/* * Copyright (C) 2008 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef MacroAssemblerX86_64_h #define MacroAssemblerX86_64_h #include <wtf/Platform.h> #if ENABLE(ASSEMBLER) && PLATFORM(X86_64) #include "MacroAssemblerX86Common.h" #define REPTACH_OFFSET_CALL_R11 3 namespace JSC { class MacroAssemblerX86_64 : public MacroAssemblerX86Common { protected: static const X86::RegisterID scratchRegister = X86::r11; public: static const Scale ScalePtr = TimesEight; using MacroAssemblerX86Common::add32; using MacroAssemblerX86Common::and32; using MacroAssemblerX86Common::or32; using MacroAssemblerX86Common::sub32; using MacroAssemblerX86Common::load32; using MacroAssemblerX86Common::store32; using MacroAssemblerX86Common::call; using MacroAssemblerX86Common::loadDouble; using MacroAssemblerX86Common::convertInt32ToDouble; void add32(Imm32 imm, AbsoluteAddress address) { move(ImmPtr(address.m_ptr), scratchRegister); add32(imm, Address(scratchRegister)); } void and32(Imm32 imm, AbsoluteAddress address) { move(ImmPtr(address.m_ptr), scratchRegister); and32(imm, Address(scratchRegister)); } void or32(Imm32 imm, AbsoluteAddress address) { move(ImmPtr(address.m_ptr), scratchRegister); or32(imm, Address(scratchRegister)); } void sub32(Imm32 imm, AbsoluteAddress address) { move(ImmPtr(address.m_ptr), scratchRegister); sub32(imm, Address(scratchRegister)); } void load32(void* address, RegisterID dest) { if (dest == X86::eax) m_assembler.movl_mEAX(address); else { move(X86::eax, dest); m_assembler.movl_mEAX(address); swap(X86::eax, dest); } } void loadDouble(void* address, FPRegisterID dest) { move(ImmPtr(address), scratchRegister); loadDouble(scratchRegister, dest); } void convertInt32ToDouble(AbsoluteAddress src, FPRegisterID dest) { move(Imm32(*static_cast<int32_t*>(src.m_ptr)), scratchRegister); m_assembler.cvtsi2sd_rr(scratchRegister, dest); } void store32(Imm32 imm, void* address) { move(X86::eax, scratchRegister); move(imm, X86::eax); m_assembler.movl_EAXm(address); move(scratchRegister, X86::eax); } Call call() { DataLabelPtr label = moveWithPatch(ImmPtr(0), scratchRegister); Call result = Call(m_assembler.call(scratchRegister), Call::Linkable); ASSERT(differenceBetween(label, result) == REPTACH_OFFSET_CALL_R11); return result; } Call tailRecursiveCall() { DataLabelPtr label = moveWithPatch(ImmPtr(0), scratchRegister); Jump newJump = Jump(m_assembler.jmp_r(scratchRegister)); ASSERT(differenceBetween(label, newJump) == REPTACH_OFFSET_CALL_R11); return Call::fromTailJump(newJump); } Call makeTailRecursiveCall(Jump oldJump) { oldJump.link(this); DataLabelPtr label = moveWithPatch(ImmPtr(0), scratchRegister); Jump newJump = Jump(m_assembler.jmp_r(scratchRegister)); ASSERT(differenceBetween(label, newJump) == REPTACH_OFFSET_CALL_R11); return Call::fromTailJump(newJump); } void addPtr(RegisterID src, RegisterID dest) { m_assembler.addq_rr(src, dest); } void addPtr(Imm32 imm, RegisterID srcDest) { m_assembler.addq_ir(imm.m_value, srcDest); } void addPtr(ImmPtr imm, RegisterID dest) { move(imm, scratchRegister); m_assembler.addq_rr(scratchRegister, dest); } void addPtr(Imm32 imm, RegisterID src, RegisterID dest) { m_assembler.leaq_mr(imm.m_value, src, dest); } void addPtr(Imm32 imm, Address address) { m_assembler.addq_im(imm.m_value, address.offset, address.base); } void addPtr(Imm32 imm, AbsoluteAddress address) { move(ImmPtr(address.m_ptr), scratchRegister); addPtr(imm, Address(scratchRegister)); } void andPtr(RegisterID src, RegisterID dest) { m_assembler.andq_rr(src, dest); } void andPtr(Imm32 imm, RegisterID srcDest) { m_assembler.andq_ir(imm.m_value, srcDest); } void orPtr(RegisterID src, RegisterID dest) { m_assembler.orq_rr(src, dest); } void orPtr(ImmPtr imm, RegisterID dest) { move(imm, scratchRegister); m_assembler.orq_rr(scratchRegister, dest); } void orPtr(Imm32 imm, RegisterID dest) { m_assembler.orq_ir(imm.m_value, dest); } void rshiftPtr(RegisterID shift_amount, RegisterID dest) { // On x86 we can only shift by ecx; if asked to shift by another register we'll // need rejig the shift amount into ecx first, and restore the registers afterwards. if (shift_amount != X86::ecx) { swap(shift_amount, X86::ecx); // E.g. transform "shll %eax, %eax" -> "xchgl %eax, %ecx; shll %ecx, %ecx; xchgl %eax, %ecx" if (dest == shift_amount) m_assembler.sarq_CLr(X86::ecx); // E.g. transform "shll %eax, %ecx" -> "xchgl %eax, %ecx; shll %ecx, %eax; xchgl %eax, %ecx" else if (dest == X86::ecx) m_assembler.sarq_CLr(shift_amount); // E.g. transform "shll %eax, %ebx" -> "xchgl %eax, %ecx; shll %ecx, %ebx; xchgl %eax, %ecx" else m_assembler.sarq_CLr(dest); swap(shift_amount, X86::ecx); } else m_assembler.sarq_CLr(dest); } void rshiftPtr(Imm32 imm, RegisterID dest) { m_assembler.sarq_i8r(imm.m_value, dest); } void subPtr(RegisterID src, RegisterID dest) { m_assembler.subq_rr(src, dest); } void subPtr(Imm32 imm, RegisterID dest) { m_assembler.subq_ir(imm.m_value, dest); } void subPtr(ImmPtr imm, RegisterID dest) { move(imm, scratchRegister); m_assembler.subq_rr(scratchRegister, dest); } void xorPtr(RegisterID src, RegisterID dest) { m_assembler.xorq_rr(src, dest); } void xorPtr(Imm32 imm, RegisterID srcDest) { m_assembler.xorq_ir(imm.m_value, srcDest); } void loadPtr(ImplicitAddress address, RegisterID dest) { m_assembler.movq_mr(address.offset, address.base, dest); } void loadPtr(BaseIndex address, RegisterID dest) { m_assembler.movq_mr(address.offset, address.base, address.index, address.scale, dest); } void loadPtr(void* address, RegisterID dest) { if (dest == X86::eax) m_assembler.movq_mEAX(address); else { move(X86::eax, dest); m_assembler.movq_mEAX(address); swap(X86::eax, dest); } } DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest) { m_assembler.movq_mr_disp32(address.offset, address.base, dest); return DataLabel32(this); } void storePtr(RegisterID src, ImplicitAddress address) { m_assembler.movq_rm(src, address.offset, address.base); } void storePtr(RegisterID src, BaseIndex address) { m_assembler.movq_rm(src, address.offset, address.base, address.index, address.scale); } void storePtr(RegisterID src, void* address) { if (src == X86::eax) m_assembler.movq_EAXm(address); else { swap(X86::eax, src); m_assembler.movq_EAXm(address); swap(X86::eax, src); } } void storePtr(ImmPtr imm, ImplicitAddress address) { intptr_t ptr = imm.asIntptr(); if (CAN_SIGN_EXTEND_32_64(ptr)) m_assembler.movq_i32m(static_cast<int>(ptr), address.offset, address.base); else { move(imm, scratchRegister); storePtr(scratchRegister, address); } } DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address) { m_assembler.movq_rm_disp32(src, address.offset, address.base); return DataLabel32(this); } void movePtrToDouble(RegisterID src, FPRegisterID dest) { m_assembler.movq_rr(src, dest); } void moveDoubleToPtr(FPRegisterID src, RegisterID dest) { m_assembler.movq_rr(src, dest); } void setPtr(Condition cond, RegisterID left, Imm32 right, RegisterID dest) { if (((cond == Equal) || (cond == NotEqual)) && !right.m_value) m_assembler.testq_rr(left, left); else m_assembler.cmpq_ir(right.m_value, left); m_assembler.setCC_r(x86Condition(cond), dest); m_assembler.movzbl_rr(dest, dest); } Jump branchPtr(Condition cond, RegisterID left, RegisterID right) { m_assembler.cmpq_rr(right, left); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchPtr(Condition cond, RegisterID left, ImmPtr right) { intptr_t imm = right.asIntptr(); if (CAN_SIGN_EXTEND_32_64(imm)) { if (!imm) m_assembler.testq_rr(left, left); else m_assembler.cmpq_ir(imm, left); return Jump(m_assembler.jCC(x86Condition(cond))); } else { move(right, scratchRegister); return branchPtr(cond, left, scratchRegister); } } Jump branchPtr(Condition cond, RegisterID left, Address right) { m_assembler.cmpq_mr(right.offset, right.base, left); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchPtr(Condition cond, AbsoluteAddress left, RegisterID right) { move(ImmPtr(left.m_ptr), scratchRegister); return branchPtr(cond, Address(scratchRegister), right); } Jump branchPtr(Condition cond, Address left, RegisterID right) { m_assembler.cmpq_rm(right, left.offset, left.base); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchPtr(Condition cond, Address left, ImmPtr right) { move(right, scratchRegister); return branchPtr(cond, left, scratchRegister); } Jump branchTestPtr(Condition cond, RegisterID reg, RegisterID mask) { m_assembler.testq_rr(reg, mask); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchTestPtr(Condition cond, RegisterID reg, Imm32 mask = Imm32(-1)) { // if we are only interested in the low seven bits, this can be tested with a testb if (mask.m_value == -1) m_assembler.testq_rr(reg, reg); else if ((mask.m_value & ~0x7f) == 0) m_assembler.testb_i8r(mask.m_value, reg); else m_assembler.testq_i32r(mask.m_value, reg); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchTestPtr(Condition cond, Address address, Imm32 mask = Imm32(-1)) { if (mask.m_value == -1) m_assembler.cmpq_im(0, address.offset, address.base); else m_assembler.testq_i32m(mask.m_value, address.offset, address.base); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchTestPtr(Condition cond, BaseIndex address, Imm32 mask = Imm32(-1)) { if (mask.m_value == -1) m_assembler.cmpq_im(0, address.offset, address.base, address.index, address.scale); else m_assembler.testq_i32m(mask.m_value, address.offset, address.base, address.index, address.scale); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchAddPtr(Condition cond, RegisterID src, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Zero) || (cond == NonZero)); addPtr(src, dest); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchSubPtr(Condition cond, Imm32 imm, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Zero) || (cond == NonZero)); subPtr(imm, dest); return Jump(m_assembler.jCC(x86Condition(cond))); } DataLabelPtr moveWithPatch(ImmPtr initialValue, RegisterID dest) { m_assembler.movq_i64r(initialValue.asIntptr(), dest); return DataLabelPtr(this); } Jump branchPtrWithPatch(Condition cond, RegisterID left, DataLabelPtr& dataLabel, ImmPtr initialRightValue = ImmPtr(0)) { dataLabel = moveWithPatch(initialRightValue, scratchRegister); return branchPtr(cond, left, scratchRegister); } Jump branchPtrWithPatch(Condition cond, Address left, DataLabelPtr& dataLabel, ImmPtr initialRightValue = ImmPtr(0)) { dataLabel = moveWithPatch(initialRightValue, scratchRegister); return branchPtr(cond, left, scratchRegister); } DataLabelPtr storePtrWithPatch(ImmPtr initialValue, ImplicitAddress address) { DataLabelPtr label = moveWithPatch(initialValue, scratchRegister); storePtr(scratchRegister, address); return label; } Label loadPtrWithPatchToLEA(Address address, RegisterID dest) { Label label(this); loadPtr(address, dest); return label; } bool supportsFloatingPoint() const { return true; } // See comment on MacroAssemblerARMv7::supportsFloatingPointTruncate() bool supportsFloatingPointTruncate() const { return true; } private: friend class LinkBuffer; friend class RepatchBuffer; static void linkCall(void* code, Call call, FunctionPtr function) { if (!call.isFlagSet(Call::Near)) X86Assembler::linkPointer(code, X86Assembler::labelFor(call.m_jmp, -REPTACH_OFFSET_CALL_R11), function.value()); else X86Assembler::linkCall(code, call.m_jmp, function.value()); } static void repatchCall(CodeLocationCall call, CodeLocationLabel destination) { X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress()); } static void repatchCall(CodeLocationCall call, FunctionPtr destination) { X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress()); } }; } // namespace JSC #endif // ENABLE(ASSEMBLER) #endif // MacroAssemblerX86_64_h