/* -*-C-*- ******************************************************************************** * * File: permute.c (Formerly permute.c) * Description: Choose OCR text given character-probability maps * for sequences of glyph fragments and a dictionary provided as * a Dual Acyclic Word Graph. * In this file, "permute" should be read "combine." * Author: Mark Seaman, OCR Technology * Created: Fri Sep 22 14:05:51 1989 * Modified: Thu Jan 3 16:38:46 1991 (Mark Seaman) marks@hpgrlt * Language: C * Package: N/A * Status: Experimental (Do Not Distribute) * * (c) Copyright 1989, Hewlett-Packard Company. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * *********************************************************************************/ /*---------------------------------------------------------------------- I n c l u d e s ---------------------------------------------------------------------*/ #include <assert.h> #include <math.h> #include "const.h" #include "permute.h" #include "callcpp.h" #include "context.h" #include "conversion.h" #include "freelist.h" #include "globals.h" #include "ndminx.h" #include "permdawg.h" #include "permngram.h" #include "ratngs.h" #include "stopper.h" #include "tordvars.h" #include "tprintf.h" #include "trie.h" #include "varable.h" #include "unicharset.h" #include "dict.h" #include "image.h" #include "ccutil.h" int permutation_count; // Used in metrics.cpp. /*---------------------------------------------------------------------- V a r i a b l e s ----------------------------------------------------------------------*/ // TODO(tkielbus) Choose a value for the MAX_NUM_EDGES constant // (or make it dynamic) #define MAX_NUM_EDGES 2000000 #define MAX_DOC_EDGES 250000 #define MAX_USER_EDGES 50000 /* Weights for adjustment */ #define NON_WERD 1.25 #define GARBAGE_STRING 1.5 #define MAX_PERM_LENGTH 128 // debugging flags INT_VAR(fragments_debug, 0, "Debug character fragments"); BOOL_VAR(segment_debug, 0, "Debug the whole segmentation process"); BOOL_VAR(permute_debug, 0, "Debug char permutation process"); // control parameters double_VAR(bestrate_pruning_factor, 2.0, "Multiplying factor of current best rate to prune other hypotheses"); BOOL_VAR(permute_script_word, 0, "Turn on word script consistency permuter"); BOOL_VAR(segment_segcost_rating, 0, "incorporate segmentation cost in word rating?"); double_VAR(segment_reward_script, 0.95, "Score multipler for script consistency within a word. " "Being a 'reward' factor, it should be <= 1. " "Smaller value implies bigger reward."); double_VAR(segment_penalty_dict_nonword, NON_WERD, "Score multiplier for glyph fragment segmentations which do not " "match a dictionary word (lower is better)."); double_VAR(segment_penalty_garbage, GARBAGE_STRING, "Score multiplier for poorly cased strings that are not in the " "dictionary and generally look like garbage (lower is better)."); BOOL_VAR(save_doc_words, 0, "Save Document Words"); BOOL_VAR(doc_dict_enable, 1, "Enable Document Dictionary "); BOOL_VAR(ngram_permuter_activated, FALSE, "Activate character-level n-gram-based permuter"); STRING_VAR(global_user_words_suffix, "", "A list of user-provided words."); // This is an ugly way to incorporate segmentation cost in word rating. // See comments in incorporate_segcost. float wordseg_rating_adjust_factor; int permute_only_top = 0; #define SIM_CERTAINTY_SCALE -10.0 /* Similarity matcher values */ #define SIM_CERTAINTY_OFFSET -10.0 /* Similarity matcher values */ #define SIMILARITY_FLOOR 100.0 /* Worst E*L product to stop on */ // TODO(daria): If hyphens are different in different languages and can be // inferred from training data we should load their values dynamically. static const char kHyphenSymbol[] = "-"; /*---------------------------------------------------------------------- F u n c t i o n s ----------------------------------------------------------------------*/ /********************************************************************** * get_best_delete_other * * Returns the best of two choices and deletes the other (worse) choice. * A choice is better if it has a non-empty string and has a lower * rating than the other choice. If the ratings are the same, * choice2 is preferred over choice1. **********************************************************************/ WERD_CHOICE *get_best_delete_other(WERD_CHOICE *choice1, WERD_CHOICE *choice2) { if (!choice1) return choice2; if (!choice2) return choice1; if (choice1->rating() < choice2->rating() || choice2->length() == 0) { delete choice2; return choice1; } else { delete choice1; return choice2; } } /********************************************************************** * good_choice * * Return TRUE if a good answer is found for the unknown blob rating. **********************************************************************/ int good_choice(const WERD_CHOICE &choice) { register float certainty; if (tord_similarity_enable) { if ((choice.rating() + 1) * choice.certainty() > SIMILARITY_FLOOR) return false; certainty = SIM_CERTAINTY_OFFSET + choice.rating() * SIM_CERTAINTY_SCALE; } else { certainty = choice.certainty(); } return (certainty > tord_certainty_threshold) ? true : false; } /********************************************************************** * add_document_word * * Add a word found on this document to the document specific * dictionary. **********************************************************************/ namespace tesseract { void Dict::add_document_word(const WERD_CHOICE &best_choice) { // Do not add hyphenated word parts to the document dawg. // hyphen_word_ will be non-NULL after the set_hyphen_word() is // called when the first part of the hyphenated word is // discovered and while the second part of the word is recognized. // hyphen_word_ is cleared in cc_recg() before the next word on // the line is recognized. if (hyphen_word_) return; char filename[CHARS_PER_LINE]; FILE *doc_word_file; int stringlen = best_choice.length(); if (!doc_dict_enable || valid_word(best_choice) || CurrentWordAmbig() || stringlen < 2) return; if (!good_choice(best_choice) || stringlen == 2) { if (best_choice.certainty() < permuter_pending_threshold) return; if (!pending_words_->word_in_dawg(best_choice)) { if (stringlen > 2 || (stringlen == 2 && getUnicharset().get_isupper(best_choice.unichar_id(0)) && getUnicharset().get_isupper(best_choice.unichar_id(1)))) { pending_words_->add_word_to_dawg(best_choice); } return; } } if (save_doc_words) { strcpy(filename, getImage()->getCCUtil()->imagefile.string()); strcat (filename, ".doc"); doc_word_file = open_file (filename, "a"); fprintf (doc_word_file, "%s\n", best_choice.debug_string(getUnicharset()).string()); fclose(doc_word_file); } document_words_->add_word_to_dawg(best_choice); } /********************************************************************** * adjust_non_word * * Assign an adjusted value to a string that is a non-word. The value * that this word choice has is based on case and punctuation rules. * The adjustment value applied is stored in adjust_factor upon return. **********************************************************************/ void Dict::adjust_non_word(WERD_CHOICE *word, float *adjust_factor) { float new_rating; if (permute_debug) cprintf("Non-word: %s %4.2f ", word->debug_string(getUnicharset()).string(), word->rating()); new_rating = word->rating() + RATING_PAD; if (Context::case_ok(*word, getUnicharset()) && valid_punctuation(*word)) { new_rating *= segment_penalty_dict_nonword; *adjust_factor = segment_penalty_dict_nonword; if (permute_debug) tprintf(", W"); } else { new_rating *= segment_penalty_garbage; *adjust_factor = segment_penalty_garbage; if (permute_debug) { if (!Context::case_ok(*word, getUnicharset())) tprintf(", C"); if (!valid_punctuation(*word)) tprintf(", P"); } } new_rating -= RATING_PAD; word->set_rating(new_rating); if (permute_debug) cprintf (" %4.2f --> %4.2f\n", *adjust_factor, new_rating); } /********************************************************************** * init_permute * * Initialize anything that needs to be set up for the permute * functions. **********************************************************************/ void Dict::init_permute() { STRING name; STRING &lang = getImage()->getCCUtil()->lang; if (dawgs_.length() != 0) end_permute(); hyphen_unichar_id_ = getUnicharset().unichar_to_id(kHyphenSymbol); TessdataManager &tessdata_manager = getImage()->getCCUtil()->tessdata_manager; // Load dawgs_. if (global_load_punc_dawg && tessdata_manager.SeekToStart(TESSDATA_PUNC_DAWG)) { dawgs_ += new SquishedDawg(tessdata_manager.GetDataFilePtr(), DAWG_TYPE_PUNCTUATION, lang, PUNC_PERM); } if (global_load_system_dawg && tessdata_manager.SeekToStart(TESSDATA_SYSTEM_DAWG)) { dawgs_ += new SquishedDawg(tessdata_manager.GetDataFilePtr(), DAWG_TYPE_WORD, lang, SYSTEM_DAWG_PERM); } if (global_load_number_dawg && tessdata_manager.SeekToStart(TESSDATA_NUMBER_DAWG)) { dawgs_ += new SquishedDawg(tessdata_manager.GetDataFilePtr(), DAWG_TYPE_NUMBER, lang, NUMBER_PERM); } if (((STRING &)global_user_words_suffix).length() > 0) { Trie *trie_ptr = new Trie(DAWG_TYPE_WORD, lang, USER_DAWG_PERM, MAX_USER_EDGES, getUnicharset().size()); name = getImage()->getCCUtil()->language_data_path_prefix; name += global_user_words_suffix; if (!trie_ptr->read_word_list(name.string(), getUnicharset())) { tprintf("Error: failed to load %s\n", name.string()); exit(1); } dawgs_ += trie_ptr; } document_words_ = new Trie(DAWG_TYPE_WORD, lang, DOC_DAWG_PERM, MAX_DOC_EDGES, getUnicharset().size()); dawgs_ += document_words_; // This dawg is temporary and should not be searched by letter_is_ok. pending_words_ = new Trie(DAWG_TYPE_WORD, lang, NO_PERM, MAX_DOC_EDGES, getUnicharset().size()); // The frequent words dawg is only searched when a word // is found in any of the other dawgs. if (tessdata_manager.SeekToStart(TESSDATA_FREQ_DAWG)) { freq_dawg_ = new SquishedDawg(tessdata_manager.GetDataFilePtr(), DAWG_TYPE_WORD, lang, FREQ_DAWG_PERM); } // Construct a list of corresponding successors for each dawg. Each entry i // in the successors_ vector is a vector of integers that represent the // indices into the dawgs_ vector of the successors for dawg i. successors_.reserve(dawgs_.length()); for (int i = 0; i < dawgs_.length(); ++i) { const Dawg *dawg = dawgs_[i]; SuccessorList *lst = new SuccessorList(); for (int j = 0; j < dawgs_.length(); ++j) { const Dawg *other = dawgs_[j]; if (dawg->lang() == other->lang() && kDawgSuccessors[dawg->type()][other->type()]) *lst += j; } successors_ += lst; } } void Dict::end_permute() { if (dawgs_.length() == 0) return; // Not safe to call twice. dawgs_.delete_data_pointers(); successors_.delete_data_pointers(); dawgs_.clear(); successors_.clear(); document_words_ = NULL; if (pending_words_ != NULL) delete pending_words_; pending_words_ = NULL; if (freq_dawg_ != NULL) delete freq_dawg_; freq_dawg_ = NULL; } /********************************************************************** * permute_all * * Permute all the characters together using all of the different types * of permuters/selectors available. Each of the characters must have * a non-NULL choice list. * * Note: order of applying permuters does matter, since the latter * permuter will be recorded if the resulting word ratings are the same. **********************************************************************/ WERD_CHOICE *Dict::permute_all(const BLOB_CHOICE_LIST_VECTOR &char_choices, float rating_limit, WERD_CHOICE *raw_choice) { WERD_CHOICE *result1; WERD_CHOICE *result2 = NULL; BOOL8 any_alpha; float top_choice_rating_limit = rating_limit; // Initialize result1 from the result of permute_top_choice. result1 = permute_top_choice(char_choices, &top_choice_rating_limit, raw_choice, &any_alpha); // Enforce script consistency within a word on some scripts if (permute_script_word && !word_script_eq(char_choices, getUnicharset().common_sid()) && !word_script_eq(char_choices, getUnicharset().latin_sid())) { result2 = permute_script_words(char_choices); // TODO(dsl): incorporate segmentation cost into word rating. // This should only be turned on for scripts that we have a segmentation // cost model for, such as CJK. if (segment_segcost_rating) incorporate_segcost(result2); result1 = get_best_delete_other(result1, result2); } // Permute character fragments if necessary. if (result1 == NULL || result1->fragment_mark()) { result2 = top_fragments_permute_and_select(char_choices, top_choice_rating_limit); result1 = get_best_delete_other(result1, result2); } // TODO(daria): update ngram permuter code. if (ngram_permuter_activated) { tprintf("Error: ngram permuter functionality is not available\n"); exit(1); // A_CHOICE *ngram_choice = // ngram_permute_and_select(old_char_choices, rating_limit, word_dawg_); // return ngram_choice; } if (result1 == NULL) return (NULL); if (permute_only_top) return result1; result2 = dawg_permute_and_select(char_choices, rating_limit); result1 = get_best_delete_other(result1, result2); result2 = permute_compound_words(char_choices, rating_limit); result1 = get_best_delete_other(result1, result2); return (result1); } // Returns the top choice char id. A helper function to make code cleaner. UNICHAR_ID get_top_choice_uid(BLOB_CHOICE_LIST *blob_list) { BLOB_CHOICE_IT blob_choice_it; blob_choice_it.set_to_list(blob_list); return (blob_choice_it.data()) ? blob_choice_it.data()->unichar_id() : INVALID_UNICHAR_ID; } // Return the "dominant" script ID for the word. By "dominant", the script // must account for at least half the characters. Otherwise, it returns 0. int get_top_word_script(const BLOB_CHOICE_LIST_VECTOR &char_choices, const UNICHARSET &unicharset) { int max_script = unicharset.get_script_table_size(); int *sid = new int[max_script]; int x; for (x = 0; x < max_script; x++) sid[x] = 0; for (x = 0; x < char_choices.length(); ++x) { BLOB_CHOICE_IT blob_choice_it; blob_choice_it.set_to_list(char_choices.get(x)); sid[blob_choice_it.data()->script_id()]++; } // Note that high script ID overrides lower one on a tie, thus biasing // towards non-Common script (if sorted that way in unicharset file). int max_sid = 0; for (x = 1; x < max_script; x++) if (sid[x] >= sid[max_sid]) max_sid = x; if (sid[max_sid] < char_choices.length() / 2) max_sid = unicharset.null_sid(); delete[] sid; return max_sid; } /********************************************************************** * Checks whether the dominant word script, if there is one, matches * the given target script ID. **********************************************************************/ bool Dict::word_script_eq(const BLOB_CHOICE_LIST_VECTOR &char_choices, int target_sid) { int max_sid = get_top_word_script(char_choices, getUnicharset()); // If "Latin" is not a loaded script, then latin_sid() would return 0. // max_sid could also be 0 if there is no dominant script. // This is faster than // strcmp(getUnicharset().get_script_from_script_id(max_sid), "Latin") return (max_sid > 0 && max_sid == target_sid); } /********************************************************************** * Iterate through all the character choices (for a single blob) and * return the first that matches the given type, which is one of 'aA0px*', * for lower, upper, digit, punctuation, other, and 'any', respectively. * If not match is found, a NULL is returned. **********************************************************************/ BLOB_CHOICE* find_choice_by_type( BLOB_CHOICE_LIST *char_choices, char target_type, const UNICHARSET &unicharset) { BLOB_CHOICE_IT c_it; c_it.set_to_list(char_choices); for (c_it.mark_cycle_pt(); !c_it.cycled_list(); c_it.forward()) { bool found = false; UNICHAR_ID unichar_id = c_it.data()->unichar_id(); switch (target_type) { case '*': found = true; break; case 'A': found = unicharset.get_isupper(unichar_id); break; case 'a': found = unicharset.get_islower(unichar_id); break; case '0': found = unicharset.get_isdigit(unichar_id); break; case 'p': found = unicharset.get_ispunctuation(unichar_id); break; case 'x': found = !unicharset.get_isupper(unichar_id) && !unicharset.get_islower(unichar_id) && !unicharset.get_isdigit(unichar_id) && !unicharset.get_ispunctuation(unichar_id); break; } if (found) return c_it.data(); } return NULL; } /********************************************************************** * Iterate through all the character choices (for a single blob) and * return the first that matches the target script ID. If backup_sid * is not 0, then a match on either the target or backup sid is allowed. * Note that there is no preference between a target or backup sid. * To search for another sid only if no target_sid matched, use * secondary_sid. * So for example, to find first Han or Common char choice, do * find_choice_by_script(cchoice, han_sid, common_sid, 0); * To find first Han choice, but allow Common if none is found, do * find_choice_by_script(cchoice, han_sid, 0, common_sid); **********************************************************************/ BLOB_CHOICE* find_choice_by_script( BLOB_CHOICE_LIST *char_choices, int target_sid, int backup_sid, int secondary_sid) { BLOB_CHOICE_IT c_it; c_it.set_to_list(char_choices); for (c_it.mark_cycle_pt(); !c_it.cycled_list(); c_it.forward()) { bool found = false; if (c_it.data()->script_id() == 0) continue; if (c_it.data()->script_id() == target_sid) found = true; if (backup_sid > 0 && c_it.data()->script_id() == backup_sid) found = true; if (found) return c_it.data(); } if (secondary_sid > 0) { c_it.set_to_list(char_choices); for (c_it.mark_cycle_pt(); !c_it.cycled_list(); c_it.forward()) { if (c_it.data()->script_id() == 0) continue; if (c_it.data()->script_id() == secondary_sid) return c_it.data(); } } return NULL; } /********************************************************************** * Incorporate segmentation cost into the word rating. This is done * through a mutliplier wordseg_rating_adjust_factor which is determined * in bestfirst.cpp during state evaluation. This is not the cleanest * way to do this. It would be better to reorganize the SEARCH_STATE * to keep track of associated states, or do the rating adjustment * outside the permuter in evalaute_state. **********************************************************************/ void Dict::incorporate_segcost(WERD_CHOICE *word) { if (!word || wordseg_rating_adjust_factor <= 0) return; float old_rating = word->rating(); float new_rating = old_rating * wordseg_rating_adjust_factor; word->set_rating(new_rating); if (permute_debug) tprintf("Permute segadjust %f * %f --> %f\n", old_rating, wordseg_rating_adjust_factor, new_rating); } /********************************************************************** * Try flipping characters in a word to get better script consistency. * Similar to how upper/lower case checking is done in top_choice_permuter, * this permuter tries to suggest a more script-consistent choice AND * modifieds the rating. So it combines both the case_ok check and * adjust_non_word functionality. However, instead of penalizing an * inconsistent word with a > 1 multiplier, we reward the script-consistent * choice with a < 1 multiplier. **********************************************************************/ WERD_CHOICE* Dict::permute_script_words( const BLOB_CHOICE_LIST_VECTOR &char_choices) { if (char_choices.length() > MAX_WERD_LENGTH) return NULL; int word_sid = get_top_word_script(char_choices, getUnicharset()); if (word_sid == getUnicharset().null_sid()) return NULL; if (permute_debug) { tprintf("\n\nPermuteScript %s\n", getUnicharset().get_script_from_script_id(word_sid)); print_char_choices_list("", char_choices, getUnicharset(), permute_debug > 1); } WERD_CHOICE *current_word = new WERD_CHOICE(MAX_WERD_LENGTH); BLOB_CHOICE_IT blob_choice_it; bool replaced = false; bool prev_is_consistent = false; for (int x = 0; x < char_choices.length(); ++x) { blob_choice_it.set_to_list(char_choices.get(x)); BLOB_CHOICE *first_choice = blob_choice_it.data(); if (!first_choice) return NULL; UNICHAR_ID unichar_id = first_choice->unichar_id(); bool sid_consistent = (first_choice->script_id() == word_sid); bool this_is_punct = getUnicharset().get_ispunctuation(unichar_id); if (!sid_consistent && !this_is_punct && prev_is_consistent) { // If the previous char is CJK, we prefer a cjk over non-cjk char if (permute_debug) { tprintf("Checking %s r%g\n", getUnicharset().id_to_unichar(unichar_id), first_choice->rating()); print_ratings_list("\t", char_choices.get(x), getUnicharset()); } // prefer a script consistent choice BLOB_CHOICE* c_it = find_choice_by_script(char_choices.get(x), word_sid, 0, 0); // make this a separate check // otherwise, prefer a punctuation if (c_it == NULL) c_it = find_choice_by_type(char_choices.get(x), 'p', getUnicharset()); if (c_it != NULL) { if (permute_debug) tprintf("Replacing %d r%g ==> %d r%g\n", first_choice->unichar_id(), first_choice->rating(), c_it->unichar_id(), c_it->rating()); first_choice = c_it; replaced = true; } } current_word->append_unichar_id_space_allocated( first_choice->unichar_id(), 1, first_choice->rating(), first_choice->certainty()); prev_is_consistent = sid_consistent; } if (replaced) { // When we replace a word choice (usually top choice) with // another for the sake of script consistency, we need to improve its // rating so that it will replace the best choice. How much we modify // the rating determines how strong is the script consistency constraint. // We need a more consistent solution for all contextual constraints // like case, punct pattern, script, etc. Right now, this does the same // thing as adjust_non_words for case and punctuation rules. float rating = current_word->rating(); rating *= segment_reward_script; current_word->set_rating(rating); } current_word->populate_unichars(getUnicharset()); if (permute_debug && replaced) current_word->print("<== permute_script_word **"); return current_word; } /********************************************************************** * permute_characters * * Permute these characters together according to each of the different * permuters that are enabled. **********************************************************************/ void Dict::permute_characters(const BLOB_CHOICE_LIST_VECTOR &char_choices, float limit, WERD_CHOICE *best_choice, WERD_CHOICE *raw_choice) { float old_raw_choice_rating = raw_choice->rating(); permutation_count++; /* Global counter */ if (tord_display_ratings > 1) { cprintf("\nchar_choices in permute_characters:\n"); print_char_choices_list("\n==> Input CharChoices", char_choices, getUnicharset(), true); } if (char_choices.length() == 1 && get_top_choice_uid(char_choices.get(0)) == 0) return; WERD_CHOICE *this_choice = permute_all(char_choices, limit, raw_choice); if (raw_choice->rating() < old_raw_choice_rating) { // Populate unichars_ and unichar_lengths_ of raw_choice. This is // needed for various components that still work with unichars rather // than unichar ids (e.g. AdaptToWord). raw_choice->populate_unichars(getUnicharset()); } if (this_choice && this_choice->rating() < best_choice->rating()) { *best_choice = *this_choice; // Populate unichars_ and unichar_lengths_ of best_choice. This is // needed for various components that still work with unichars rather // than unichar ids (dawg, *_ok functions, various hard-coded hacks). best_choice->populate_unichars(getUnicharset()); if (tord_display_ratings) { cprintf("permute_characters: %s\n", best_choice->debug_string(getUnicharset()).string()); } } delete this_choice; } /********************************************************************** * permute_compound_words * * Return the top choice for each character as the choice for the word. **********************************************************************/ WERD_CHOICE *Dict::permute_compound_words( const BLOB_CHOICE_LIST_VECTOR &char_choices, float rating_limit) { BLOB_CHOICE *first_choice; WERD_CHOICE *best_choice = NULL; WERD_CHOICE current_word(MAX_WERD_LENGTH); int first_index = 0; int x; BLOB_CHOICE_IT blob_choice_it; if (char_choices.length() > MAX_WERD_LENGTH) { WERD_CHOICE *bad_word_choice = new WERD_CHOICE(); bad_word_choice->make_bad(); return bad_word_choice; } UNICHAR_ID slash = getUnicharset().unichar_to_id("/"); UNICHAR_ID dash = getUnicharset().unichar_to_id("-"); for (x = 0; x < char_choices.length(); ++x) { blob_choice_it.set_to_list(char_choices.get(x)); first_choice = blob_choice_it.data(); if (first_choice->unichar_id() == slash || first_choice->unichar_id() == dash) { if (x > first_index) { if (segment_debug) cprintf ("Hyphenated word found\n"); permute_subword(char_choices, rating_limit, first_index, x - 1, ¤t_word); if (current_word.rating() > rating_limit) break; } // Append hyphen/slash separator to current_word. current_word.append_unichar_id_space_allocated( first_choice->unichar_id(), 1, first_choice->rating(), first_choice->certainty()); first_index = x + 1; // update first_index } } if (first_index > 0 && first_index < x && current_word.rating() <= rating_limit) { permute_subword(char_choices, rating_limit, first_index, x - 1, ¤t_word); best_choice = new WERD_CHOICE(current_word); best_choice->set_permuter(COMPOUND_PERM); } return (best_choice); } /********************************************************************** * permute_subword * * Permute a part of a compound word this subword is bounded by hyphens * and the start and end of the word. Call the standard word permute * function on a set of choices covering only part of the original * word. When it is done reclaim the memory that was used in the * excercise. **********************************************************************/ void Dict::permute_subword(const BLOB_CHOICE_LIST_VECTOR &char_choices, float rating_limit, int start, int end, WERD_CHOICE *current_word) { int x; BLOB_CHOICE_LIST_VECTOR subchoices; WERD_CHOICE *best_choice = NULL; WERD_CHOICE raw_choice; raw_choice.make_bad(); DisableChoiceAccum(); for (x = start; x <= end; x++) { if (char_choices.get(x) != NULL) { subchoices += char_choices.get(x); } } if (!subchoices.empty()) { bool old_segment_dawg_debug = segment_dawg_debug; if (segment_debug) segment_dawg_debug.set_value(true); best_choice = permute_all(subchoices, rating_limit, &raw_choice); if (segment_debug) { segment_dawg_debug.set_value(old_segment_dawg_debug); } if (best_choice && best_choice->length() > 0) { *current_word += *best_choice; } else { current_word->set_rating(MAX_FLOAT32); } } else { current_word->set_rating(MAX_FLOAT32); } if (best_choice) delete best_choice; if (segment_debug && current_word->rating() < MAX_FLOAT32) { cprintf ("Subword permuted = %s, %5.2f, %5.2f\n\n", current_word->debug_string(getUnicharset()).string(), current_word->rating(), current_word->certainty()); } EnableChoiceAccum(); } /********************************************************************** * permute_top_choice * * Return the top choice for each character as the choice for the word. * In addition a choice is created for the best lower and upper case * non-words. In each character position the best lower (or upper) case * character is substituted for the best overall character. **********************************************************************/ WERD_CHOICE *Dict::permute_top_choice( const BLOB_CHOICE_LIST_VECTOR &char_choices, float* rating_limit, WERD_CHOICE *raw_choice, BOOL8 *any_alpha) { BLOB_CHOICE *first_choice; const char *first_char; //first choice const char *second_char; //second choice const char *third_char; //third choice char prev_char[UNICHAR_LEN + 1]; //prev in word const char *next_char = ""; //next in word const char *next_next_char = ""; //after next next in word WERD_CHOICE word(MAX_PERM_LENGTH); word.set_permuter(TOP_CHOICE_PERM); WERD_CHOICE capital_word(MAX_PERM_LENGTH); capital_word.set_permuter(UPPER_CASE_PERM); WERD_CHOICE lower_word(MAX_PERM_LENGTH); lower_word.set_permuter(LOWER_CASE_PERM); int x; BOOL8 char_alpha; float first_rating = 0; float adjust_factor; float certainties[MAX_PERM_LENGTH + 1]; float lower_certainties[MAX_PERM_LENGTH + 1]; float upper_certainties[MAX_PERM_LENGTH + 1]; BLOB_CHOICE_IT blob_choice_it; UNICHAR_ID temp_id; UNICHAR_ID unichar_id; UNICHAR_ID space = getUnicharset().unichar_to_id(" "); register const char* ch; register inT8 lower_done; register inT8 upper_done; prev_char[0] = '\0'; if (any_alpha != NULL) *any_alpha = FALSE; if (char_choices.length() > MAX_PERM_LENGTH) { return (NULL); } for (x = 0; x < char_choices.length(); ++x) { if (x + 1 < char_choices.length()) { unichar_id = get_top_choice_uid(char_choices.get(x+1)); next_char = unichar_id != INVALID_UNICHAR_ID ? getUnicharset().id_to_unichar(unichar_id) : ""; } else { next_char = ""; } if (x + 2 < char_choices.length()) { unichar_id = get_top_choice_uid(char_choices.get(x+2)); next_next_char = unichar_id != INVALID_UNICHAR_ID ? getUnicharset().id_to_unichar(unichar_id) : ""; } else { next_next_char = ""; } blob_choice_it.set_to_list(char_choices.get(x)); ASSERT_HOST(!blob_choice_it.empty()); first_choice = NULL; for (blob_choice_it.mark_cycle_pt(); !blob_choice_it.cycled_list(); blob_choice_it.forward()) { // find the best non-fragment char choice temp_id = blob_choice_it.data()->unichar_id(); if (!(getUnicharset().get_fragment(temp_id))) { first_choice = blob_choice_it.data(); break; } else if (char_choices.length() > 1) { word.set_fragment_mark(true); capital_word.set_fragment_mark(true); lower_word.set_fragment_mark(true); } } if (first_choice == NULL) { cprintf("Permuter found only fragments for" " character at position %d; word=%s\n", x, word.debug_string(getUnicharset()).string()); } ASSERT_HOST(first_choice != NULL); unichar_id = first_choice->unichar_id() != INVALID_UNICHAR_ID ? first_choice->unichar_id() : space; first_char = getUnicharset().id_to_unichar(unichar_id); first_rating = first_choice->rating(); word.append_unichar_id_space_allocated( unichar_id, 1, first_choice->rating(), first_choice->certainty()); capital_word.append_unichar_id_space_allocated( unichar_id, 1, first_choice->rating(), first_choice->certainty()); lower_word.append_unichar_id_space_allocated( unichar_id, 1, first_choice->rating(), first_choice->certainty()); certainties[x] = first_choice->certainty(); lower_certainties[x] = first_choice->certainty(); upper_certainties[x] = first_choice->certainty(); lower_done = FALSE; upper_done = FALSE; char_alpha = FALSE; second_char = ""; third_char = ""; for (; !blob_choice_it.cycled_list(); blob_choice_it.forward()) { unichar_id = blob_choice_it.data()->unichar_id(); if (getUnicharset().eq(unichar_id, "l") && !blob_choice_it.at_last() && blob_choice_it.data_relative(1)->rating() == first_rating) { temp_id = blob_choice_it.data_relative(1)->unichar_id(); if (getUnicharset().eq(temp_id, "1") || getUnicharset().eq(temp_id, "I")) { second_char = getUnicharset().id_to_unichar(temp_id); blob_choice_it.forward(); if (!blob_choice_it.at_last() && blob_choice_it.data_relative(1)->rating() == first_rating) { temp_id = blob_choice_it.data_relative(1)->unichar_id(); if (getUnicharset().eq(temp_id, "1") || getUnicharset().eq(temp_id, "I")) { third_char = getUnicharset().id_to_unichar(temp_id); blob_choice_it.forward(); } } ch = choose_il1 (first_char, second_char, third_char, prev_char, next_char, next_next_char); unichar_id = (ch != NULL && *ch != '\0') ? getUnicharset().unichar_to_id(ch) : INVALID_UNICHAR_ID; if (strcmp(ch, "l") != 0 && getUnicharset().eq(word.unichar_id(x), "l")) { word.set_unichar_id(unichar_id, x); lower_word.set_unichar_id(unichar_id, x); capital_word.set_unichar_id(unichar_id, x); } } } if (unichar_id != INVALID_UNICHAR_ID) { /* Find lower case */ if (!lower_done && (getUnicharset().get_islower(unichar_id) || (getUnicharset().get_isupper(unichar_id) && x == 0))) { lower_word.set_unichar_id(unichar_id, x); lower_word.set_rating(lower_word.rating() - first_choice->rating() + blob_choice_it.data()->rating()); if (blob_choice_it.data()->certainty() < lower_word.certainty()) { lower_word.set_certainty(blob_choice_it.data()->certainty()); } lower_certainties[x] = blob_choice_it.data()->certainty(); lower_done = TRUE; } /* Find upper case */ if (!upper_done && getUnicharset().get_isupper(unichar_id)) { capital_word.set_unichar_id(unichar_id, x); capital_word.set_rating(capital_word.rating() - first_choice->rating() + blob_choice_it.data()->rating()); if (blob_choice_it.data()->certainty() < capital_word.certainty()) { capital_word.set_certainty(blob_choice_it.data()->certainty()); } upper_certainties[x] = blob_choice_it.data()->certainty(); upper_done = TRUE; } if (!char_alpha) { const CHAR_FRAGMENT *fragment = getUnicharset().get_fragment(unichar_id); temp_id = !fragment ? unichar_id : getUnicharset().unichar_to_id(fragment->get_unichar()); if (getUnicharset().get_isalpha(temp_id)) { char_alpha = TRUE; } } if (lower_done && upper_done) break; } } if (char_alpha && any_alpha != NULL) *any_alpha = TRUE; if (word.rating() > bestrate_pruning_factor * *rating_limit) { if (permute_debug) tprintf("\n***** Aborting high-cost word: %g > limit %g \n", word.rating(), bestrate_pruning_factor * *rating_limit); return (NULL); } *prev_char = '\0'; temp_id = word.unichar_id(word.length()-1); if (temp_id != INVALID_UNICHAR_ID) { strcpy(prev_char, getUnicharset().id_to_unichar(temp_id)); } } if (word.rating() < raw_choice->rating()) { *raw_choice = word; LogNewChoice(*raw_choice, 1.0, certainties, true); } if (ngram_permuter_activated) return NULL; float rating = word.rating(); adjust_non_word(&word, &adjust_factor); LogNewChoice(word, adjust_factor, certainties, false); float lower_rating = lower_word.rating(); adjust_non_word(&lower_word, &adjust_factor); LogNewChoice(lower_word, adjust_factor, lower_certainties, false); float upper_rating = capital_word.rating(); adjust_non_word(&capital_word, &adjust_factor); LogNewChoice(capital_word, adjust_factor, upper_certainties, false); WERD_CHOICE *best_choice = &word; *rating_limit = rating; if (lower_word.rating() < best_choice->rating()) { best_choice = &lower_word; *rating_limit = lower_rating; } if (capital_word.rating() < best_choice->rating()) { best_choice = &capital_word; *rating_limit = upper_rating; } return new WERD_CHOICE(*best_choice); } /********************************************************************** * choose_il1 * * Choose between the candidate il1 chars. **********************************************************************/ const char* Dict::choose_il1(const char *first_char, //first choice const char *second_char, //second choice const char *third_char, //third choice const char *prev_char, //prev in word const char *next_char, //next in word const char *next_next_char) { //after next next in word inT32 type1; //1/I/l type of first choice inT32 type2; //1/I/l type of second choice inT32 type3; //1/I/l type of third choice int first_char_length = strlen(first_char); int prev_char_length = strlen(prev_char); int next_char_length = strlen(next_char); int next_next_char_length = strlen(next_next_char); if (*first_char == 'l' && *second_char != '\0') { if (*second_char == 'I' && (((prev_char_length != 0 && getUnicharset().get_isupper (prev_char, prev_char_length)) && (next_char_length == 0 || !getUnicharset().get_islower (next_char, next_char_length)) && (next_char_length == 0 || !getUnicharset().get_isdigit (next_char, next_char_length))) || ((next_char_length != 0 && getUnicharset().get_isupper (next_char, next_char_length)) && (prev_char_length == 0 || !getUnicharset().get_islower (prev_char, prev_char_length)) && (prev_char_length == 0 || !getUnicharset().get_isdigit (prev_char, prev_char_length))))) first_char = second_char; //override else if (*second_char == '1' || *third_char == '1') { if ((next_char_length != 0 && getUnicharset().get_isdigit (next_char, next_char_length)) || (prev_char_length != 0 && getUnicharset().get_isdigit (prev_char, prev_char_length)) || (*next_char == 'l' && (next_next_char_length != 0 && getUnicharset().get_isdigit (next_next_char, next_next_char_length)))) { first_char = "1"; first_char_length = 1; } else if ((prev_char_length == 0 || !getUnicharset().get_islower (prev_char, prev_char_length)) && ((next_char_length == 0 || !getUnicharset().get_islower (next_char, next_char_length)) || (*next_char == 's' && *next_next_char == 't'))) { if (((*prev_char != '\'' && *prev_char != '`') || *next_char != '\0') && ((*next_char != '\'' && *next_char != '`') || *prev_char != '\0')) { first_char = "1"; first_char_length = 1; } } } if (*first_char == 'l' && *next_char != '\0' && (prev_char_length == 0 || !getUnicharset().get_isalpha (prev_char, prev_char_length))) { type1 = 2; if (*second_char == '1') type2 = 0; else if (*second_char == 'I') type2 = 1; else if (*second_char == 'l') type2 = 2; else type2 = type1; if (*third_char == '1') type3 = 0; else if (*third_char == 'I') type3 = 1; else if (*third_char == 'l') type3 = 2; else type3 = type1; #if 0 if (bigram_counts[*next_char][type2] > bigram_counts[*next_char][type1]) { first_char = second_char; type1 = type2; } if (bigram_counts[*next_char][type3] > bigram_counts[*next_char][type1]) { first_char = third_char; } #endif } } return first_char; } // // Check all the DAWGs to see if this word is in any of them. // int Dict::valid_word(const WERD_CHOICE &word, bool numbers_ok) { const WERD_CHOICE *word_ptr = &word; WERD_CHOICE temp_word; if (hyphenated()) { copy_hyphen_info(&temp_word); temp_word += word; word_ptr = &temp_word; } if (word_ptr->length() == 0) return NO_PERM; // Allocate vectors for holding current and updated // active_dawgs and constraints and initialize them. DawgInfoVector *active_dawgs = new DawgInfoVector[2]; DawgInfoVector *constraints = new DawgInfoVector[2]; init_active_dawgs(&(active_dawgs[0])); init_constraints(&(constraints[0])); DawgArgs dawg_args(&(active_dawgs[0]), &(constraints[0]), &(active_dawgs[1]), &(constraints[1]), 0.0); int last_index = word_ptr->length() - 1; // Call leter_is_okay for each letter in the word. for (int i = hyphen_base_size(); i <= last_index; ++i) { if (!((this->*letter_is_okay_)(&dawg_args, i, word_ptr, i == last_index))) break; // Swap active_dawgs, constraints with the corresponding updated vector. if (dawg_args.updated_active_dawgs == &(active_dawgs[1])) { dawg_args.updated_active_dawgs = &(active_dawgs[0]); dawg_args.updated_constraints = &(constraints[0]); ++(dawg_args.active_dawgs); ++(dawg_args.constraints); } else { ++(dawg_args.updated_active_dawgs); ++(dawg_args.updated_constraints); dawg_args.active_dawgs = &(active_dawgs[0]); dawg_args.constraints = &(constraints[0]); } } delete[] active_dawgs; delete[] constraints; if (dawg_args.permuter == SYSTEM_DAWG_PERM || dawg_args.permuter == DOC_DAWG_PERM || dawg_args.permuter == USER_DAWG_PERM || (numbers_ok && dawg_args.permuter == NUMBER_PERM)){ return dawg_args.permuter; } else { return NO_PERM; } } // // Return true if the word contains a valid punctuation pattern. // // Note: Since the domains of punctuation symbols and symblos // used in numbers are not disjoint, a valid number might contain // an invalid punctuation pattern (e.g. .99). // bool Dict::valid_punctuation(const WERD_CHOICE &word) { if (word.length() == 0) return NO_PERM; int i; WERD_CHOICE new_word; int last_index = word.length() - 1; int new_len = 0; for (i = 0; i <= last_index; ++i) { UNICHAR_ID unichar_id = (word.unichar_id(i)); if (getUnicharset().get_ispunctuation(unichar_id)) { new_word.append_unichar_id(unichar_id, 1, 0.0, 0.0); } else if (!getUnicharset().get_isalpha(unichar_id) && !getUnicharset().get_isdigit(unichar_id)) { return false; // neither punc, nor alpha, nor digit } else if ((new_len = new_word.length()) == 0 || new_word.unichar_id(new_len-1) != Dawg::kPatternUnicharID) { new_word.append_unichar_id(Dawg::kPatternUnicharID, 1, 0.0, 0.0); } } for (i = 0; i < dawgs_.size(); ++i) { if (dawgs_[i]->type() == DAWG_TYPE_PUNCTUATION && dawgs_[i]->word_in_dawg(new_word)) return true; } return false; } /********************************************************************** * fragment_state * * Given the current char choice and information about previously seen * fragments, determines whether adjacent character fragments are * present and whether they can be concatenated. * * The given prev_char_frag_info contains: * -- fragment: if not NULL contains information about immediately * preceeding fragmented character choice * -- num_fragments: number of fragments that have been used so far * to construct a character * -- certainty: certainty of the current choice or minimum * certainty of all fragments concatenated so far * -- rating: rating of the current choice or sum of fragment * ratings concatenated so far * * The output char_frag_info is filled in as follows: * -- character: is set to be NULL if the choice is a non-matching * or non-ending fragment piece; is set to unichar of the given choice * if it represents a regular character or a matching ending fragment * -- fragment,num_fragments,certainty,rating are set as described above * * Returns false if a non-matching fragment is discovered, true otherwise. **********************************************************************/ bool Dict::fragment_state_okay(UNICHAR_ID curr_unichar_id, float curr_rating, float curr_certainty, const CHAR_FRAGMENT_INFO *prev_char_frag_info, const char *debug, int word_ending, CHAR_FRAGMENT_INFO *char_frag_info) { const CHAR_FRAGMENT *this_fragment = getUnicharset().get_fragment(curr_unichar_id); const CHAR_FRAGMENT *prev_fragment = prev_char_frag_info != NULL ? prev_char_frag_info->fragment : NULL; // Print debug info for fragments. if (debug && (prev_fragment || this_fragment)) { cprintf("%s check fragments: choice=%s word_ending=%d\n", debug, getUnicharset().debug_str(curr_unichar_id).string(), word_ending); if (prev_fragment) { cprintf("prev_fragment %s\n", prev_fragment->to_string().string()); } if (this_fragment) { cprintf("this_fragment %s\n", this_fragment->to_string().string()); } } char_frag_info->unichar_id = curr_unichar_id; char_frag_info->fragment = this_fragment; char_frag_info->rating = curr_rating; char_frag_info->certainty = curr_certainty; char_frag_info->num_fragments = 1; if (prev_fragment && !this_fragment) { if (debug) tprintf("Skip choice with incomplete fragment\n"); return false; } if (this_fragment) { // We are dealing with a fragment. char_frag_info->unichar_id = INVALID_UNICHAR_ID; if (prev_fragment) { if (!this_fragment->is_continuation_of(prev_fragment)) { if (debug) tprintf("Non-matching fragment piece\n"); return false; } if (this_fragment->is_ending()) { char_frag_info->unichar_id = getUnicharset().unichar_to_id(this_fragment->get_unichar()); char_frag_info->fragment = NULL; if (debug) { tprintf("Built character %s from fragments\n", getUnicharset().debug_str( char_frag_info->unichar_id).string()); } } else { if (debug) tprintf("Record fragment continuation\n"); char_frag_info->fragment = this_fragment; } // Update certainty and rating. char_frag_info->rating = prev_char_frag_info->rating + curr_rating; char_frag_info->num_fragments = prev_char_frag_info->num_fragments + 1; char_frag_info->certainty = MIN(curr_certainty, prev_char_frag_info->certainty); } else { if (this_fragment->is_beginning()) { if (debug) cprintf("Record fragment beginning\n"); } else { if (debug) { tprintf("Non-starting fragment piece with no prev_fragment\n"); } return false; } } } if (word_ending && char_frag_info->fragment) { if (debug) tprintf("Word can not end with a fragment\n"); return false; } return true; } /********************************************************************** * top_fragments_permute_and_select * * Creates a copy of character choices list that contain only fragments * and the best non-fragmented character choice. * Permutes character in this shortened list, builds characters from * fragments if possible and returns a better choice if found. **********************************************************************/ WERD_CHOICE *Dict::top_fragments_permute_and_select( const BLOB_CHOICE_LIST_VECTOR &char_choices, float rating_limit) { if (char_choices.length() <= 1 || char_choices.length() > MAX_PERM_LENGTH) { return NULL; } // See it would be possible to benefit from permuting fragments. int x; float min_rating = 0.0; BLOB_CHOICE_IT blob_choice_it; for (x = 0; x < char_choices.length(); ++x) { blob_choice_it.set_to_list(char_choices.get(x)); if (blob_choice_it.data()) { min_rating += blob_choice_it.data()->rating(); } if (min_rating >= rating_limit) { return NULL; } } if (fragments_debug > 1) { tprintf("A choice with fragment beats top choice\n"); tprintf("Running fragment permuter...\n"); } // Construct a modified choices list that contains (for each position): // the best choice, all fragments and at least one choice for // a non-fragmented character. BLOB_CHOICE_LIST_VECTOR frag_char_choices(char_choices.length()); for (x = 0; x < char_choices.length(); ++x) { bool need_nonfrag_char = true; BLOB_CHOICE_LIST *frag_choices = new BLOB_CHOICE_LIST(); BLOB_CHOICE_IT frag_choices_it; frag_choices_it.set_to_list(frag_choices); blob_choice_it.set_to_list(char_choices.get(x)); for (blob_choice_it.mark_cycle_pt(); !blob_choice_it.cycled_list(); blob_choice_it.forward()) { if (getUnicharset().get_fragment(blob_choice_it.data()->unichar_id())) { frag_choices_it.add_after_then_move( new BLOB_CHOICE(*(blob_choice_it.data()))); } else if (need_nonfrag_char) { frag_choices_it.add_after_then_move( new BLOB_CHOICE(*(blob_choice_it.data()))); need_nonfrag_char = false; } } frag_char_choices += frag_choices; } WERD_CHOICE *best_choice = new WERD_CHOICE(); best_choice->make_bad(); WERD_CHOICE word(MAX_PERM_LENGTH); word.set_permuter(TOP_CHOICE_PERM); float certainties[MAX_PERM_LENGTH]; this->go_deeper_fxn_ = &tesseract::Dict::go_deeper_top_fragments_fxn; permute_choices((fragments_debug > 1) ? "fragments_debug" : NULL, frag_char_choices, 0, NULL, &word, certainties, &rating_limit, best_choice, NULL); frag_char_choices.delete_data_pointers(); return best_choice; } /********************************************************************** * permute_choices * * Call append_choices() for each BLOB_CHOICE in BLOB_CHOICE_LIST * with the given char_choice_index in char_choices. **********************************************************************/ void Dict::permute_choices( const char *debug, const BLOB_CHOICE_LIST_VECTOR &char_choices, int char_choice_index, const CHAR_FRAGMENT_INFO *prev_char_frag_info, WERD_CHOICE *word, float certainties[], float *limit, WERD_CHOICE *best_choice, void *more_args) { if (debug) { tprintf("%s permute_choices: char_choice_index=%d" " limit=%4.2f rating=%4.2f, certainty=%4.2f word=%s\n", debug, char_choice_index, *limit, word->rating(), word->certainty(), word->debug_string(getUnicharset()).string()); } if (char_choice_index < char_choices.length()) { BLOB_CHOICE_IT blob_choice_it; blob_choice_it.set_to_list(char_choices.get(char_choice_index)); for (blob_choice_it.mark_cycle_pt(); !blob_choice_it.cycled_list(); blob_choice_it.forward()) { append_choices(debug, char_choices, *(blob_choice_it.data()), char_choice_index, prev_char_frag_info, word, certainties, limit, best_choice, more_args); } } } /********************************************************************** * append_choices * * Check to see whether or not the next choice is worth appending to * the word being generated. If so then keep going deeper into the word. * * This function assumes that Dict::go_deeper_fxn_ is set. **********************************************************************/ void Dict::append_choices( const char *debug, const BLOB_CHOICE_LIST_VECTOR &char_choices, const BLOB_CHOICE &blob_choice, int char_choice_index, const CHAR_FRAGMENT_INFO *prev_char_frag_info, WERD_CHOICE *word, float certainties[], float *limit, WERD_CHOICE *best_choice, void *more_args) { int word_ending = (char_choice_index == char_choices.length() - 1) ? true : false; // Deal with fragments. CHAR_FRAGMENT_INFO char_frag_info; if (!fragment_state_okay(blob_choice.unichar_id(), blob_choice.rating(), blob_choice.certainty(), prev_char_frag_info, debug, word_ending, &char_frag_info)) { return; // blob_choice must be an invalid fragment } // Search the next letter if this character is a fragment. if (char_frag_info.unichar_id == INVALID_UNICHAR_ID) { permute_choices(debug, char_choices, char_choice_index + 1, &char_frag_info, word, certainties, limit, best_choice, more_args); return; } // Add the next unichar. float old_rating = word->rating(); float old_certainty = word->certainty(); uinT8 old_permuter = word->permuter(); certainties[word->length()] = char_frag_info.certainty; word->append_unichar_id_space_allocated( char_frag_info.unichar_id, char_frag_info.num_fragments, char_frag_info.rating, char_frag_info.certainty); // Explore the next unichar. (this->*go_deeper_fxn_)(debug, char_choices, char_choice_index, &char_frag_info, word_ending, word, certainties, limit, best_choice, more_args); // Remove the unichar we added to explore other choices in it's place. word->remove_last_unichar_id(); word->set_rating(old_rating); word->set_certainty(old_certainty); word->set_permuter(old_permuter); } /********************************************************************** * go_deeper_top_fragments_fxn * * If the choice being composed so far could be better * than best_choice keep exploring choices. **********************************************************************/ void Dict::go_deeper_top_fragments_fxn( const char *debug, const BLOB_CHOICE_LIST_VECTOR &char_choices, int char_choice_index, const CHAR_FRAGMENT_INFO *prev_char_frag_info, bool word_ending, WERD_CHOICE *word, float certainties[], float *limit, WERD_CHOICE *best_choice, void *more_args) { if (word->rating() < *limit) { if (word_ending) { if (fragments_debug > 1) { tprintf("fragments_debug new choice = %s\n", word->debug_string(getUnicharset()).string()); } *limit = word->rating(); float adjust_factor; adjust_non_word(word, &adjust_factor); LogNewChoice(*word, adjust_factor, certainties, false); if (word->rating() < best_choice->rating()) { *best_choice = *word; } } else { // search the next letter permute_choices(debug, char_choices, char_choice_index + 1, prev_char_frag_info, word, certainties, limit, best_choice, more_args); } } else { if (fragments_debug > 1) { tprintf("fragments_debug pruned word (%s, rating=%4.2f, limit=%4.2f)\n", word->debug_string(getUnicharset()).string(), word->rating(), *limit); } } } } // namespace tesseract