stage 3, for example. * * UTF-8-friendly fromUnicode tries work from sorted tables and are built * pre-compacted, overlapping adjacent stage 2/3 blocks. * This is necessary because the block allocation and compaction changes * at SBCS_UTF8_MAX or MBCS_UTF8_MAX, and for MBCS tables the additional * stage table uses direct indexes into stage 3, without a multiplier and * thus with a smaller reach. * * Non-UTF-8-friendly fromUnicode tries work from unsorted tables * (because implicit precision is used), and are compacted * in post-processing. * * Preallocation for UTF-8-friendly fromUnicode tries: * * Stage 3: * 64-entry all-unassigned first block followed by ASCII (128 entries). * * Stage 2: * 64-entry all-unassigned first block followed by preallocated * 64-block for ASCII. */ /* Preallocate ASCII as a linear 128-entry stage 3 block. */ stage2NullLength=MBCS_STAGE_2_BLOCK_SIZE; stage2AllocLength=MBCS_STAGE_2_BLOCK_SIZE; stage3NullLength=MBCS_UTF8_STAGE_3_BLOCK_SIZE; stage3AllocLength=128; /* ASCII U+0000..U+007f */ /* Initialize stage 1 for the preallocated blocks. */ sum=stage2NullLength; for(i=0; i<(stage2AllocLength>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT); ++i) { mbcsData->stage1[i]=sum; sum+=MBCS_STAGE_2_BLOCK_SIZE; } mbcsData->stage2Top=stage2NullLength+stage2AllocLength; /* ==sum */ /* * Stage 2 indexes count 16-blocks in stage 3 as follows: * SBCS: directly, indexes increment by 16 * MBCS: indexes need to be multiplied by 16*maxCharLength, indexes increment by 1 * MBCS UTF-8: directly, indexes increment by 16 */ if(maxCharLength==1) { sum=stage3NullLength; for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) { mbcsData->stage2Single[mbcsData->stage1[0]+i]=sum; sum+=MBCS_STAGE_3_BLOCK_SIZE; } } else { sum=stage3NullLength/MBCS_STAGE_3_GRANULARITY; for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) { mbcsData->stage2[mbcsData->stage1[0]+i]=sum; sum+=MBCS_STAGE_3_BLOCK_SIZE/MBCS_STAGE_3_GRANULARITY; } } sum=stage3NullLength; for(i=0; i<(stage3AllocLength/MBCS_UTF8_STAGE_3_BLOCK_SIZE); ++i) { mbcsData->stageUTF8[i]=sum; sum+=MBCS_UTF8_STAGE_3_BLOCK_SIZE; } /* * Allocate a 64-entry all-unassigned first stage 3 block, * for UTF-8-friendly lookup with a trail byte, * plus 128 entries for ASCII. */ mbcsData->stage3Top=(stage3NullLength+stage3AllocLength)*maxCharLength; /* ==sum*maxCharLength */ return TRUE; } /* return TRUE for success */ static UBool setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) { int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset); if(i>=0) { /* if there is already a fallback for this offset, then overwrite it */ mbcsData->toUFallbacks[i].codePoint=c; return TRUE; } else { /* if there is no fallback for this offset, then add one */ i=mbcsData->countToUFallbacks; if(i>=MBCS_MAX_FALLBACK_COUNT) { fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%x\n", (int)c); return FALSE; } else { mbcsData->toUFallbacks[i].offset=offset; mbcsData->toUFallbacks[i].codePoint=c; mbcsData->countToUFallbacks=i+1; return TRUE; } } } /* remove fallback if there is one with this offset; return the code point if there was such a fallback, otherwise -1 */ static int32_t removeFallback(MBCSData *mbcsData, uint32_t offset) { int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset); if(i>=0) { _MBCSToUFallback *toUFallbacks; int32_t limit, old; toUFallbacks=mbcsData->toUFallbacks; limit=mbcsData->countToUFallbacks; old=(int32_t)toUFallbacks[i].codePoint; /* copy the last fallback entry here to keep the list contiguous */ toUFallbacks[i].offset=toUFallbacks[limit-1].offset; toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint; mbcsData->countToUFallbacks=limit-1; return old; } else { return -1; } } /* * isFallback is almost a boolean: * 1 (TRUE) this is a fallback mapping * 0 (FALSE) this is a precise mapping * -1 the precision of this mapping is not specified */ static UBool MBCSAddToUnicode(MBCSData *mbcsData, const uint8_t *bytes, int32_t length, UChar32 c, int8_t flag) { char buffer[10]; uint32_t offset=0; int32_t i=0, entry, old; uint8_t state=0; if(mbcsData->ucm->states.countStates==0) { fprintf(stderr, "error: there is no state information!\n"); return FALSE; } /* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */ if(length==2 && mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO) { state=1; } /* * Walk down the state table like in conversion, * much like getNextUChar(). * We assume that c<=0x10ffff. */ for(i=0;;) { entry=mbcsData->ucm->states.stateTable[state][bytes[i++]]; if(MBCS_ENTRY_IS_TRANSITION(entry)) { if(i==length) { fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%s (U+%x)\n", (short)state, printBytes(buffer, bytes, length), (int)c); return FALSE; } state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); } else { if(i<length) { fprintf(stderr, "error: byte sequence too long by %d bytes, final state %hu: 0x%s (U+%x)\n", (int)(length-i), state, printBytes(buffer, bytes, length), (int)c); return FALSE; } switch(MBCS_ENTRY_FINAL_ACTION(entry)) { case MBCS_STATE_ILLEGAL: fprintf(stderr, "error: byte sequence ends in illegal state at U+%04x<->0x%s\n", (int)c, printBytes(buffer, bytes, length)); return FALSE; case MBCS_STATE_CHANGE_ONLY: fprintf(stderr, "error: byte sequence ends in state-change-only at U+%04x<->0x%s\n", (int)c, printBytes(buffer, bytes, length)); return FALSE; case MBCS_STATE_UNASSIGNED: fprintf(stderr, "error: byte sequence ends in unassigned state at U+%04x<->0x%s\n", (int)c, printBytes(buffer, bytes, length)); return FALSE; case MBCS_STATE_FALLBACK_DIRECT_16: case MBCS_STATE_VALID_DIRECT_16: case MBCS_STATE_FALLBACK_DIRECT_20: case MBCS_STATE_VALID_DIRECT_20: if(MBCS_ENTRY_SET_STATE(entry, 0)!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) { /* the "direct" action's value is not "valid-direct-16-unassigned" any more */ if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_DIRECT_16 || MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_FALLBACK_DIRECT_16) { old=MBCS_ENTRY_FINAL_VALUE(entry); } else { old=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); } if(flag>=0) { fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", (int)c, printBytes(buffer, bytes, length), (int)old); return FALSE; } else if(VERBOSE) { fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", (int)c, printBytes(buffer, bytes, length), (int)old); } /* * Continue after the above warning * if the precision of the mapping is unspecified. */ } /* reassign the correct action code */ entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, (MBCS_STATE_VALID_DIRECT_16+(flag==3 ? 2 : 0)+(c>=0x10000 ? 1 : 0))); /* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */ if(c<=0xffff) { entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c); } else { entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c-0x10000); } mbcsData->ucm->states.stateTable[state][bytes[i-1]]=entry; break; case MBCS_STATE_VALID_16: /* bits 26..16 are not used, 0 */ /* bits 15..7 contain the final offset delta to one 16-bit code unit */ offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); /* check that this byte sequence is still unassigned */ if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) { if(flag>=0) { fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", (int)c, printBytes(buffer, bytes, length), (int)old); return FALSE; } else if(VERBOSE) { fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", (int)c, printBytes(buffer, bytes, length), (int)old); } } if(c>=0x10000) { fprintf(stderr, "error: code point does not fit into valid-16-bit state at U+%04x<->0x%s\n", (int)c, printBytes(buffer, bytes, length)); return FALSE; } if(flag>0) { /* assign only if there is no precise mapping */ if(mbcsData->unicodeCodeUnits[offset]==0xfffe) { return setFallback(mbcsData, offset, c); } } else { mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; } break; case MBCS_STATE_VALID_16_PAIR: /* bits 26..16 are not used, 0 */ /* bits 15..7 contain the final offset delta to two 16-bit code units */ offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); /* check that this byte sequence is still unassigned */ old=mbcsData->unicodeCodeUnits[offset]; if(old<0xfffe) { int32_t real; if(old<0xd800) { real=old; } else if(old<=0xdfff) { real=0x10000+((old&0x3ff)<<10)+((mbcsData->unicodeCodeUnits[offset+1])&0x3ff); } else /* old<=0xe001 */ { real=mbcsData->unicodeCodeUnits[offset+1]; } if(flag>=0) { fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", (int)c, printBytes(buffer, bytes, length), (int)real); return FALSE; } else if(VERBOSE) { fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", (int)c, printBytes(buffer, bytes, length), (int)real); } } if(flag>0) { /* assign only if there is no precise mapping */ if(old<=0xdbff || old==0xe000) { /* do nothing */ } else if(c<=0xffff) { /* set a BMP fallback code point as a pair with 0xe001 */ mbcsData->unicodeCodeUnits[offset++]=0xe001; mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; } else { /* set a fallback surrogate pair with two second surrogates */ mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xdbc0+(c>>10)); mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff)); } } else { if(c<0xd800) { /* set a BMP code point */ mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; } else if(c<=0xffff) { /* set a BMP code point above 0xd800 as a pair with 0xe000 */ mbcsData->unicodeCodeUnits[offset++]=0xe000; mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; } else { /* set a surrogate pair */ mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10)); mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff)); } } break; default: /* reserved, must never occur */ fprintf(stderr, "internal error: byte sequence reached reserved action code, entry 0x%02x: 0x%s (U+%x)\n", (int)entry, printBytes(buffer, bytes, length), (int)c); return FALSE; } return TRUE; } } } /* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode()) */ static UBool MBCSIsValid(NewConverter *cnvData, const uint8_t *bytes, int32_t length) { MBCSData *mbcsData=(MBCSData *)cnvData; return (UBool)(1==ucm_countChars(&mbcsData->ucm->states, bytes, length)); } static UBool MBCSSingleAddFromUnicode(MBCSData *mbcsData, const uint8_t *bytes, int32_t length, UChar32 c, int8_t flag) { uint16_t *stage3, *p; uint32_t index; uint16_t old; uint8_t b; uint32_t blockSize, newTop, i, nextOffset, newBlock, min; /* ignore |2 SUB mappings */ if(flag==2) { return TRUE; } /* * Walk down the triple-stage compact array ("trie") and * allocate parts as necessary. * Note that the first stage 2 and 3 blocks are reserved for all-unassigned mappings. * We assume that length<=maxCharLength and that c<=0x10ffff. */ stage3=(uint16_t *)mbcsData->fromUBytes; b=*bytes; /* inspect stage 1 */ index=c>>MBCS_STAGE_1_SHIFT; if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) { nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1); } else { nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK; } if(mbcsData->stage1[index]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) { /* allocate another block in stage 2 */ newBlock=mbcsData->stage2Top; if(mbcsData->utf8Friendly) { min=newBlock-nextOffset; /* minimum block start with overlap */ while(min<newBlock && mbcsData->stage2Single[newBlock-1]==0) { --newBlock; } } newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE; if(newTop>MBCS_MAX_STAGE_2_TOP) { fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%02x\n", (int)c, b); return FALSE; } /* * each stage 2 block contains 64 16-bit words: * 6 code point bits 9..4 with 1 stage 3 index */ mbcsData->stage1[index]=(uint16_t)newBlock; mbcsData->stage2Top=newTop; } /* inspect stage 2 */ index=mbcsData->stage1[index]+nextOffset; if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) { /* allocate 64-entry blocks for UTF-8-friendly lookup */ blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE; nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK; } else { blockSize=MBCS_STAGE_3_BLOCK_SIZE; nextOffset=c&MBCS_STAGE_3_BLOCK_MASK; } if(mbcsData->stage2Single[index]==0) { /* allocate another block in stage 3 */ newBlock=mbcsData->stage3Top; if(mbcsData->utf8Friendly) { min=newBlock-nextOffset; /* minimum block start with overlap */ while(min<newBlock && stage3[newBlock-1]==0) { --newBlock; } } newTop=newBlock+blockSize; if(newTop>MBCS_STAGE_3_SBCS_SIZE) { fprintf(stderr, "error: too many code points at U+%04x<->0x%02x\n", (int)c, b); return FALSE; } /* each block has 16 uint16_t entries */ i=index; while(newBlock<newTop) { mbcsData->stage2Single[i++]=(uint16_t)newBlock; newBlock+=MBCS_STAGE_3_BLOCK_SIZE; } mbcsData->stage3Top=newTop; /* ==newBlock */ } /* write the codepage entry into stage 3 and get the previous entry */ p=stage3+mbcsData->stage2Single[index]+nextOffset; old=*p; if(flag<=0) { *p=(uint16_t)(0xf00|b); } else if(IS_PRIVATE_USE(c)) { *p=(uint16_t)(0xc00|b); } else { *p=(uint16_t)(0x800|b); } /* check that this Unicode code point was still unassigned */ if(old>=0x100) { if(flag>=0) { fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n", (int)c, b, old&0xff); return FALSE; } else if(VERBOSE) { fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n", (int)c, b, old&0xff); } /* continue after the above warning if the precision of the mapping is unspecified */ } return TRUE; } static UBool MBCSAddFromUnicode(MBCSData *mbcsData, const uint8_t *bytes, int32_t length, UChar32 c, int8_t flag) { char buffer[10]; const uint8_t *pb; uint8_t *stage3, *p; uint32_t index, b, old, stage3Index; int32_t maxCharLength; uint32_t blockSize, newTop, i, nextOffset, newBlock, min, overlap, maxOverlap; maxCharLength=mbcsData->ucm->states.maxCharLength; if( mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO && (*bytes==0xe || *bytes==0xf) ) { fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage: U+%04x<->0x%s\n", (int)c, printBytes(buffer, bytes, length)); return FALSE; } if(flag==1 && length==1 && *bytes==0) { fprintf(stderr, "error: unable to encode a |1 fallback from U+%04x to 0x%02x\n", (int)c, *bytes); return FALSE; } /* * Walk down the triple-stage compact array ("trie") and * allocate parts as necessary. * Note that the first stage 2 and 3 blocks are reserved for * all-unassigned mappings. * We assume that length<=maxCharLength and that c<=0x10ffff. */ stage3=mbcsData->fromUBytes; /* inspect stage 1 */ index=c>>MBCS_STAGE_1_SHIFT; if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1); } else { nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK; } if(mbcsData->stage1[index]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) { /* allocate another block in stage 2 */ newBlock=mbcsData->stage2Top; if(mbcsData->utf8Friendly) { min=newBlock-nextOffset; /* minimum block start with overlap */ while(min<newBlock && mbcsData->stage2[newBlock-1]==0) { --newBlock; } } newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE; if(newTop>MBCS_MAX_STAGE_2_TOP) { fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%s\n", (int)c, printBytes(buffer, bytes, length)); return FALSE; } /* * each stage 2 block contains 64 32-bit words: * 6 code point bits 9..4 with value with bits 31..16 "assigned" flags and bits 15..0 stage 3 index */ i=index; while(newBlock<newTop) { mbcsData->stage1[i++]=(uint16_t)newBlock; newBlock+=MBCS_STAGE_2_BLOCK_SIZE; } mbcsData->stage2Top=newTop; /* ==newBlock */ } /* inspect stage 2 */ index=mbcsData->stage1[index]+nextOffset; if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { /* allocate 64-entry blocks for UTF-8-friendly lookup */ blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE*maxCharLength; nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK; } else { blockSize=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength; nextOffset=c&MBCS_STAGE_3_BLOCK_MASK; } if(mbcsData->stage2[index]==0) { /* allocate another block in stage 3 */ newBlock=mbcsData->stage3Top; if(mbcsData->utf8Friendly && nextOffset>=MBCS_STAGE_3_GRANULARITY) { /* * Overlap stage 3 blocks only in multiples of 16-entry blocks * because of the indexing granularity in stage 2. */ maxOverlap=(nextOffset&~(MBCS_STAGE_3_GRANULARITY-1))*maxCharLength; for(overlap=0; overlap<maxOverlap && stage3[newBlock-overlap-1]==0; ++overlap) {} overlap=(overlap/MBCS_STAGE_3_GRANULARITY)/maxCharLength; overlap=(overlap*MBCS_STAGE_3_GRANULARITY)*maxCharLength; newBlock-=overlap; } newTop=newBlock+blockSize; if(newTop>MBCS_STAGE_3_MBCS_SIZE*(uint32_t)maxCharLength) { fprintf(stderr, "error: too many code points at U+%04x<->0x%s\n", (int)c, printBytes(buffer, bytes, length)); return FALSE; } /* each block has 16*maxCharLength bytes */ i=index; while(newBlock<newTop) { mbcsData->stage2[i++]=(newBlock/MBCS_STAGE_3_GRANULARITY)/maxCharLength; newBlock+=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength; } mbcsData->stage3Top=newTop; /* ==newBlock */ } stage3Index=MBCS_STAGE_3_GRANULARITY*(uint32_t)(uint16_t)mbcsData->stage2[index]; /* Build an alternate, UTF-8-friendly stage table as well. */ if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { /* Overflow for uint16_t entries in stageUTF8? */ if(stage3Index>0xffff) { /* * This can occur only if the mapping table is nearly perfectly filled and if * utf8Max==0xffff. * (There is no known charset like this. GB 18030 does not map * surrogate code points and LMBCS does not map 256 PUA code points.) * * Otherwise, stage3Index<=MBCS_UTF8_LIMIT<0xffff * (stage3Index can at most reach exactly MBCS_UTF8_LIMIT) * because we have a sorted table and there are at most MBCS_UTF8_LIMIT * mappings with 0<=c<MBCS_UTF8_LIMIT, and there is only also * the initial all-unassigned block in stage3. * * Solution for the overflow: Reduce utf8Max to the next lower value, 0xfeff. * * (See svn revision 20866 of the markus/ucnvutf8 feature branch for * code that causes MBCSAddTable() to rebuild the table not utf8Friendly * in case of overflow. That code was not tested.) */ mbcsData->utf8Max=0xfeff; } else { /* * The stage 3 block has been assigned for the regular trie. * Just copy its index into stageUTF8[], without the granularity. */ mbcsData->stageUTF8[c>>MBCS_UTF8_STAGE_SHIFT]=(uint16_t)stage3Index; } } /* write the codepage bytes into stage 3 and get the previous bytes */ /* assemble the bytes into a single integer */ pb=bytes; b=0; switch(length) { case 4: b=*pb++; case 3: b=(b<<8)|*pb++; case 2: b=(b<<8)|*pb++; case 1: default: b=(b<<8)|*pb++; break; } old=0; p=stage3+(stage3Index+nextOffset)*maxCharLength; switch(maxCharLength) { case 2: old=*(uint16_t *)p; *(uint16_t *)p=(uint16_t)b; break; case 3: old=(uint32_t)*p<<16; *p++=(uint8_t)(b>>16); old|=(uint32_t)*p<<8; *p++=(uint8_t)(b>>8); old|=*p; *p=(uint8_t)b; break; case 4: old=*(uint32_t *)p; *(uint32_t *)p=b; break; default: /* will never occur */ break; } /* check that this Unicode code point was still unassigned */ if((mbcsData->stage2[index+(nextOffset>>MBCS_STAGE_2_SHIFT)]&(1UL<<(16+(c&0xf))))!=0 || old!=0) { if(flag>=0) { fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n", (int)c, printBytes(buffer, bytes, length), (int)old); return FALSE; } else if(VERBOSE) { fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n", (int)c, printBytes(buffer, bytes, length), (int)old); } /* continue after the above warning if the precision of the mapping is unspecified */ } if(flag<=0) { /* set the roundtrip flag */ mbcsData->stage2[index+(nextOffset>>4)]|=(1UL<<(16+(c&0xf))); } return TRUE; } U_CFUNC UBool MBCSOkForBaseFromUnicode(const MBCSData *mbcsData, const uint8_t *bytes, int32_t length, UChar32 c, int8_t flag) { /* * A 1:1 mapping does not fit into the MBCS base table's fromUnicode table under * the following conditions: * * - a |2 SUB mapping for <subchar1> (no base table data structure for them) * - a |1 fallback to 0x00 (result value 0, indistinguishable from unmappable entry) * - a multi-byte mapping with leading 0x00 bytes (no explicit length field) * * Some of these tests are redundant with ucm_mappingType(). */ if( (flag==2 && length==1) || (flag==1 && bytes[0]==0) || /* testing length==1 would be redundant with the next test */ (flag<=1 && length>1 && bytes[0]==0) ) { return FALSE; } /* * Additional restrictions for UTF-8-friendly fromUnicode tables, * for code points up to the maximum optimized one: * * - any mapping to 0x00 (result value 0, indistinguishable from unmappable entry) * - any |1 fallback (no roundtrip flags in the optimized table) */ if(mbcsData->utf8Friendly && flag<=1 && c<=mbcsData->utf8Max && (bytes[0]==0 || flag==1)) { return FALSE; } /* * If we omit the fromUnicode data, we can only store roundtrips there * because only they are recoverable from the toUnicode data. * Fallbacks must go into the extension table. */ if(mbcsData->omitFromU && flag!=0) { return FALSE; } /* All other mappings do fit into the base table. */ return TRUE; } /* we can assume that the table only contains 1:1 mappings with <=4 bytes each */ static UBool MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) { MBCSData *mbcsData; UCMapping *m; UChar32 c; int32_t i, maxCharLength; int8_t f; UBool isOK, utf8Friendly; staticData->unicodeMask=table->unicodeMask; if(staticData->unicodeMask==3) { fprintf(stderr, "error: contains mappings for both supplementary and surrogate code points\n"); return FALSE; } staticData->conversionType=UCNV_MBCS; mbcsData=(MBCSData *)cnvData; maxCharLength=mbcsData->ucm->states.maxCharLength; /* * Generation of UTF-8-friendly data requires * a sorted table, which makeconv generates when explicit precision * indicators are used. */ mbcsData->utf8Friendly=utf8Friendly=(UBool)((table->flagsType&UCM_FLAGS_EXPLICIT)!=0); if(utf8Friendly) { mbcsData->utf8Max=MBCS_UTF8_MAX; if(SMALL && maxCharLength>1) { mbcsData->omitFromU=TRUE; } } else { mbcsData->utf8Max=0; if(SMALL && maxCharLength>1) { fprintf(stderr, "makeconv warning: --small not available for .ucm files without |0 etc.\n"); } } if(!MBCSStartMappings(mbcsData)) { return FALSE; } staticData->hasFromUnicodeFallback=FALSE; staticData->hasToUnicodeFallback=FALSE; isOK=TRUE; m=table->mappings; for(i=0; i<table->mappingsLength; ++m, ++i) { c=m->u; f=m->f; /* * Small optimization for --small .cnv files: * * If there are fromUnicode mappings above MBCS_UTF8_MAX, * then the file size will be smaller if we make utf8Max larger * because the size increase in stageUTF8 will be more than balanced by * how much less of stage2 needs to be stored. * * There is no point in doing this incrementally because stageUTF8 * uses so much less space per block than stage2, * so we immediately increase utf8Max to 0xffff. * * Do not increase utf8Max if it is already at 0xfeff because MBCSAddFromUnicode() * sets it to that value when stageUTF8 overflows. */ if( mbcsData->omitFromU && f<=1 && mbcsData->utf8Max<c && c<=0xffff && mbcsData->utf8Max<0xfeff ) { mbcsData->utf8Max=0xffff; } switch(f) { case -1: /* there was no precision/fallback indicator */ /* fall through to set the mappings */ case 0: /* set roundtrip mappings */ isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f); if(maxCharLength==1) { isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) { isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); } else { m->f|=MBCS_FROM_U_EXT_FLAG; m->moveFlag=UCM_MOVE_TO_EXT; } break; case 1: /* set only a fallback mapping from Unicode to codepage */ if(maxCharLength==1) { staticData->hasFromUnicodeFallback=TRUE; isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) { staticData->hasFromUnicodeFallback=TRUE; isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); } else { m->f|=MBCS_FROM_U_EXT_FLAG; m->moveFlag=UCM_MOVE_TO_EXT; } break; case 2: /* ignore |2 SUB mappings, except to move <subchar1> mappings to the extension table */ if(maxCharLength>1 && m->bLen==1) { m->f|=MBCS_FROM_U_EXT_FLAG; m->moveFlag=UCM_MOVE_TO_EXT; } break; case 3: /* set only a fallback mapping from codepage to Unicode */ staticData->hasToUnicodeFallback=TRUE; isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f); break; default: /* will not occur because the parser checked it already */ fprintf(stderr, "error: illegal fallback indicator %d\n", f); return FALSE; } } MBCSPostprocess(mbcsData, staticData); return isOK; } static UBool transformEUC(MBCSData *mbcsData) { uint8_t *p8; uint32_t i, value, oldLength, old3Top, new3Top; uint8_t b; oldLength=mbcsData->ucm->states.maxCharLength; if(oldLength<3) { return FALSE; } old3Top=mbcsData->stage3Top; /* careful: 2-byte and 4-byte codes are stored in platform endianness! */ /* test if all first bytes are in {0, 0x8e, 0x8f} */ p8=mbcsData->fromUBytes; #if !U_IS_BIG_ENDIAN if(oldLength==4) { p8+=3; } #endif for(i=0; i<old3Top; i+=oldLength) { b=p8[i]; if(b!=0 && b!=0x8e && b!=0x8f) { /* some first byte does not fit the EUC pattern, nothing to be done */ return FALSE; } } /* restore p if it was modified above */ p8=mbcsData->fromUBytes; /* modify outputType and adjust stage3Top */ mbcsData->ucm->states.outputType=(int8_t)(MBCS_OUTPUT_3_EUC+oldLength-3); mbcsData->stage3Top=new3Top=(old3Top*(oldLength-1))/oldLength; /* * EUC-encode all byte sequences; * see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly, * p. 161 in chapter 4 "Encoding Methods" * * This also must reverse the byte order if the platform is little-endian! */ if(oldLength==3) { uint16_t *q=(uint16_t *)p8; for(i=0; i<old3Top; i+=oldLength) { b=*p8; if(b==0) { /* short sequences are stored directly */ /* code set 0 or 1 */ (*q++)=(uint16_t)((p8[1]<<8)|p8[2]); } else if(b==0x8e) { /* code set 2 */ (*q++)=(uint16_t)(((p8[1]&0x7f)<<8)|p8[2]); } else /* b==0x8f */ { /* code set 3 */ (*q++)=(uint16_t)((p8[1]<<8)|(p8[2]&0x7f)); } p8+=3; } } else /* oldLength==4 */ { uint8_t *q=p8; uint32_t *p32=(uint32_t *)p8; for(i=0; i<old3Top; i+=4) { value=(*p32++); if(value<=0xffffff) { /* short sequences are stored directly */ /* code set 0 or 1 */ (*q++)=(uint8_t)(value>>16); (*q++)=(uint8_t)(value>>8); (*q++)=(uint8_t)value; } else if(value<=0x8effffff) { /* code set 2 */ (*q++)=(uint8_t)((value>>16)&0x7f); (*q++)=(uint8_t)(value>>8); (*q++)=(uint8_t)value; } else /* first byte is 0x8f */ { /* code set 3 */ (*q++)=(uint8_t)(value>>16); (*q++)=(uint8_t)((value>>8)&0x7f); (*q++)=(uint8_t)value; } } } return TRUE; } /* * Compact stage 2 for SBCS by overlapping adjacent stage 2 blocks as far * as possible. Overlapping is done on unassigned head and tail * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER. * Stage 1 indexes need to be adjusted accordingly. * This function is very similar to genprops/store.c/compactStage(). */ static void singleCompactStage2(MBCSData *mbcsData) { /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */ uint16_t map[MBCS_STAGE_2_MAX_BLOCKS]; uint16_t i, start, prevEnd, newStart; /* enter the all-unassigned first stage 2 block into the map */ map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX; /* begin with the first block after the all-unassigned one */ start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED; while(start<mbcsData->stage2Top) { prevEnd=(uint16_t)(newStart-1); /* find the size of the overlap */ for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2Single[start+i]==0 && mbcsData->stage2Single[prevEnd-i]==0; ++i) {} if(i>0) { map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i); /* move the non-overlapping indexes to their new positions */ start+=i; for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) { mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++]; } } else if(newStart<start) { /* move the indexes to their new positions */ map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart; for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) { mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++]; } } else /* no overlap && newStart==start */ { map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start; start=newStart+=MBCS_STAGE_2_BLOCK_SIZE; } } /* adjust stage2Top */ if(VERBOSE && newStart<mbcsData->stage2Top) { printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n", (unsigned long)mbcsData->stage2Top, (unsigned long)newStart, (long)(mbcsData->stage2Top-newStart)*2); } mbcsData->stage2Top=newStart; /* now adjust stage 1 */ for(i=0; i<MBCS_STAGE_1_SIZE; ++i) { mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]; } } /* Compact stage 3 for SBCS - same algorithm as above. */ static void singleCompactStage3(MBCSData *mbcsData) { uint16_t *stage3=(uint16_t *)mbcsData->fromUBytes; /* this array maps the ordinal number of a stage 3 block to its new stage 2 index */ uint16_t map[0x1000]; uint16_t i, start, prevEnd, newStart; /* enter the all-unassigned first stage 3 block into the map */ map[0]=0; /* begin with the first block after the all-unassigned one */ start=newStart=16; while(start<mbcsData->stage3Top) { prevEnd=(uint16_t)(newStart-1); /* find the size of the overlap */ for(i=0; i<16 && stage3[start+i]==0 && stage3[prevEnd-i]==0; ++i) {} if(i>0) { map[start>>4]=(uint16_t)(newStart-i); /* move the non-overlapping indexes to their new positions */ start+=i; for(i=(uint16_t)(16-i); i>0; --i) { stage3[newStart++]=stage3[start++]; } } else if(newStart<start) { /* move the indexes to their new positions */ map[start>>4]=newStart; for(i=16; i>0; --i) { stage3[newStart++]=stage3[start++]; } } else /* no overlap && newStart==start */ { map[start>>4]=start; start=newStart+=16; } } /* adjust stage3Top */ if(VERBOSE && newStart<mbcsData->stage3Top) { printf("compacting stage 3 from stage3Top=0x%lx to 0x%lx, saving %ld bytes\n", (unsigned long)mbcsData->stage3Top, (unsigned long)newStart, (long)(mbcsData->stage3Top-newStart)*2); } mbcsData->stage3Top=newStart; /* now adjust stage 2 */ for(i=0; i<mbcsData->stage2Top; ++i) { mbcsData->stage2Single[i]=map[mbcsData->stage2Single[i]>>4]; } } /* * Compact stage 2 by overlapping adjacent stage 2 blocks as far * as possible. Overlapping is done on unassigned head and tail * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER. * Stage 1 indexes need to be adjusted accordingly. * This function is very similar to genprops/store.c/compactStage(). */ static void compactStage2(MBCSData *mbcsData) { /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */ uint16_t map[MBCS_STAGE_2_MAX_BLOCKS]; uint16_t i, start, prevEnd, newStart; /* enter the all-unassigned first stage 2 block into the map */ map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX; /* begin with the first block after the all-unassigned one */ start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED; while(start<mbcsData->stage2Top) { prevEnd=(uint16_t)(newStart-1); /* find the size of the overlap */ for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2[start+i]==0 && mbcsData->stage2[prevEnd-i]==0; ++i) {} if(i>0) { map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i); /* move the non-overlapping indexes to their new positions */ start+=i; for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) { mbcsData->stage2[newStart++]=mbcsData->stage2[start++]; } } else if(newStart<start) { /* move the indexes to their new positions */ map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart; for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) { mbcsData->stage2[newStart++]=mbcsData->stage2[start++]; } } else /* no overlap && newStart==start */ { map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start; start=newStart+=MBCS_STAGE_2_BLOCK_SIZE; } } /* adjust stage2Top */ if(VERBOSE && newStart<mbcsData->stage2Top) { printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n", (unsigned long)mbcsData->stage2Top, (unsigned long)newStart, (long)(mbcsData->stage2Top-newStart)*4); } mbcsData->stage2Top=newStart; /* now adjust stage 1 */ for(i=0; i<MBCS_STAGE_1_SIZE; ++i) { mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]; } } static void MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData) { UCMStates *states; int32_t maxCharLength, stage3Width; states=&mbcsData->ucm->states; stage3Width=maxCharLength=states->maxCharLength; ucm_optimizeStates(states, &mbcsData->unicodeCodeUnits, mbcsData->toUFallbacks, mbcsData->countToUFallbacks, VERBOSE); /* try to compact the fromUnicode tables */ if(transformEUC(mbcsData)) { --stage3Width; } /* * UTF-8-friendly tries are built precompacted, to cope with variable * stage 3 allocation block sizes. * * Tables without precision indicators cannot be built that way, * because if a block was overlapped with a previous one, then a smaller * code point for the same block would not fit. * Therefore, such tables are not marked UTF-8-friendly and must be * compacted after all mappings are entered. */ if(!mbcsData->utf8Friendly) { if(maxCharLength==1) { singleCompactStage3(mbcsData); singleCompactStage2(mbcsData); } else { compactStage2(mbcsData); } } if(VERBOSE) { /*uint32_t c, i1, i2, i2Limit, i3;*/ printf("fromUnicode number of uint%s_t in stage 2: 0x%lx=%lu\n", maxCharLength==1 ? "16" : "32", (unsigned long)mbcsData->stage2Top, (unsigned long)mbcsData->stage2Top); printf("fromUnicode number of %d-byte stage 3 mapping entries: 0x%lx=%lu\n", (int)stage3Width, (unsigned long)mbcsData->stage3Top/stage3Width, (unsigned long)mbcsData->stage3Top/stage3Width); #if 0 c=0; for(i1=0; i1<MBCS_STAGE_1_SIZE; ++i1) { i2=mbcsData->stage1[i1]; if(i2==0) { c+=MBCS_STAGE_2_BLOCK_SIZE*MBCS_STAGE_3_BLOCK_SIZE; continue; } for(i2Limit=i2+MBCS_STAGE_2_BLOCK_SIZE; i2<i2Limit; ++i2) { if(maxCharLength==1) { i3=mbcsData->stage2Single[i2]; } else { i3=(uint16_t)mbcsData->stage2[i2]; } if(i3==0) { c+=MBCS_STAGE_3_BLOCK_SIZE; continue; } printf("U+%04lx i1=0x%02lx i2=0x%04lx i3=0x%04lx\n", (unsigned long)c, (unsigned long)i1, (unsigned long)i2, (unsigned long)i3); c+=MBCS_STAGE_3_BLOCK_SIZE; } } #endif } } static uint32_t MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, UNewDataMemory *pData, int32_t tableType) { MBCSData *mbcsData=(MBCSData *)cnvData; uint32_t stage2Start, stage2Length; uint32_t top, stageUTF8Length=0; int32_t i, stage1Top; uint32_t headerLength; _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 }; stage2Length=mbcsData->stage2Top; if(mbcsData->omitFromU) { /* find how much of stage2 can be omitted */ int32_t utf8Limit=(int32_t)mbcsData->utf8Max+1; uint32_t st2; i=utf8Limit>>MBCS_STAGE_1_SHIFT; if((utf8Limit&((1<<MBCS_STAGE_1_SHIFT)-1))!=0 && (st2=mbcsData->stage1[i])!=0) { /* utf8Limit is in the middle of an existing stage 2 block */ stage2Start=st2+((utf8Limit>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK); } else { /* find the last stage2 block with mappings before utf8Limit */ while(i>0 && (st2=mbcsData->stage1[--i])==0) {} /* stage2 up to the end of this block corresponds to stageUTF8 */ stage2Start=st2+MBCS_STAGE_2_BLOCK_SIZE; } header.options|=MBCS_OPT_NO_FROM_U; header.fullStage2Length=stage2Length; stage2Length-=stage2Start; if(VERBOSE) { printf("+ omitting %lu out of %lu stage2 entries and %lu fromUBytes\n", stage2Start, mbcsData->stage2Top, mbcsData->stage3Top); printf("+ total size savings: %lu bytes\n", stage2Start*4+mbcsData->stage3Top); } } else { stage2Start=0; } if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) { stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */ } else { stage1Top=0x40; /* 0x40==64 */ } /* adjust stage 1 entries to include the size of stage 1 in the offsets to stage 2 */ if(mbcsData->ucm->states.maxCharLength==1) { for(i=0; i<stage1Top; ++i) { mbcsData->stage1[i]+=(uint16_t)stage1Top; } /* stage2Top/Length have counted 16-bit results, now we need to count bytes */ /* also round up to a multiple of 4 bytes */ stage2Length=(stage2Length*2+1)&~1; /* stage3Top has counted 16-bit results, now we need to count bytes */ mbcsData->stage3Top*=2; if(mbcsData->utf8Friendly) { header.version[2]=(uint8_t)(SBCS_UTF8_MAX>>8); /* store 0x1f for max==0x1fff */ } } else { for(i=0; i<stage1Top; ++i) { mbcsData->stage1[i]+=(uint16_t)stage1Top/2; /* stage 2 contains 32-bit entries, stage 1 16-bit entries */ } /* stage2Top/Length have counted 32-bit results, now we need to count bytes */ stage2Length*=4; /* leave stage2Start counting 32-bit units */ if(mbcsData->utf8Friendly) { stageUTF8Length=(mbcsData->utf8Max+1)>>MBCS_UTF8_STAGE_SHIFT; header.version[2]=(uint8_t)(mbcsData->utf8Max>>8); /* store 0xd7 for max==0xd7ff */ } /* stage3Top has already counted bytes */ } /* round up stage3Top so that the sizes of all data blocks are multiples of 4 */ mbcsData->stage3Top=(mbcsData->stage3Top+3)&~3; /* fill the header */ if(header.options&MBCS_OPT_INCOMPATIBLE_MASK) { header.version[0]=5; if(header.options&MBCS_OPT_NO_FROM_U) { headerLength=10; /* include fullStage2Length */ } else { headerLength=MBCS_HEADER_V5_MIN_LENGTH; /* 9 */ } } else { header.version[0]=4; headerLength=MBCS_HEADER_V4_LENGTH; /* 8 */ } header.version[1]=3; /* header.version[2] set above for utf8Friendly data */ header.options|=(uint32_t)headerLength; header.countStates=mbcsData->ucm->states.countStates; header.countToUFallbacks=mbcsData->countToUFallbacks; header.offsetToUCodeUnits= headerLength*4+ mbcsData->ucm->states.countStates*1024+ mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback); header.offsetFromUTable= header.offsetToUCodeUnits+ mbcsData->ucm->states.countToUCodeUnits*2; header.offsetFromUBytes= header.offsetFromUTable+ stage1Top*2+ stage2Length; header.fromUBytesLength=mbcsData->stage3Top; top=header.offsetFromUBytes+stageUTF8Length*2; if(!(header.options&MBCS_OPT_NO_FROM_U)) { top+=header.fromUBytesLength; } header.flags=(uint8_t)(mbcsData->ucm->states.outputType); if(tableType&TABLE_EXT) { if(top>0xffffff) { fprintf(stderr, "error: offset 0x%lx to extension table exceeds 0xffffff\n", (long)top); return 0; } header.flags|=top<<8; } /* write the MBCS data */ udata_writeBlock(pData, &header, headerLength*4); udata_writeBlock(pData, mbcsData->ucm->states.stateTable, header.countStates*1024); udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback)); udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->ucm->states.countToUCodeUnits*2); udata_writeBlock(pData, mbcsData->stage1, stage1Top*2); if(mbcsData->ucm->states.maxCharLength==1) { udata_writeBlock(pData, mbcsData->stage2Single+stage2Start, stage2Length); } else { udata_writeBlock(pData, mbcsData->stage2+stage2Start, stage2Length); } if(!(header.options&MBCS_OPT_NO_FROM_U)) { udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top); } if(stageUTF8Length>0) { udata_writeBlock(pData, mbcsData->stageUTF8, stageUTF8Length*2); } /* return the number of bytes that should have been written */ return top; }