/* * Copyright (C) 2008 Apple Inc. * Copyright (C) 2009 University of Szeged * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef MacroAssemblerARM_h #define MacroAssemblerARM_h #include <wtf/Platform.h> #if ENABLE(ASSEMBLER) && PLATFORM(ARM) #include "ARMAssembler.h" #include "AbstractMacroAssembler.h" namespace JSC { class MacroAssemblerARM : public AbstractMacroAssembler<ARMAssembler> { public: enum Condition { Equal = ARMAssembler::EQ, NotEqual = ARMAssembler::NE, Above = ARMAssembler::HI, AboveOrEqual = ARMAssembler::CS, Below = ARMAssembler::CC, BelowOrEqual = ARMAssembler::LS, GreaterThan = ARMAssembler::GT, GreaterThanOrEqual = ARMAssembler::GE, LessThan = ARMAssembler::LT, LessThanOrEqual = ARMAssembler::LE, Overflow = ARMAssembler::VS, Signed = ARMAssembler::MI, Zero = ARMAssembler::EQ, NonZero = ARMAssembler::NE }; enum DoubleCondition { DoubleEqual = ARMAssembler::EQ, DoubleGreaterThan = ARMAssembler::GT, DoubleGreaterThanOrEqual = ARMAssembler::GE, DoubleLessThan = ARMAssembler::LT, DoubleLessThanOrEqual = ARMAssembler::LE, }; static const RegisterID stackPointerRegister = ARM::sp; static const Scale ScalePtr = TimesFour; void add32(RegisterID src, RegisterID dest) { m_assembler.adds_r(dest, dest, src); } void add32(Imm32 imm, Address address) { load32(address, ARM::S1); add32(imm, ARM::S1); store32(ARM::S1, address); } void add32(Imm32 imm, RegisterID dest) { m_assembler.adds_r(dest, dest, m_assembler.getImm(imm.m_value, ARM::S0)); } void add32(Address src, RegisterID dest) { load32(src, ARM::S1); add32(ARM::S1, dest); } void and32(RegisterID src, RegisterID dest) { m_assembler.ands_r(dest, dest, src); } void and32(Imm32 imm, RegisterID dest) { ARMWord w = m_assembler.getImm(imm.m_value, ARM::S0, true); if (w & ARMAssembler::OP2_INV_IMM) m_assembler.bics_r(dest, dest, w & ~ARMAssembler::OP2_INV_IMM); else m_assembler.ands_r(dest, dest, w); } void lshift32(Imm32 imm, RegisterID dest) { m_assembler.movs_r(dest, m_assembler.lsl(dest, imm.m_value & 0x1f)); } void lshift32(RegisterID shift_amount, RegisterID dest) { m_assembler.movs_r(dest, m_assembler.lsl_r(dest, shift_amount)); } void mul32(RegisterID src, RegisterID dest) { if (src == dest) { move(src, ARM::S0); src = ARM::S0; } m_assembler.muls_r(dest, dest, src); } void mul32(Imm32 imm, RegisterID src, RegisterID dest) { move(imm, ARM::S0); m_assembler.muls_r(dest, src, ARM::S0); } void not32(RegisterID dest) { m_assembler.mvns_r(dest, dest); } void or32(RegisterID src, RegisterID dest) { m_assembler.orrs_r(dest, dest, src); } void or32(Imm32 imm, RegisterID dest) { m_assembler.orrs_r(dest, dest, m_assembler.getImm(imm.m_value, ARM::S0)); } void rshift32(RegisterID shift_amount, RegisterID dest) { m_assembler.movs_r(dest, m_assembler.asr_r(dest, shift_amount)); } void rshift32(Imm32 imm, RegisterID dest) { m_assembler.movs_r(dest, m_assembler.asr(dest, imm.m_value & 0x1f)); } void sub32(RegisterID src, RegisterID dest) { m_assembler.subs_r(dest, dest, src); } void sub32(Imm32 imm, RegisterID dest) { m_assembler.subs_r(dest, dest, m_assembler.getImm(imm.m_value, ARM::S0)); } void sub32(Imm32 imm, Address address) { load32(address, ARM::S1); sub32(imm, ARM::S1); store32(ARM::S1, address); } void sub32(Address src, RegisterID dest) { load32(src, ARM::S1); sub32(ARM::S1, dest); } void xor32(RegisterID src, RegisterID dest) { m_assembler.eors_r(dest, dest, src); } void xor32(Imm32 imm, RegisterID dest) { m_assembler.eors_r(dest, dest, m_assembler.getImm(imm.m_value, ARM::S0)); } void load32(ImplicitAddress address, RegisterID dest) { m_assembler.dataTransfer32(true, dest, address.base, address.offset); } void load32(BaseIndex address, RegisterID dest) { m_assembler.baseIndexTransfer32(true, dest, address.base, address.index, static_cast<int>(address.scale), address.offset); } DataLabel32 load32WithAddressOffsetPatch(Address address, RegisterID dest) { DataLabel32 dataLabel(this); m_assembler.ldr_un_imm(ARM::S0, 0); m_assembler.dtr_ur(true, dest, address.base, ARM::S0); return dataLabel; } Label loadPtrWithPatchToLEA(Address address, RegisterID dest) { Label label(this); load32(address, dest); return label; } void load16(BaseIndex address, RegisterID dest) { m_assembler.add_r(ARM::S0, address.base, m_assembler.lsl(address.index, address.scale)); if (address.offset>=0) m_assembler.ldrh_u(dest, ARM::S0, ARMAssembler::getOp2Byte(address.offset)); else m_assembler.ldrh_d(dest, ARM::S0, ARMAssembler::getOp2Byte(-address.offset)); } DataLabel32 store32WithAddressOffsetPatch(RegisterID src, Address address) { DataLabel32 dataLabel(this); m_assembler.ldr_un_imm(ARM::S0, 0); m_assembler.dtr_ur(false, src, address.base, ARM::S0); return dataLabel; } void store32(RegisterID src, ImplicitAddress address) { m_assembler.dataTransfer32(false, src, address.base, address.offset); } void store32(RegisterID src, BaseIndex address) { m_assembler.baseIndexTransfer32(false, src, address.base, address.index, static_cast<int>(address.scale), address.offset); } void store32(Imm32 imm, ImplicitAddress address) { if (imm.m_isPointer) m_assembler.ldr_un_imm(ARM::S1, imm.m_value); else move(imm, ARM::S1); store32(ARM::S1, address); } void store32(RegisterID src, void* address) { m_assembler.ldr_un_imm(ARM::S0, reinterpret_cast<ARMWord>(address)); m_assembler.dtr_u(false, src, ARM::S0, 0); } void store32(Imm32 imm, void* address) { m_assembler.ldr_un_imm(ARM::S0, reinterpret_cast<ARMWord>(address)); if (imm.m_isPointer) m_assembler.ldr_un_imm(ARM::S1, imm.m_value); else m_assembler.moveImm(imm.m_value, ARM::S1); m_assembler.dtr_u(false, ARM::S1, ARM::S0, 0); } void pop(RegisterID dest) { m_assembler.pop_r(dest); } void push(RegisterID src) { m_assembler.push_r(src); } void push(Address address) { load32(address, ARM::S1); push(ARM::S1); } void push(Imm32 imm) { move(imm, ARM::S0); push(ARM::S0); } void move(Imm32 imm, RegisterID dest) { if (imm.m_isPointer) m_assembler.ldr_un_imm(dest, imm.m_value); else m_assembler.moveImm(imm.m_value, dest); } void move(RegisterID src, RegisterID dest) { m_assembler.mov_r(dest, src); } void move(ImmPtr imm, RegisterID dest) { move(Imm32(imm), dest); } void swap(RegisterID reg1, RegisterID reg2) { m_assembler.mov_r(ARM::S0, reg1); m_assembler.mov_r(reg1, reg2); m_assembler.mov_r(reg2, ARM::S0); } void signExtend32ToPtr(RegisterID src, RegisterID dest) { if (src != dest) move(src, dest); } void zeroExtend32ToPtr(RegisterID src, RegisterID dest) { if (src != dest) move(src, dest); } Jump branch32(Condition cond, RegisterID left, RegisterID right) { m_assembler.cmp_r(left, right); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branch32(Condition cond, RegisterID left, Imm32 right) { if (right.m_isPointer) { m_assembler.ldr_un_imm(ARM::S0, right.m_value); m_assembler.cmp_r(left, ARM::S0); } else m_assembler.cmp_r(left, m_assembler.getImm(right.m_value, ARM::S0)); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branch32(Condition cond, RegisterID left, Address right) { load32(right, ARM::S1); return branch32(cond, left, ARM::S1); } Jump branch32(Condition cond, Address left, RegisterID right) { load32(left, ARM::S1); return branch32(cond, ARM::S1, right); } Jump branch32(Condition cond, Address left, Imm32 right) { load32(left, ARM::S1); return branch32(cond, ARM::S1, right); } Jump branch32(Condition cond, BaseIndex left, Imm32 right) { load32(left, ARM::S1); return branch32(cond, ARM::S1, right); } Jump branch16(Condition cond, BaseIndex left, RegisterID right) { UNUSED_PARAM(cond); UNUSED_PARAM(left); UNUSED_PARAM(right); ASSERT_NOT_REACHED(); return jump(); } Jump branch16(Condition cond, BaseIndex left, Imm32 right) { load16(left, ARM::S0); move(right, ARM::S1); m_assembler.cmp_r(ARM::S0, ARM::S1); return m_assembler.jmp(ARMCondition(cond)); } Jump branchTest32(Condition cond, RegisterID reg, RegisterID mask) { ASSERT((cond == Zero) || (cond == NonZero)); m_assembler.tst_r(reg, mask); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchTest32(Condition cond, RegisterID reg, Imm32 mask = Imm32(-1)) { ASSERT((cond == Zero) || (cond == NonZero)); ARMWord w = m_assembler.getImm(mask.m_value, ARM::S0, true); if (w & ARMAssembler::OP2_INV_IMM) m_assembler.bics_r(ARM::S0, reg, w & ~ARMAssembler::OP2_INV_IMM); else m_assembler.tst_r(reg, w); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchTest32(Condition cond, Address address, Imm32 mask = Imm32(-1)) { load32(address, ARM::S1); return branchTest32(cond, ARM::S1, mask); } Jump branchTest32(Condition cond, BaseIndex address, Imm32 mask = Imm32(-1)) { load32(address, ARM::S1); return branchTest32(cond, ARM::S1, mask); } Jump jump() { return Jump(m_assembler.jmp()); } void jump(RegisterID target) { move(target, ARM::pc); } void jump(Address address) { load32(address, ARM::pc); } Jump branchAdd32(Condition cond, RegisterID src, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); add32(src, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchAdd32(Condition cond, Imm32 imm, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); add32(imm, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } void mull32(RegisterID src1, RegisterID src2, RegisterID dest) { if (src1 == dest) { move(src1, ARM::S0); src1 = ARM::S0; } m_assembler.mull_r(ARM::S1, dest, src2, src1); m_assembler.cmp_r(ARM::S1, m_assembler.asr(dest, 31)); } Jump branchMul32(Condition cond, RegisterID src, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); if (cond == Overflow) { mull32(src, dest, dest); cond = NonZero; } else mul32(src, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchMul32(Condition cond, Imm32 imm, RegisterID src, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); if (cond == Overflow) { move(imm, ARM::S0); mull32(ARM::S0, src, dest); cond = NonZero; } else mul32(imm, src, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchSub32(Condition cond, RegisterID src, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); sub32(src, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchSub32(Condition cond, Imm32 imm, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); sub32(imm, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } void breakpoint() { m_assembler.bkpt(0); } Call nearCall() { prepareCall(); return Call(m_assembler.jmp(), Call::LinkableNear); } Call call(RegisterID target) { prepareCall(); move(ARM::pc, target); JmpSrc jmpSrc; return Call(jmpSrc, Call::None); } void call(Address address) { call32(address.base, address.offset); } void ret() { pop(ARM::pc); } void set32(Condition cond, RegisterID left, RegisterID right, RegisterID dest) { m_assembler.cmp_r(left, right); m_assembler.mov_r(dest, ARMAssembler::getOp2(0)); m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond)); } void set32(Condition cond, RegisterID left, Imm32 right, RegisterID dest) { m_assembler.cmp_r(left, m_assembler.getImm(right.m_value, ARM::S0)); m_assembler.mov_r(dest, ARMAssembler::getOp2(0)); m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond)); } void setTest32(Condition cond, Address address, Imm32 mask, RegisterID dest) { load32(address, ARM::S1); if (mask.m_value == -1) m_assembler.cmp_r(0, ARM::S1); else m_assembler.tst_r(ARM::S1, m_assembler.getImm(mask.m_value, ARM::S0)); m_assembler.mov_r(dest, ARMAssembler::getOp2(0)); m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond)); } void add32(Imm32 imm, RegisterID src, RegisterID dest) { m_assembler.add_r(dest, src, m_assembler.getImm(imm.m_value, ARM::S0)); } void add32(Imm32 imm, AbsoluteAddress address) { m_assembler.ldr_un_imm(ARM::S1, reinterpret_cast<ARMWord>(address.m_ptr)); m_assembler.dtr_u(true, ARM::S1, ARM::S1, 0); add32(imm, ARM::S1); m_assembler.ldr_un_imm(ARM::S0, reinterpret_cast<ARMWord>(address.m_ptr)); m_assembler.dtr_u(false, ARM::S1, ARM::S0, 0); } void sub32(Imm32 imm, AbsoluteAddress address) { m_assembler.ldr_un_imm(ARM::S1, reinterpret_cast<ARMWord>(address.m_ptr)); m_assembler.dtr_u(true, ARM::S1, ARM::S1, 0); sub32(imm, ARM::S1); m_assembler.ldr_un_imm(ARM::S0, reinterpret_cast<ARMWord>(address.m_ptr)); m_assembler.dtr_u(false, ARM::S1, ARM::S0, 0); } void load32(void* address, RegisterID dest) { m_assembler.ldr_un_imm(ARM::S0, reinterpret_cast<ARMWord>(address)); m_assembler.dtr_u(true, dest, ARM::S0, 0); } Jump branch32(Condition cond, AbsoluteAddress left, RegisterID right) { load32(left.m_ptr, ARM::S1); return branch32(cond, ARM::S1, right); } Jump branch32(Condition cond, AbsoluteAddress left, Imm32 right) { load32(left.m_ptr, ARM::S1); return branch32(cond, ARM::S1, right); } Call call() { prepareCall(); return Call(m_assembler.jmp(), Call::Linkable); } Call tailRecursiveCall() { return Call::fromTailJump(jump()); } Call makeTailRecursiveCall(Jump oldJump) { return Call::fromTailJump(oldJump); } DataLabelPtr moveWithPatch(ImmPtr initialValue, RegisterID dest) { DataLabelPtr dataLabel(this); m_assembler.ldr_un_imm(dest, reinterpret_cast<ARMWord>(initialValue.m_value)); return dataLabel; } Jump branchPtrWithPatch(Condition cond, RegisterID left, DataLabelPtr& dataLabel, ImmPtr initialRightValue = ImmPtr(0)) { dataLabel = moveWithPatch(initialRightValue, ARM::S1); Jump jump = branch32(cond, left, ARM::S1); jump.enableLatePatch(); return jump; } Jump branchPtrWithPatch(Condition cond, Address left, DataLabelPtr& dataLabel, ImmPtr initialRightValue = ImmPtr(0)) { load32(left, ARM::S1); dataLabel = moveWithPatch(initialRightValue, ARM::S0); Jump jump = branch32(cond, ARM::S0, ARM::S1); jump.enableLatePatch(); return jump; } DataLabelPtr storePtrWithPatch(ImmPtr initialValue, ImplicitAddress address) { DataLabelPtr dataLabel = moveWithPatch(initialValue, ARM::S1); store32(ARM::S1, address); return dataLabel; } DataLabelPtr storePtrWithPatch(ImplicitAddress address) { return storePtrWithPatch(ImmPtr(0), address); } // Floating point operators bool supportsFloatingPoint() const { // FIXME: should be a dynamic test: VFP, FPA, or nothing return false; } bool supportsFloatingPointTruncate() const { return false; } void loadDouble(ImplicitAddress address, FPRegisterID dest) { m_assembler.doubleTransfer(true, dest, address.base, address.offset); } void storeDouble(FPRegisterID src, ImplicitAddress address) { m_assembler.doubleTransfer(false, src, address.base, address.offset); } void addDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.faddd_r(dest, dest, src); } void addDouble(Address src, FPRegisterID dest) { loadDouble(src, ARM::SD0); addDouble(ARM::SD0, dest); } void subDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.fsubd_r(dest, dest, src); } void subDouble(Address src, FPRegisterID dest) { loadDouble(src, ARM::SD0); subDouble(ARM::SD0, dest); } void mulDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.fmuld_r(dest, dest, src); } void mulDouble(Address src, FPRegisterID dest) { loadDouble(src, ARM::SD0); mulDouble(ARM::SD0, dest); } void convertInt32ToDouble(RegisterID src, FPRegisterID dest) { m_assembler.fmsr_r(dest, src); m_assembler.fsitod_r(dest, dest); } Jump branchDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right) { m_assembler.fcmpd_r(left, right); m_assembler.fmstat(); return Jump(m_assembler.jmp(static_cast<ARMAssembler::Condition>(cond))); } // Truncates 'src' to an integer, and places the resulting 'dest'. // If the result is not representable as a 32 bit value, branch. // May also branch for some values that are representable in 32 bits // (specifically, in this case, INT_MIN). Jump branchTruncateDoubleToInt32(FPRegisterID src, RegisterID dest) { UNUSED_PARAM(src); UNUSED_PARAM(dest); ASSERT_NOT_REACHED(); return jump(); } protected: ARMAssembler::Condition ARMCondition(Condition cond) { return static_cast<ARMAssembler::Condition>(cond); } void prepareCall() { m_assembler.ensureSpace(3 * sizeof(ARMWord), sizeof(ARMWord)); // S0 might be used for parameter passing m_assembler.add_r(ARM::S1, ARM::pc, ARMAssembler::OP2_IMM | 0x4); m_assembler.push_r(ARM::S1); } void call32(RegisterID base, int32_t offset) { if (base == ARM::sp) offset += 4; if (offset >= 0) { if (offset <= 0xfff) { prepareCall(); m_assembler.dtr_u(true, ARM::pc, base, offset); } else if (offset <= 0xfffff) { m_assembler.add_r(ARM::S0, base, ARMAssembler::OP2_IMM | (offset >> 12) | (10 << 8)); prepareCall(); m_assembler.dtr_u(true, ARM::pc, ARM::S0, offset & 0xfff); } else { ARMWord reg = m_assembler.getImm(offset, ARM::S0); prepareCall(); m_assembler.dtr_ur(true, ARM::pc, base, reg); } } else { offset = -offset; if (offset <= 0xfff) { prepareCall(); m_assembler.dtr_d(true, ARM::pc, base, offset); } else if (offset <= 0xfffff) { m_assembler.sub_r(ARM::S0, base, ARMAssembler::OP2_IMM | (offset >> 12) | (10 << 8)); prepareCall(); m_assembler.dtr_d(true, ARM::pc, ARM::S0, offset & 0xfff); } else { ARMWord reg = m_assembler.getImm(offset, ARM::S0); prepareCall(); m_assembler.dtr_dr(true, ARM::pc, base, reg); } } } private: friend class LinkBuffer; friend class RepatchBuffer; static void linkCall(void* code, Call call, FunctionPtr function) { ARMAssembler::linkCall(code, call.m_jmp, function.value()); } static void repatchCall(CodeLocationCall call, CodeLocationLabel destination) { ARMAssembler::relinkCall(call.dataLocation(), destination.executableAddress()); } static void repatchCall(CodeLocationCall call, FunctionPtr destination) { ARMAssembler::relinkCall(call.dataLocation(), destination.executableAddress()); } }; } #endif #endif // MacroAssemblerARM_h