// Copyright 2007-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. /** \mainpage V8 API Reference Guide * * V8 is Google's open source JavaScript engine. * * This set of documents provides reference material generated from the * V8 header file, include/v8.h. * * For other documentation see http://code.google.com/apis/v8/ */ #ifndef V8_H_ #define V8_H_ #include <stdio.h> #ifdef _WIN32 // When compiling on MinGW stdint.h is available. #ifdef __MINGW32__ #include <stdint.h> #else // __MINGW32__ typedef signed char int8_t; typedef unsigned char uint8_t; typedef short int16_t; // NOLINT typedef unsigned short uint16_t; // NOLINT typedef int int32_t; typedef unsigned int uint32_t; typedef __int64 int64_t; typedef unsigned __int64 uint64_t; // intptr_t and friends are defined in crtdefs.h through stdio.h. #endif // __MINGW32__ // Setup for Windows DLL export/import. When building the V8 DLL the // BUILDING_V8_SHARED needs to be defined. When building a program which uses // the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8 // static library or building a program which uses the V8 static library neither // BUILDING_V8_SHARED nor USING_V8_SHARED should be defined. // The reason for having both V8EXPORT and V8EXPORT_INLINE is that classes which // have their code inside this header file need to have __declspec(dllexport) // when building the DLL but cannot have __declspec(dllimport) when building // a program which uses the DLL. #if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED) #error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\ build configuration to ensure that at most one of these is set #endif #ifdef BUILDING_V8_SHARED #define V8EXPORT __declspec(dllexport) #define V8EXPORT_INLINE __declspec(dllexport) #elif USING_V8_SHARED #define V8EXPORT __declspec(dllimport) #define V8EXPORT_INLINE #else #define V8EXPORT #define V8EXPORT_INLINE #endif // BUILDING_V8_SHARED #else // _WIN32 #include <stdint.h> // Setup for Linux shared library export. There is no need to distinguish // between building or using the V8 shared library, but we should not // export symbols when we are building a static library. #if defined(__GNUC__) && (__GNUC__ >= 4) && defined(V8_SHARED) #define V8EXPORT __attribute__ ((visibility("default"))) #define V8EXPORT_INLINE __attribute__ ((visibility("default"))) #else // defined(__GNUC__) && (__GNUC__ >= 4) #define V8EXPORT #define V8EXPORT_INLINE #endif // defined(__GNUC__) && (__GNUC__ >= 4) #endif // _WIN32 /** * The v8 JavaScript engine. */ namespace v8 { class Context; class String; class Value; class Utils; class Number; class Object; class Array; class Int32; class Uint32; class External; class Primitive; class Boolean; class Integer; class Function; class Date; class ImplementationUtilities; class Signature; template <class T> class Handle; template <class T> class Local; template <class T> class Persistent; class FunctionTemplate; class ObjectTemplate; class Data; namespace internal { class Object; } // --- W e a k H a n d l e s /** * A weak reference callback function. * * \param object the weak global object to be reclaimed by the garbage collector * \param parameter the value passed in when making the weak global object */ typedef void (*WeakReferenceCallback)(Persistent<Value> object, void* parameter); // --- H a n d l e s --- #define TYPE_CHECK(T, S) \ while (false) { \ *(static_cast<T**>(0)) = static_cast<S*>(0); \ } /** * An object reference managed by the v8 garbage collector. * * All objects returned from v8 have to be tracked by the garbage * collector so that it knows that the objects are still alive. Also, * because the garbage collector may move objects, it is unsafe to * point directly to an object. Instead, all objects are stored in * handles which are known by the garbage collector and updated * whenever an object moves. Handles should always be passed by value * (except in cases like out-parameters) and they should never be * allocated on the heap. * * There are two types of handles: local and persistent handles. * Local handles are light-weight and transient and typically used in * local operations. They are managed by HandleScopes. Persistent * handles can be used when storing objects across several independent * operations and have to be explicitly deallocated when they're no * longer used. * * It is safe to extract the object stored in the handle by * dereferencing the handle (for instance, to extract the Object* from * an Handle<Object>); the value will still be governed by a handle * behind the scenes and the same rules apply to these values as to * their handles. */ template <class T> class V8EXPORT_INLINE Handle { public: /** * Creates an empty handle. */ inline Handle(); /** * Creates a new handle for the specified value. */ explicit Handle(T* val) : val_(val) { } /** * Creates a handle for the contents of the specified handle. This * constructor allows you to pass handles as arguments by value and * to assign between handles. However, if you try to assign between * incompatible handles, for instance from a Handle<String> to a * Handle<Number> it will cause a compiletime error. Assigning * between compatible handles, for instance assigning a * Handle<String> to a variable declared as Handle<Value>, is legal * because String is a subclass of Value. */ template <class S> inline Handle(Handle<S> that) : val_(reinterpret_cast<T*>(*that)) { /** * This check fails when trying to convert between incompatible * handles. For example, converting from a Handle<String> to a * Handle<Number>. */ TYPE_CHECK(T, S); } /** * Returns true if the handle is empty. */ bool IsEmpty() const { return val_ == 0; } T* operator->() const { return val_; } T* operator*() const { return val_; } /** * Sets the handle to be empty. IsEmpty() will then return true. */ void Clear() { this->val_ = 0; } /** * Checks whether two handles are the same. * Returns true if both are empty, or if the objects * to which they refer are identical. * The handles' references are not checked. */ template <class S> bool operator==(Handle<S> that) const { internal::Object** a = reinterpret_cast<internal::Object**>(**this); internal::Object** b = reinterpret_cast<internal::Object**>(*that); if (a == 0) return b == 0; if (b == 0) return false; return *a == *b; } /** * Checks whether two handles are different. * Returns true if only one of the handles is empty, or if * the objects to which they refer are different. * The handles' references are not checked. */ template <class S> bool operator!=(Handle<S> that) const { return !operator==(that); } template <class S> static inline Handle<T> Cast(Handle<S> that) { #ifdef V8_ENABLE_CHECKS // If we're going to perform the type check then we have to check // that the handle isn't empty before doing the checked cast. if (that.IsEmpty()) return Handle<T>(); #endif return Handle<T>(T::Cast(*that)); } private: T* val_; }; /** * A light-weight stack-allocated object handle. All operations * that return objects from within v8 return them in local handles. They * are created within HandleScopes, and all local handles allocated within a * handle scope are destroyed when the handle scope is destroyed. Hence it * is not necessary to explicitly deallocate local handles. */ template <class T> class V8EXPORT_INLINE Local : public Handle<T> { public: inline Local(); template <class S> inline Local(Local<S> that) : Handle<T>(reinterpret_cast<T*>(*that)) { /** * This check fails when trying to convert between incompatible * handles. For example, converting from a Handle<String> to a * Handle<Number>. */ TYPE_CHECK(T, S); } template <class S> inline Local(S* that) : Handle<T>(that) { } template <class S> static inline Local<T> Cast(Local<S> that) { #ifdef V8_ENABLE_CHECKS // If we're going to perform the type check then we have to check // that the handle isn't empty before doing the checked cast. if (that.IsEmpty()) return Local<T>(); #endif return Local<T>(T::Cast(*that)); } /** Create a local handle for the content of another handle. * The referee is kept alive by the local handle even when * the original handle is destroyed/disposed. */ inline static Local<T> New(Handle<T> that); }; /** * An object reference that is independent of any handle scope. Where * a Local handle only lives as long as the HandleScope in which it was * allocated, a Persistent handle remains valid until it is explicitly * disposed. * * A persistent handle contains a reference to a storage cell within * the v8 engine which holds an object value and which is updated by * the garbage collector whenever the object is moved. A new storage * cell can be created using Persistent::New and existing handles can * be disposed using Persistent::Dispose. Since persistent handles * are passed by value you may have many persistent handle objects * that point to the same storage cell. For instance, if you pass a * persistent handle as an argument to a function you will not get two * different storage cells but rather two references to the same * storage cell. */ template <class T> class V8EXPORT_INLINE Persistent : public Handle<T> { public: /** * Creates an empty persistent handle that doesn't point to any * storage cell. */ inline Persistent(); /** * Creates a persistent handle for the same storage cell as the * specified handle. This constructor allows you to pass persistent * handles as arguments by value and to assign between persistent * handles. However, attempting to assign between incompatible * persistent handles, for instance from a Persistent<String> to a * Persistent<Number> will cause a compiletime error. Assigning * between compatible persistent handles, for instance assigning a * Persistent<String> to a variable declared as Persistent<Value>, * is allowed as String is a subclass of Value. */ template <class S> inline Persistent(Persistent<S> that) : Handle<T>(reinterpret_cast<T*>(*that)) { /** * This check fails when trying to convert between incompatible * handles. For example, converting from a Handle<String> to a * Handle<Number>. */ TYPE_CHECK(T, S); } template <class S> inline Persistent(S* that) : Handle<T>(that) { } /** * "Casts" a plain handle which is known to be a persistent handle * to a persistent handle. */ template <class S> explicit inline Persistent(Handle<S> that) : Handle<T>(*that) { } template <class S> static inline Persistent<T> Cast(Persistent<S> that) { #ifdef V8_ENABLE_CHECKS // If we're going to perform the type check then we have to check // that the handle isn't empty before doing the checked cast. if (that.IsEmpty()) return Persistent<T>(); #endif return Persistent<T>(T::Cast(*that)); } /** * Creates a new persistent handle for an existing local or * persistent handle. */ inline static Persistent<T> New(Handle<T> that); /** * Releases the storage cell referenced by this persistent handle. * Does not remove the reference to the cell from any handles. * This handle's reference, and any any other references to the storage * cell remain and IsEmpty will still return false. */ inline void Dispose(); /** * Make the reference to this object weak. When only weak handles * refer to the object, the garbage collector will perform a * callback to the given V8::WeakReferenceCallback function, passing * it the object reference and the given parameters. */ inline void MakeWeak(void* parameters, WeakReferenceCallback callback); /** Clears the weak reference to this object.*/ inline void ClearWeak(); /** *Checks if the handle holds the only reference to an object. */ inline bool IsNearDeath() const; /** * Returns true if the handle's reference is weak. */ inline bool IsWeak() const; private: friend class ImplementationUtilities; friend class ObjectTemplate; }; /** * A stack-allocated class that governs a number of local handles. * After a handle scope has been created, all local handles will be * allocated within that handle scope until either the handle scope is * deleted or another handle scope is created. If there is already a * handle scope and a new one is created, all allocations will take * place in the new handle scope until it is deleted. After that, * new handles will again be allocated in the original handle scope. * * After the handle scope of a local handle has been deleted the * garbage collector will no longer track the object stored in the * handle and may deallocate it. The behavior of accessing a handle * for which the handle scope has been deleted is undefined. */ class V8EXPORT HandleScope { public: HandleScope(); ~HandleScope(); /** * Closes the handle scope and returns the value as a handle in the * previous scope, which is the new current scope after the call. */ template <class T> Local<T> Close(Handle<T> value); /** * Counts the number of allocated handles. */ static int NumberOfHandles(); /** * Creates a new handle with the given value. */ static internal::Object** CreateHandle(internal::Object* value); private: // Make it impossible to create heap-allocated or illegal handle // scopes by disallowing certain operations. HandleScope(const HandleScope&); void operator=(const HandleScope&); void* operator new(size_t size); void operator delete(void*, size_t); // This Data class is accessible internally through a typedef in the // ImplementationUtilities class. class V8EXPORT Data { public: int extensions; internal::Object** next; internal::Object** limit; inline void Initialize() { extensions = -1; next = limit = NULL; } }; Data previous_; // Allow for the active closing of HandleScopes which allows to pass a handle // from the HandleScope being closed to the next top most HandleScope. bool is_closed_; internal::Object** RawClose(internal::Object** value); friend class ImplementationUtilities; }; // --- S p e c i a l o b j e c t s --- /** * The superclass of values and API object templates. */ class V8EXPORT Data { private: Data(); }; /** * Pre-compilation data that can be associated with a script. This * data can be calculated for a script in advance of actually * compiling it, and can be stored between compilations. When script * data is given to the compile method compilation will be faster. */ class V8EXPORT ScriptData { // NOLINT public: virtual ~ScriptData() { } static ScriptData* PreCompile(const char* input, int length); static ScriptData* New(unsigned* data, int length); virtual int Length() = 0; virtual unsigned* Data() = 0; }; /** * The origin, within a file, of a script. */ class V8EXPORT ScriptOrigin { public: ScriptOrigin(Handle<Value> resource_name, Handle<Integer> resource_line_offset = Handle<Integer>(), Handle<Integer> resource_column_offset = Handle<Integer>()) : resource_name_(resource_name), resource_line_offset_(resource_line_offset), resource_column_offset_(resource_column_offset) { } inline Handle<Value> ResourceName() const; inline Handle<Integer> ResourceLineOffset() const; inline Handle<Integer> ResourceColumnOffset() const; private: Handle<Value> resource_name_; Handle<Integer> resource_line_offset_; Handle<Integer> resource_column_offset_; }; /** * A compiled JavaScript script. */ class V8EXPORT Script { public: /** * Compiles the specified script. The ScriptOrigin* and ScriptData* * parameters are owned by the caller of Script::Compile. No * references to these objects are kept after compilation finishes. * * The script object returned is context independent; when run it * will use the currently entered context. */ static Local<Script> New(Handle<String> source, ScriptOrigin* origin = NULL, ScriptData* pre_data = NULL); /** * Compiles the specified script using the specified file name * object (typically a string) as the script's origin. * * The script object returned is context independent; when run it * will use the currently entered context. */ static Local<Script> New(Handle<String> source, Handle<Value> file_name); /** * Compiles the specified script. The ScriptOrigin* and ScriptData* * parameters are owned by the caller of Script::Compile. No * references to these objects are kept after compilation finishes. * * The script object returned is bound to the context that was active * when this function was called. When run it will always use this * context. */ static Local<Script> Compile(Handle<String> source, ScriptOrigin* origin = NULL, ScriptData* pre_data = NULL); /** * Compiles the specified script using the specified file name * object (typically a string) as the script's origin. * * The script object returned is bound to the context that was active * when this function was called. When run it will always use this * context. */ static Local<Script> Compile(Handle<String> source, Handle<Value> file_name); /** * Runs the script returning the resulting value. If the script is * context independent (created using ::New) it will be run in the * currently entered context. If it is context specific (created * using ::Compile) it will be run in the context in which it was * compiled. */ Local<Value> Run(); /** * Returns the script id value. */ Local<Value> Id(); /** * Associate an additional data object with the script. This is mainly used * with the debugger as this data object is only available through the * debugger API. */ void SetData(Handle<Value> data); }; /** * An error message. */ class V8EXPORT Message { public: Local<String> Get() const; Local<String> GetSourceLine() const; /** * Returns the resource name for the script from where the function causing * the error originates. */ Handle<Value> GetScriptResourceName() const; /** * Returns the resource data for the script from where the function causing * the error originates. */ Handle<Value> GetScriptData() const; /** * Returns the number, 1-based, of the line where the error occurred. */ int GetLineNumber() const; /** * Returns the index within the script of the first character where * the error occurred. */ int GetStartPosition() const; /** * Returns the index within the script of the last character where * the error occurred. */ int GetEndPosition() const; /** * Returns the index within the line of the first character where * the error occurred. */ int GetStartColumn() const; /** * Returns the index within the line of the last character where * the error occurred. */ int GetEndColumn() const; // TODO(1245381): Print to a string instead of on a FILE. static void PrintCurrentStackTrace(FILE* out); }; // --- V a l u e --- /** * The superclass of all JavaScript values and objects. */ class V8EXPORT Value : public Data { public: /** * Returns true if this value is the undefined value. See ECMA-262 * 4.3.10. */ bool IsUndefined() const; /** * Returns true if this value is the null value. See ECMA-262 * 4.3.11. */ bool IsNull() const; /** * Returns true if this value is true. */ bool IsTrue() const; /** * Returns true if this value is false. */ bool IsFalse() const; /** * Returns true if this value is an instance of the String type. * See ECMA-262 8.4. */ inline bool IsString() const; /** * Returns true if this value is a function. */ bool IsFunction() const; /** * Returns true if this value is an array. */ bool IsArray() const; /** * Returns true if this value is an object. */ bool IsObject() const; /** * Returns true if this value is boolean. */ bool IsBoolean() const; /** * Returns true if this value is a number. */ bool IsNumber() const; /** * Returns true if this value is external. */ bool IsExternal() const; /** * Returns true if this value is a 32-bit signed integer. */ bool IsInt32() const; /** * Returns true if this value is a Date. */ bool IsDate() const; Local<Boolean> ToBoolean() const; Local<Number> ToNumber() const; Local<String> ToString() const; Local<String> ToDetailString() const; Local<Object> ToObject() const; Local<Integer> ToInteger() const; Local<Uint32> ToUint32() const; Local<Int32> ToInt32() const; /** * Attempts to convert a string to an array index. * Returns an empty handle if the conversion fails. */ Local<Uint32> ToArrayIndex() const; bool BooleanValue() const; double NumberValue() const; int64_t IntegerValue() const; uint32_t Uint32Value() const; int32_t Int32Value() const; /** JS == */ bool Equals(Handle<Value> that) const; bool StrictEquals(Handle<Value> that) const; private: inline bool QuickIsString() const; bool FullIsString() const; }; /** * The superclass of primitive values. See ECMA-262 4.3.2. */ class V8EXPORT Primitive : public Value { }; /** * A primitive boolean value (ECMA-262, 4.3.14). Either the true * or false value. */ class V8EXPORT Boolean : public Primitive { public: bool Value() const; static inline Handle<Boolean> New(bool value); }; /** * A JavaScript string value (ECMA-262, 4.3.17). */ class V8EXPORT String : public Primitive { public: /** * Returns the number of characters in this string. */ int Length() const; /** * Returns the number of bytes in the UTF-8 encoded * representation of this string. */ int Utf8Length() const; /** * Write the contents of the string to an external buffer. * If no arguments are given, expects the buffer to be large * enough to hold the entire string and NULL terminator. Copies * the contents of the string and the NULL terminator into the * buffer. * * Copies up to length characters into the output buffer. * Only null-terminates if there is enough space in the buffer. * * \param buffer The buffer into which the string will be copied. * \param start The starting position within the string at which * copying begins. * \param length The number of bytes to copy from the string. * \return The number of characters copied to the buffer * excluding the NULL terminator. */ int Write(uint16_t* buffer, int start = 0, int length = -1) const; // UTF-16 int WriteAscii(char* buffer, int start = 0, int length = -1) const; // ASCII int WriteUtf8(char* buffer, int length = -1) const; // UTF-8 /** * A zero length string. */ static v8::Local<v8::String> Empty(); /** * Returns true if the string is external */ bool IsExternal() const; /** * Returns true if the string is both external and ascii */ bool IsExternalAscii() const; /** * An ExternalStringResource is a wrapper around a two-byte string * buffer that resides outside V8's heap. Implement an * ExternalStringResource to manage the life cycle of the underlying * buffer. Note that the string data must be immutable. */ class V8EXPORT ExternalStringResource { // NOLINT public: /** * Override the destructor to manage the life cycle of the underlying * buffer. */ virtual ~ExternalStringResource() {} /** The string data from the underlying buffer.*/ virtual const uint16_t* data() const = 0; /** The length of the string. That is, the number of two-byte characters.*/ virtual size_t length() const = 0; protected: ExternalStringResource() {} private: // Disallow copying and assigning. ExternalStringResource(const ExternalStringResource&); void operator=(const ExternalStringResource&); }; /** * An ExternalAsciiStringResource is a wrapper around an ascii * string buffer that resides outside V8's heap. Implement an * ExternalAsciiStringResource to manage the life cycle of the * underlying buffer. Note that the string data must be immutable * and that the data must be strict 7-bit ASCII, not Latin1 or * UTF-8, which would require special treatment internally in the * engine and, in the case of UTF-8, do not allow efficient indexing. * Use String::New or convert to 16 bit data for non-ASCII. */ class V8EXPORT ExternalAsciiStringResource { // NOLINT public: /** * Override the destructor to manage the life cycle of the underlying * buffer. */ virtual ~ExternalAsciiStringResource() {} /** The string data from the underlying buffer.*/ virtual const char* data() const = 0; /** The number of ascii characters in the string.*/ virtual size_t length() const = 0; protected: ExternalAsciiStringResource() {} private: // Disallow copying and assigning. ExternalAsciiStringResource(const ExternalAsciiStringResource&); void operator=(const ExternalAsciiStringResource&); }; /** * Get the ExternalStringResource for an external string. Returns * NULL if IsExternal() doesn't return true. */ inline ExternalStringResource* GetExternalStringResource() const; /** * Get the ExternalAsciiStringResource for an external ascii string. * Returns NULL if IsExternalAscii() doesn't return true. */ ExternalAsciiStringResource* GetExternalAsciiStringResource() const; static inline String* Cast(v8::Value* obj); /** * Allocates a new string from either utf-8 encoded or ascii data. * The second parameter 'length' gives the buffer length. * If the data is utf-8 encoded, the caller must * be careful to supply the length parameter. * If it is not given, the function calls * 'strlen' to determine the buffer length, it might be * wrong if 'data' contains a null character. */ static Local<String> New(const char* data, int length = -1); /** Allocates a new string from utf16 data.*/ static Local<String> New(const uint16_t* data, int length = -1); /** Creates a symbol. Returns one if it exists already.*/ static Local<String> NewSymbol(const char* data, int length = -1); /** * Creates a new external string using the data defined in the given * resource. The resource is deleted when the external string is no * longer live on V8's heap. The caller of this function should not * delete or modify the resource. Neither should the underlying buffer be * deallocated or modified except through the destructor of the * external string resource. */ static Local<String> NewExternal(ExternalStringResource* resource); /** * Associate an external string resource with this string by transforming it * in place so that existing references to this string in the JavaScript heap * will use the external string resource. The external string resource's * character contents needs to be equivalent to this string. * Returns true if the string has been changed to be an external string. * The string is not modified if the operation fails. */ bool MakeExternal(ExternalStringResource* resource); /** * Creates a new external string using the ascii data defined in the given * resource. The resource is deleted when the external string is no * longer live on V8's heap. The caller of this function should not * delete or modify the resource. Neither should the underlying buffer be * deallocated or modified except through the destructor of the * external string resource. */ static Local<String> NewExternal(ExternalAsciiStringResource* resource); /** * Associate an external string resource with this string by transforming it * in place so that existing references to this string in the JavaScript heap * will use the external string resource. The external string resource's * character contents needs to be equivalent to this string. * Returns true if the string has been changed to be an external string. * The string is not modified if the operation fails. */ bool MakeExternal(ExternalAsciiStringResource* resource); /** * Returns true if this string can be made external. */ bool CanMakeExternal(); /** Creates an undetectable string from the supplied ascii or utf-8 data.*/ static Local<String> NewUndetectable(const char* data, int length = -1); /** Creates an undetectable string from the supplied utf-16 data.*/ static Local<String> NewUndetectable(const uint16_t* data, int length = -1); /** * Converts an object to a utf8-encoded character array. Useful if * you want to print the object. If conversion to a string fails * (eg. due to an exception in the toString() method of the object) * then the length() method returns 0 and the * operator returns * NULL. */ class V8EXPORT Utf8Value { public: explicit Utf8Value(Handle<v8::Value> obj); ~Utf8Value(); char* operator*() { return str_; } const char* operator*() const { return str_; } int length() const { return length_; } private: char* str_; int length_; // Disallow copying and assigning. Utf8Value(const Utf8Value&); void operator=(const Utf8Value&); }; /** * Converts an object to an ascii string. * Useful if you want to print the object. * If conversion to a string fails (eg. due to an exception in the toString() * method of the object) then the length() method returns 0 and the * operator * returns NULL. */ class V8EXPORT AsciiValue { public: explicit AsciiValue(Handle<v8::Value> obj); ~AsciiValue(); char* operator*() { return str_; } const char* operator*() const { return str_; } int length() const { return length_; } private: char* str_; int length_; // Disallow copying and assigning. AsciiValue(const AsciiValue&); void operator=(const AsciiValue&); }; /** * Converts an object to a two-byte string. * If conversion to a string fails (eg. due to an exception in the toString() * method of the object) then the length() method returns 0 and the * operator * returns NULL. */ class V8EXPORT Value { public: explicit Value(Handle<v8::Value> obj); ~Value(); uint16_t* operator*() const { return str_; } const uint16_t* operator*() { return str_; } int length() const { return length_; } private: uint16_t* str_; int length_; // Disallow copying and assigning. Value(const Value&); void operator=(const Value&); }; private: void VerifyExternalStringResource(ExternalStringResource* val) const; static void CheckCast(v8::Value* obj); }; /** * A JavaScript number value (ECMA-262, 4.3.20) */ class V8EXPORT Number : public Primitive { public: double Value() const; static Local<Number> New(double value); static inline Number* Cast(v8::Value* obj); private: Number(); static void CheckCast(v8::Value* obj); }; /** * A JavaScript value representing a signed integer. */ class V8EXPORT Integer : public Number { public: static Local<Integer> New(int32_t value); int64_t Value() const; static inline Integer* Cast(v8::Value* obj); private: Integer(); static void CheckCast(v8::Value* obj); }; /** * A JavaScript value representing a 32-bit signed integer. */ class V8EXPORT Int32 : public Integer { public: int32_t Value() const; private: Int32(); }; /** * A JavaScript value representing a 32-bit unsigned integer. */ class V8EXPORT Uint32 : public Integer { public: uint32_t Value() const; private: Uint32(); }; /** * An instance of the built-in Date constructor (ECMA-262, 15.9). */ class V8EXPORT Date : public Value { public: static Local<Value> New(double time); /** * A specialization of Value::NumberValue that is more efficient * because we know the structure of this object. */ double NumberValue() const; static inline Date* Cast(v8::Value* obj); private: static void CheckCast(v8::Value* obj); }; enum PropertyAttribute { None = 0, ReadOnly = 1 << 0, DontEnum = 1 << 1, DontDelete = 1 << 2 }; /** * A JavaScript object (ECMA-262, 4.3.3) */ class V8EXPORT Object : public Value { public: bool Set(Handle<Value> key, Handle<Value> value, PropertyAttribute attribs = None); // Sets a local property on this object bypassing interceptors and // overriding accessors or read-only properties. // // Note that if the object has an interceptor the property will be set // locally, but since the interceptor takes precedence the local property // will only be returned if the interceptor doesn't return a value. // // Note also that this only works for named properties. bool ForceSet(Handle<Value> key, Handle<Value> value, PropertyAttribute attribs = None); Local<Value> Get(Handle<Value> key); // TODO(1245389): Replace the type-specific versions of these // functions with generic ones that accept a Handle<Value> key. bool Has(Handle<String> key); bool Delete(Handle<String> key); // Delete a property on this object bypassing interceptors and // ignoring dont-delete attributes. bool ForceDelete(Handle<Value> key); bool Has(uint32_t index); bool Delete(uint32_t index); /** * Returns an array containing the names of the enumerable properties * of this object, including properties from prototype objects. The * array returned by this method contains the same values as would * be enumerated by a for-in statement over this object. */ Local<Array> GetPropertyNames(); /** * Get the prototype object. This does not skip objects marked to * be skipped by __proto__ and it does not consult the security * handler. */ Local<Value> GetPrototype(); /** * Finds an instance of the given function template in the prototype * chain. */ Local<Object> FindInstanceInPrototypeChain(Handle<FunctionTemplate> tmpl); /** * Call builtin Object.prototype.toString on this object. * This is different from Value::ToString() that may call * user-defined toString function. This one does not. */ Local<String> ObjectProtoToString(); /** Gets the number of internal fields for this Object. */ int InternalFieldCount(); /** Gets the value in an internal field. */ inline Local<Value> GetInternalField(int index); /** Sets the value in an internal field. */ void SetInternalField(int index, Handle<Value> value); /** Gets a native pointer from an internal field. */ inline void* GetPointerFromInternalField(int index); /** Sets a native pointer in an internal field. */ void SetPointerInInternalField(int index, void* value); // Testers for local properties. bool HasRealNamedProperty(Handle<String> key); bool HasRealIndexedProperty(uint32_t index); bool HasRealNamedCallbackProperty(Handle<String> key); /** * If result.IsEmpty() no real property was located in the prototype chain. * This means interceptors in the prototype chain are not called. */ Handle<Value> GetRealNamedPropertyInPrototypeChain(Handle<String> key); /** Tests for a named lookup interceptor.*/ bool HasNamedLookupInterceptor(); /** Tests for an index lookup interceptor.*/ bool HasIndexedLookupInterceptor(); /** * Turns on access check on the object if the object is an instance of * a template that has access check callbacks. If an object has no * access check info, the object cannot be accessed by anyone. */ void TurnOnAccessCheck(); /** * Returns the identity hash for this object. The current implemenation uses * a hidden property on the object to store the identity hash. * * The return value will never be 0. Also, it is not guaranteed to be * unique. */ int GetIdentityHash(); /** * Access hidden properties on JavaScript objects. These properties are * hidden from the executing JavaScript and only accessible through the V8 * C++ API. Hidden properties introduced by V8 internally (for example the * identity hash) are prefixed with "v8::". */ bool SetHiddenValue(Handle<String> key, Handle<Value> value); Local<Value> GetHiddenValue(Handle<String> key); bool DeleteHiddenValue(Handle<String> key); /** * Clone this object with a fast but shallow copy. Values will point * to the same values as the original object. */ Local<Object> Clone(); /** * Set the backing store of the indexed properties to be managed by the * embedding layer. Access to the indexed properties will follow the rules * spelled out in CanvasPixelArray. * Note: The embedding program still owns the data and needs to ensure that * the backing store is preserved while V8 has a reference. */ void SetIndexedPropertiesToPixelData(uint8_t* data, int length); static Local<Object> New(); static inline Object* Cast(Value* obj); private: Object(); static void CheckCast(Value* obj); Local<Value> CheckedGetInternalField(int index); /** * If quick access to the internal field is possible this method * returns the value. Otherwise an empty handle is returned. */ inline Local<Value> UncheckedGetInternalField(int index); }; /** * An instance of the built-in array constructor (ECMA-262, 15.4.2). */ class V8EXPORT Array : public Object { public: uint32_t Length() const; /** * Clones an element at index |index|. Returns an empty * handle if cloning fails (for any reason). */ Local<Object> CloneElementAt(uint32_t index); static Local<Array> New(int length = 0); static inline Array* Cast(Value* obj); private: Array(); static void CheckCast(Value* obj); }; /** * A JavaScript function object (ECMA-262, 15.3). */ class V8EXPORT Function : public Object { public: Local<Object> NewInstance() const; Local<Object> NewInstance(int argc, Handle<Value> argv[]) const; Local<Value> Call(Handle<Object> recv, int argc, Handle<Value> argv[]); void SetName(Handle<String> name); Handle<Value> GetName() const; static inline Function* Cast(Value* obj); private: Function(); static void CheckCast(Value* obj); }; /** * A JavaScript value that wraps a C++ void*. This type of value is * mainly used to associate C++ data structures with JavaScript * objects. * * The Wrap function V8 will return the most optimal Value object wrapping the * C++ void*. The type of the value is not guaranteed to be an External object * and no assumptions about its type should be made. To access the wrapped * value Unwrap should be used, all other operations on that object will lead * to unpredictable results. */ class V8EXPORT External : public Value { public: static Local<Value> Wrap(void* data); static inline void* Unwrap(Handle<Value> obj); static Local<External> New(void* value); static inline External* Cast(Value* obj); void* Value() const; private: External(); static void CheckCast(v8::Value* obj); static inline void* QuickUnwrap(Handle<v8::Value> obj); static void* FullUnwrap(Handle<v8::Value> obj); }; // --- T e m p l a t e s --- /** * The superclass of object and function templates. */ class V8EXPORT Template : public Data { public: /** Adds a property to each instance created by this template.*/ void Set(Handle<String> name, Handle<Data> value, PropertyAttribute attributes = None); inline void Set(const char* name, Handle<Data> value); private: Template(); friend class ObjectTemplate; friend class FunctionTemplate; }; /** * The argument information given to function call callbacks. This * class provides access to information about the context of the call, * including the receiver, the number and values of arguments, and * the holder of the function. */ class V8EXPORT Arguments { public: inline int Length() const; inline Local<Value> operator[](int i) const; inline Local<Function> Callee() const; inline Local<Object> This() const; inline Local<Object> Holder() const; inline bool IsConstructCall() const; inline Local<Value> Data() const; private: Arguments(); friend class ImplementationUtilities; inline Arguments(Local<Value> data, Local<Object> holder, Local<Function> callee, bool is_construct_call, void** values, int length); Local<Value> data_; Local<Object> holder_; Local<Function> callee_; bool is_construct_call_; void** values_; int length_; }; /** * The information passed to an accessor callback about the context * of the property access. */ class V8EXPORT AccessorInfo { public: inline AccessorInfo(Local<Object> self, Local<Value> data, Local<Object> holder) : self_(self), data_(data), holder_(holder) { } inline Local<Value> Data() const; inline Local<Object> This() const; inline Local<Object> Holder() const; private: Local<Object> self_; Local<Value> data_; Local<Object> holder_; }; typedef Handle<Value> (*InvocationCallback)(const Arguments& args); typedef int (*LookupCallback)(Local<Object> self, Local<String> name); /** * Accessor[Getter|Setter] are used as callback functions when * setting|getting a particular property. See objectTemplate::SetAccessor. */ typedef Handle<Value> (*AccessorGetter)(Local<String> property, const AccessorInfo& info); typedef void (*AccessorSetter)(Local<String> property, Local<Value> value, const AccessorInfo& info); /** * NamedProperty[Getter|Setter] are used as interceptors on object. * See ObjectTemplate::SetNamedPropertyHandler. */ typedef Handle<Value> (*NamedPropertyGetter)(Local<String> property, const AccessorInfo& info); /** * Returns the value if the setter intercepts the request. * Otherwise, returns an empty handle. */ typedef Handle<Value> (*NamedPropertySetter)(Local<String> property, Local<Value> value, const AccessorInfo& info); /** * Returns a non-empty handle if the interceptor intercepts the request. * The result is true if the property exists and false otherwise. */ typedef Handle<Boolean> (*NamedPropertyQuery)(Local<String> property, const AccessorInfo& info); /** * Returns a non-empty handle if the deleter intercepts the request. * The return value is true if the property could be deleted and false * otherwise. */ typedef Handle<Boolean> (*NamedPropertyDeleter)(Local<String> property, const AccessorInfo& info); /** * Returns an array containing the names of the properties the named * property getter intercepts. */ typedef Handle<Array> (*NamedPropertyEnumerator)(const AccessorInfo& info); /** * Returns the value of the property if the getter intercepts the * request. Otherwise, returns an empty handle. */ typedef Handle<Value> (*IndexedPropertyGetter)(uint32_t index, const AccessorInfo& info); /** * Returns the value if the setter intercepts the request. * Otherwise, returns an empty handle. */ typedef Handle<Value> (*IndexedPropertySetter)(uint32_t index, Local<Value> value, const AccessorInfo& info); /** * Returns a non-empty handle if the interceptor intercepts the request. * The result is true if the property exists and false otherwise. */ typedef Handle<Boolean> (*IndexedPropertyQuery)(uint32_t index, const AccessorInfo& info); /** * Returns a non-empty handle if the deleter intercepts the request. * The return value is true if the property could be deleted and false * otherwise. */ typedef Handle<Boolean> (*IndexedPropertyDeleter)(uint32_t index, const AccessorInfo& info); /** * Returns an array containing the indices of the properties the * indexed property getter intercepts. */ typedef Handle<Array> (*IndexedPropertyEnumerator)(const AccessorInfo& info); /** * Access control specifications. * * Some accessors should be accessible across contexts. These * accessors have an explicit access control parameter which specifies * the kind of cross-context access that should be allowed. * * Additionally, for security, accessors can prohibit overwriting by * accessors defined in JavaScript. For objects that have such * accessors either locally or in their prototype chain it is not * possible to overwrite the accessor by using __defineGetter__ or * __defineSetter__ from JavaScript code. */ enum AccessControl { DEFAULT = 0, ALL_CAN_READ = 1, ALL_CAN_WRITE = 1 << 1, PROHIBITS_OVERWRITING = 1 << 2 }; /** * Access type specification. */ enum AccessType { ACCESS_GET, ACCESS_SET, ACCESS_HAS, ACCESS_DELETE, ACCESS_KEYS }; /** * Returns true if cross-context access should be allowed to the named * property with the given key on the global object. */ typedef bool (*NamedSecurityCallback)(Local<Object> global, Local<Value> key, AccessType type, Local<Value> data); /** * Returns true if cross-context access should be allowed to the indexed * property with the given index on the global object. */ typedef bool (*IndexedSecurityCallback)(Local<Object> global, uint32_t index, AccessType type, Local<Value> data); /** * A FunctionTemplate is used to create functions at runtime. There * can only be one function created from a FunctionTemplate in a * context. * * A FunctionTemplate can have properties, these properties are added to the * function object when it is created. * * A FunctionTemplate has a corresponding instance template which is * used to create object instances when the function is used as a * constructor. Properties added to the instance template are added to * each object instance. * * A FunctionTemplate can have a prototype template. The prototype template * is used to create the prototype object of the function. * * The following example shows how to use a FunctionTemplate: * * \code * v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New(); * t->Set("func_property", v8::Number::New(1)); * * v8::Local<v8::Template> proto_t = t->PrototypeTemplate(); * proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback)); * proto_t->Set("proto_const", v8::Number::New(2)); * * v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate(); * instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback); * instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...); * instance_t->Set("instance_property", Number::New(3)); * * v8::Local<v8::Function> function = t->GetFunction(); * v8::Local<v8::Object> instance = function->NewInstance(); * \endcode * * Let's use "function" as the JS variable name of the function object * and "instance" for the instance object created above. The function * and the instance will have the following properties: * * \code * func_property in function == true; * function.func_property == 1; * * function.prototype.proto_method() invokes 'InvokeCallback' * function.prototype.proto_const == 2; * * instance instanceof function == true; * instance.instance_accessor calls 'InstanceAccessorCallback' * instance.instance_property == 3; * \endcode * * A FunctionTemplate can inherit from another one by calling the * FunctionTemplate::Inherit method. The following graph illustrates * the semantics of inheritance: * * \code * FunctionTemplate Parent -> Parent() . prototype -> { } * ^ ^ * | Inherit(Parent) | .__proto__ * | | * FunctionTemplate Child -> Child() . prototype -> { } * \endcode * * A FunctionTemplate 'Child' inherits from 'Parent', the prototype * object of the Child() function has __proto__ pointing to the * Parent() function's prototype object. An instance of the Child * function has all properties on Parent's instance templates. * * Let Parent be the FunctionTemplate initialized in the previous * section and create a Child FunctionTemplate by: * * \code * Local<FunctionTemplate> parent = t; * Local<FunctionTemplate> child = FunctionTemplate::New(); * child->Inherit(parent); * * Local<Function> child_function = child->GetFunction(); * Local<Object> child_instance = child_function->NewInstance(); * \endcode * * The Child function and Child instance will have the following * properties: * * \code * child_func.prototype.__proto__ == function.prototype; * child_instance.instance_accessor calls 'InstanceAccessorCallback' * child_instance.instance_property == 3; * \endcode */ class V8EXPORT FunctionTemplate : public Template { public: /** Creates a function template.*/ static Local<FunctionTemplate> New( InvocationCallback callback = 0, Handle<Value> data = Handle<Value>(), Handle<Signature> signature = Handle<Signature>()); /** Returns the unique function instance in the current execution context.*/ Local<Function> GetFunction(); /** * Set the call-handler callback for a FunctionTemplate. This * callback is called whenever the function created from this * FunctionTemplate is called. */ void SetCallHandler(InvocationCallback callback, Handle<Value> data = Handle<Value>()); /** Get the InstanceTemplate. */ Local<ObjectTemplate> InstanceTemplate(); /** Causes the function template to inherit from a parent function template.*/ void Inherit(Handle<FunctionTemplate> parent); /** * A PrototypeTemplate is the template used to create the prototype object * of the function created by this template. */ Local<ObjectTemplate> PrototypeTemplate(); /** * Set the class name of the FunctionTemplate. This is used for * printing objects created with the function created from the * FunctionTemplate as its constructor. */ void SetClassName(Handle<String> name); /** * Determines whether the __proto__ accessor ignores instances of * the function template. If instances of the function template are * ignored, __proto__ skips all instances and instead returns the * next object in the prototype chain. * * Call with a value of true to make the __proto__ accessor ignore * instances of the function template. Call with a value of false * to make the __proto__ accessor not ignore instances of the * function template. By default, instances of a function template * are not ignored. */ void SetHiddenPrototype(bool value); /** * Returns true if the given object is an instance of this function * template. */ bool HasInstance(Handle<Value> object); private: FunctionTemplate(); void AddInstancePropertyAccessor(Handle<String> name, AccessorGetter getter, AccessorSetter setter, Handle<Value> data, AccessControl settings, PropertyAttribute attributes); void SetNamedInstancePropertyHandler(NamedPropertyGetter getter, NamedPropertySetter setter, NamedPropertyQuery query, NamedPropertyDeleter remover, NamedPropertyEnumerator enumerator, Handle<Value> data); void SetIndexedInstancePropertyHandler(IndexedPropertyGetter getter, IndexedPropertySetter setter, IndexedPropertyQuery query, IndexedPropertyDeleter remover, IndexedPropertyEnumerator enumerator, Handle<Value> data); void SetInstanceCallAsFunctionHandler(InvocationCallback callback, Handle<Value> data); friend class Context; friend class ObjectTemplate; }; /** * An ObjectTemplate is used to create objects at runtime. * * Properties added to an ObjectTemplate are added to each object * created from the ObjectTemplate. */ class V8EXPORT ObjectTemplate : public Template { public: /** Creates an ObjectTemplate. */ static Local<ObjectTemplate> New(); /** Creates a new instance of this template.*/ Local<Object> NewInstance(); /** * Sets an accessor on the object template. * * Whenever the property with the given name is accessed on objects * created from this ObjectTemplate the getter and setter callbacks * are called instead of getting and setting the property directly * on the JavaScript object. * * \param name The name of the property for which an accessor is added. * \param getter The callback to invoke when getting the property. * \param setter The callback to invoke when setting the property. * \param data A piece of data that will be passed to the getter and setter * callbacks whenever they are invoked. * \param settings Access control settings for the accessor. This is a bit * field consisting of one of more of * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2. * The default is to not allow cross-context access. * ALL_CAN_READ means that all cross-context reads are allowed. * ALL_CAN_WRITE means that all cross-context writes are allowed. * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all * cross-context access. * \param attribute The attributes of the property for which an accessor * is added. */ void SetAccessor(Handle<String> name, AccessorGetter getter, AccessorSetter setter = 0, Handle<Value> data = Handle<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None); /** * Sets a named property handler on the object template. * * Whenever a named property is accessed on objects created from * this object template, the provided callback is invoked instead of * accessing the property directly on the JavaScript object. * * \param getter The callback to invoke when getting a property. * \param setter The callback to invoke when setting a property. * \param query The callback to invoke to check is an object has a property. * \param deleter The callback to invoke when deleting a property. * \param enumerator The callback to invoke to enumerate all the named * properties of an object. * \param data A piece of data that will be passed to the callbacks * whenever they are invoked. */ void SetNamedPropertyHandler(NamedPropertyGetter getter, NamedPropertySetter setter = 0, NamedPropertyQuery query = 0, NamedPropertyDeleter deleter = 0, NamedPropertyEnumerator enumerator = 0, Handle<Value> data = Handle<Value>()); /** * Sets an indexed property handler on the object template. * * Whenever an indexed property is accessed on objects created from * this object template, the provided callback is invoked instead of * accessing the property directly on the JavaScript object. * * \param getter The callback to invoke when getting a property. * \param setter The callback to invoke when setting a property. * \param query The callback to invoke to check is an object has a property. * \param deleter The callback to invoke when deleting a property. * \param enumerator The callback to invoke to enumerate all the indexed * properties of an object. * \param data A piece of data that will be passed to the callbacks * whenever they are invoked. */ void SetIndexedPropertyHandler(IndexedPropertyGetter getter, IndexedPropertySetter setter = 0, IndexedPropertyQuery query = 0, IndexedPropertyDeleter deleter = 0, IndexedPropertyEnumerator enumerator = 0, Handle<Value> data = Handle<Value>()); /** * Sets the callback to be used when calling instances created from * this template as a function. If no callback is set, instances * behave like normal JavaScript objects that cannot be called as a * function. */ void SetCallAsFunctionHandler(InvocationCallback callback, Handle<Value> data = Handle<Value>()); /** * Mark object instances of the template as undetectable. * * In many ways, undetectable objects behave as though they are not * there. They behave like 'undefined' in conditionals and when * printed. However, properties can be accessed and called as on * normal objects. */ void MarkAsUndetectable(); /** * Sets access check callbacks on the object template. * * When accessing properties on instances of this object template, * the access check callback will be called to determine whether or * not to allow cross-context access to the properties. * The last parameter specifies whether access checks are turned * on by default on instances. If access checks are off by default, * they can be turned on on individual instances by calling * Object::TurnOnAccessCheck(). */ void SetAccessCheckCallbacks(NamedSecurityCallback named_handler, IndexedSecurityCallback indexed_handler, Handle<Value> data = Handle<Value>(), bool turned_on_by_default = true); /** * Gets the number of internal fields for objects generated from * this template. */ int InternalFieldCount(); /** * Sets the number of internal fields for objects generated from * this template. */ void SetInternalFieldCount(int value); private: ObjectTemplate(); static Local<ObjectTemplate> New(Handle<FunctionTemplate> constructor); friend class FunctionTemplate; }; /** * A Signature specifies which receivers and arguments a function can * legally be called with. */ class V8EXPORT Signature : public Data { public: static Local<Signature> New(Handle<FunctionTemplate> receiver = Handle<FunctionTemplate>(), int argc = 0, Handle<FunctionTemplate> argv[] = 0); private: Signature(); }; /** * A utility for determining the type of objects based on the template * they were constructed from. */ class V8EXPORT TypeSwitch : public Data { public: static Local<TypeSwitch> New(Handle<FunctionTemplate> type); static Local<TypeSwitch> New(int argc, Handle<FunctionTemplate> types[]); int match(Handle<Value> value); private: TypeSwitch(); }; // --- E x t e n s i o n s --- /** * Ignore */ class V8EXPORT Extension { // NOLINT public: Extension(const char* name, const char* source = 0, int dep_count = 0, const char** deps = 0); virtual ~Extension() { } virtual v8::Handle<v8::FunctionTemplate> GetNativeFunction(v8::Handle<v8::String> name) { return v8::Handle<v8::FunctionTemplate>(); } const char* name() { return name_; } const char* source() { return source_; } int dependency_count() { return dep_count_; } const char** dependencies() { return deps_; } void set_auto_enable(bool value) { auto_enable_ = value; } bool auto_enable() { return auto_enable_; } private: const char* name_; const char* source_; int dep_count_; const char** deps_; bool auto_enable_; // Disallow copying and assigning. Extension(const Extension&); void operator=(const Extension&); }; void V8EXPORT RegisterExtension(Extension* extension); /** * Ignore */ class V8EXPORT DeclareExtension { public: inline DeclareExtension(Extension* extension) { RegisterExtension(extension); } }; // --- S t a t i c s --- Handle<Primitive> V8EXPORT Undefined(); Handle<Primitive> V8EXPORT Null(); Handle<Boolean> V8EXPORT True(); Handle<Boolean> V8EXPORT False(); /** * A set of constraints that specifies the limits of the runtime's * memory use. */ class V8EXPORT ResourceConstraints { public: ResourceConstraints(); int max_young_space_size() const { return max_young_space_size_; } void set_max_young_space_size(int value) { max_young_space_size_ = value; } int max_old_space_size() const { return max_old_space_size_; } void set_max_old_space_size(int value) { max_old_space_size_ = value; } uint32_t* stack_limit() const { return stack_limit_; } void set_stack_limit(uint32_t* value) { stack_limit_ = value; } private: int max_young_space_size_; int max_old_space_size_; uint32_t* stack_limit_; }; bool SetResourceConstraints(ResourceConstraints* constraints); // --- E x c e p t i o n s --- typedef void (*FatalErrorCallback)(const char* location, const char* message); typedef void (*MessageCallback)(Handle<Message> message, Handle<Value> data); /** * Schedules an exception to be thrown when returning to JavaScript. When an * exception has been scheduled it is illegal to invoke any JavaScript * operation; the caller must return immediately and only after the exception * has been handled does it become legal to invoke JavaScript operations. */ Handle<Value> V8EXPORT ThrowException(Handle<Value> exception); /** * Create new error objects by calling the corresponding error object * constructor with the message. */ class V8EXPORT Exception { public: static Local<Value> RangeError(Handle<String> message); static Local<Value> ReferenceError(Handle<String> message); static Local<Value> SyntaxError(Handle<String> message); static Local<Value> TypeError(Handle<String> message); static Local<Value> Error(Handle<String> message); }; // --- C o u n t e r s C a l l b a c k s --- typedef int* (*CounterLookupCallback)(const char* name); typedef void* (*CreateHistogramCallback)(const char* name, int min, int max, size_t buckets); typedef void (*AddHistogramSampleCallback)(void* histogram, int sample); // --- F a i l e d A c c e s s C h e c k C a l l b a c k --- typedef void (*FailedAccessCheckCallback)(Local<Object> target, AccessType type, Local<Value> data); // --- G a r b a g e C o l l e c t i o n C a l l b a c k s /** * Applications can register a callback function which is called * before and after a major garbage collection. Allocations are not * allowed in the callback function, you therefore cannot manipulate * objects (set or delete properties for example) since it is possible * such operations will result in the allocation of objects. */ typedef void (*GCCallback)(); // --- C o n t e x t G e n e r a t o r --- /** * Applications must provide a callback function which is called to generate * a context if a context was not deserialized from the snapshot. */ typedef Persistent<Context> (*ContextGenerator)(); /** * Profiler modules. * * In V8, profiler consists of several modules: CPU profiler, and different * kinds of heap profiling. Each can be turned on / off independently. * When PROFILER_MODULE_HEAP_SNAPSHOT flag is passed to ResumeProfilerEx, * modules are enabled only temporarily for making a snapshot of the heap. */ enum ProfilerModules { PROFILER_MODULE_NONE = 0, PROFILER_MODULE_CPU = 1, PROFILER_MODULE_HEAP_STATS = 1 << 1, PROFILER_MODULE_JS_CONSTRUCTORS = 1 << 2, PROFILER_MODULE_HEAP_SNAPSHOT = 1 << 16 }; /** * Container class for static utility functions. */ class V8EXPORT V8 { public: /** Set the callback to invoke in case of fatal errors. */ static void SetFatalErrorHandler(FatalErrorCallback that); /** * Ignore out-of-memory exceptions. * * V8 running out of memory is treated as a fatal error by default. * This means that the fatal error handler is called and that V8 is * terminated. * * IgnoreOutOfMemoryException can be used to not treat a * out-of-memory situation as a fatal error. This way, the contexts * that did not cause the out of memory problem might be able to * continue execution. */ static void IgnoreOutOfMemoryException(); /** * Check if V8 is dead and therefore unusable. This is the case after * fatal errors such as out-of-memory situations. */ static bool IsDead(); /** * Adds a message listener. * * The same message listener can be added more than once and it that * case it will be called more than once for each message. */ static bool AddMessageListener(MessageCallback that, Handle<Value> data = Handle<Value>()); /** * Remove all message listeners from the specified callback function. */ static void RemoveMessageListeners(MessageCallback that); /** * Sets V8 flags from a string. */ static void SetFlagsFromString(const char* str, int length); /** * Sets V8 flags from the command line. */ static void SetFlagsFromCommandLine(int* argc, char** argv, bool remove_flags); /** Get the version string. */ static const char* GetVersion(); /** * Enables the host application to provide a mechanism for recording * statistics counters. */ static void SetCounterFunction(CounterLookupCallback); /** * Enables the host application to provide a mechanism for recording * histograms. The CreateHistogram function returns a * histogram which will later be passed to the AddHistogramSample * function. */ static void SetCreateHistogramFunction(CreateHistogramCallback); static void SetAddHistogramSampleFunction(AddHistogramSampleCallback); /** * Enables the computation of a sliding window of states. The sliding * window information is recorded in statistics counters. */ static void EnableSlidingStateWindow(); /** Callback function for reporting failed access checks.*/ static void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback); /** * Enables the host application to receive a notification before a * major garbage colletion. Allocations are not allowed in the * callback function, you therefore cannot manipulate objects (set * or delete properties for example) since it is possible such * operations will result in the allocation of objects. */ static void SetGlobalGCPrologueCallback(GCCallback); /** * Enables the host application to receive a notification after a * major garbage collection. Allocations are not allowed in the * callback function, you therefore cannot manipulate objects (set * or delete properties for example) since it is possible such * operations will result in the allocation of objects. */ static void SetGlobalGCEpilogueCallback(GCCallback); /** * Allows the host application to group objects together. If one * object in the group is alive, all objects in the group are alive. * After each garbage collection, object groups are removed. It is * intended to be used in the before-garbage-collection callback * function, for instance to simulate DOM tree connections among JS * wrapper objects. */ static void AddObjectGroup(Persistent<Value>* objects, size_t length); /** * Initializes from snapshot if possible. Otherwise, attempts to * initialize from scratch. */ static bool Initialize(); /** * Adjusts the amount of registered external memory. Used to give * V8 an indication of the amount of externally allocated memory * that is kept alive by JavaScript objects. V8 uses this to decide * when to perform global garbage collections. Registering * externally allocated memory will trigger global garbage * collections more often than otherwise in an attempt to garbage * collect the JavaScript objects keeping the externally allocated * memory alive. * * \param change_in_bytes the change in externally allocated memory * that is kept alive by JavaScript objects. * \returns the adjusted value. */ static int AdjustAmountOfExternalAllocatedMemory(int change_in_bytes); /** * Suspends recording of tick samples in the profiler. * When the V8 profiling mode is enabled (usually via command line * switches) this function suspends recording of tick samples. * Profiling ticks are discarded until ResumeProfiler() is called. * * See also the --prof and --prof_auto command line switches to * enable V8 profiling. */ static void PauseProfiler(); /** * Resumes recording of tick samples in the profiler. * See also PauseProfiler(). */ static void ResumeProfiler(); /** * Return whether profiler is currently paused. */ static bool IsProfilerPaused(); /** * Resumes specified profiler modules. * "ResumeProfiler" is equivalent to "ResumeProfilerEx(PROFILER_MODULE_CPU)". * See ProfilerModules enum. * * \param flags Flags specifying profiler modules. */ static void ResumeProfilerEx(int flags); /** * Pauses specified profiler modules. * "PauseProfiler" is equivalent to "PauseProfilerEx(PROFILER_MODULE_CPU)". * See ProfilerModules enum. * * \param flags Flags specifying profiler modules. */ static void PauseProfilerEx(int flags); /** * Returns active (resumed) profiler modules. * See ProfilerModules enum. * * \returns active profiler modules. */ static int GetActiveProfilerModules(); /** * If logging is performed into a memory buffer (via --logfile=*), allows to * retrieve previously written messages. This can be used for retrieving * profiler log data in the application. This function is thread-safe. * * Caller provides a destination buffer that must exist during GetLogLines * call. Only whole log lines are copied into the buffer. * * \param from_pos specified a point in a buffer to read from, 0 is the * beginning of a buffer. It is assumed that caller updates its current * position using returned size value from the previous call. * \param dest_buf destination buffer for log data. * \param max_size size of the destination buffer. * \returns actual size of log data copied into buffer. */ static int GetLogLines(int from_pos, char* dest_buf, int max_size); /** * Retrieve the V8 thread id of the calling thread. * * The thread id for a thread should only be retrieved after the V8 * lock has been acquired with a Locker object with that thread. */ static int GetCurrentThreadId(); /** * Forcefully terminate execution of a JavaScript thread. This can * be used to terminate long-running scripts. * * TerminateExecution should only be called when then V8 lock has * been acquired with a Locker object. Therefore, in order to be * able to terminate long-running threads, preemption must be * enabled to allow the user of TerminateExecution to acquire the * lock. * * The termination is achieved by throwing an exception that is * uncatchable by JavaScript exception handlers. Termination * exceptions act as if they were caught by a C++ TryCatch exception * handlers. If forceful termination is used, any C++ TryCatch * exception handler that catches an exception should check if that * exception is a termination exception and immediately return if * that is the case. Returning immediately in that case will * continue the propagation of the termination exception if needed. * * The thread id passed to TerminateExecution must have been * obtained by calling GetCurrentThreadId on the thread in question. * * \param thread_id The thread id of the thread to terminate. */ static void TerminateExecution(int thread_id); /** * Forcefully terminate the current thread of JavaScript execution. * * This method can be used by any thread even if that thread has not * acquired the V8 lock with a Locker object. */ static void TerminateExecution(); /** * Releases any resources used by v8 and stops any utility threads * that may be running. Note that disposing v8 is permanent, it * cannot be reinitialized. * * It should generally not be necessary to dispose v8 before exiting * a process, this should happen automatically. It is only necessary * to use if the process needs the resources taken up by v8. */ static bool Dispose(); /** * Optional notification that the embedder is idle. * V8 uses the notification to reduce memory footprint. * This call can be used repeatedly if the embedder remains idle. * \param is_high_priority tells whether the embedder is high priority. * Returns true if the embedder should stop calling IdleNotification * until real work has been done. This indicates that V8 has done * as much cleanup as it will be able to do. */ static bool IdleNotification(bool is_high_priority); /** * Optional notification that the system is running low on memory. * V8 uses these notifications to attempt to free memory. */ static void LowMemoryNotification(); private: V8(); static internal::Object** GlobalizeReference(internal::Object** handle); static void DisposeGlobal(internal::Object** global_handle); static void MakeWeak(internal::Object** global_handle, void* data, WeakReferenceCallback); static void ClearWeak(internal::Object** global_handle); static bool IsGlobalNearDeath(internal::Object** global_handle); static bool IsGlobalWeak(internal::Object** global_handle); template <class T> friend class Handle; template <class T> friend class Local; template <class T> friend class Persistent; friend class Context; }; /** * An external exception handler. */ class V8EXPORT TryCatch { public: /** * Creates a new try/catch block and registers it with v8. */ TryCatch(); /** * Unregisters and deletes this try/catch block. */ ~TryCatch(); /** * Returns true if an exception has been caught by this try/catch block. */ bool HasCaught() const; /** * For certain types of exceptions, it makes no sense to continue * execution. * * Currently, the only type of exception that can be caught by a * TryCatch handler and for which it does not make sense to continue * is termination exception. Such exceptions are thrown when the * TerminateExecution methods are called to terminate a long-running * script. * * If CanContinue returns false, the correct action is to perform * any C++ cleanup needed and then return. */ bool CanContinue() const; /** * Returns the exception caught by this try/catch block. If no exception has * been caught an empty handle is returned. * * The returned handle is valid until this TryCatch block has been destroyed. */ Local<Value> Exception() const; /** * Returns the .stack property of the thrown object. If no .stack * property is present an empty handle is returned. */ Local<Value> StackTrace() const; /** * Returns the message associated with this exception. If there is * no message associated an empty handle is returned. * * The returned handle is valid until this TryCatch block has been * destroyed. */ Local<v8::Message> Message() const; /** * Clears any exceptions that may have been caught by this try/catch block. * After this method has been called, HasCaught() will return false. * * It is not necessary to clear a try/catch block before using it again; if * another exception is thrown the previously caught exception will just be * overwritten. However, it is often a good idea since it makes it easier * to determine which operation threw a given exception. */ void Reset(); /** * Set verbosity of the external exception handler. * * By default, exceptions that are caught by an external exception * handler are not reported. Call SetVerbose with true on an * external exception handler to have exceptions caught by the * handler reported as if they were not caught. */ void SetVerbose(bool value); /** * Set whether or not this TryCatch should capture a Message object * which holds source information about where the exception * occurred. True by default. */ void SetCaptureMessage(bool value); public: TryCatch* next_; void* exception_; void* message_; bool is_verbose_; bool can_continue_; bool capture_message_; void* js_handler_; }; // --- C o n t e x t --- /** * Ignore */ class V8EXPORT ExtensionConfiguration { public: ExtensionConfiguration(int name_count, const char* names[]) : name_count_(name_count), names_(names) { } private: friend class ImplementationUtilities; int name_count_; const char** names_; }; /** * A sandboxed execution context with its own set of built-in objects * and functions. */ class V8EXPORT Context { public: /** Returns the global object of the context. */ Local<Object> Global(); /** * Detaches the global object from its context before * the global object can be reused to create a new context. */ void DetachGlobal(); /** Creates a new context. */ static Persistent<Context> New( ExtensionConfiguration* extensions = 0, Handle<ObjectTemplate> global_template = Handle<ObjectTemplate>(), Handle<Value> global_object = Handle<Value>()); /** Returns the last entered context. */ static Local<Context> GetEntered(); /** Returns the context that is on the top of the stack. */ static Local<Context> GetCurrent(); /** * Returns the context of the calling JavaScript code. That is the * context of the top-most JavaScript frame. If there are no * JavaScript frames an empty handle is returned. */ static Local<Context> GetCalling(); /** * Sets the security token for the context. To access an object in * another context, the security tokens must match. */ void SetSecurityToken(Handle<Value> token); /** Restores the security token to the default value. */ void UseDefaultSecurityToken(); /** Returns the security token of this context.*/ Handle<Value> GetSecurityToken(); /** * Enter this context. After entering a context, all code compiled * and run is compiled and run in this context. If another context * is already entered, this old context is saved so it can be * restored when the new context is exited. */ void Enter(); /** * Exit this context. Exiting the current context restores the * context that was in place when entering the current context. */ void Exit(); /** Returns true if the context has experienced an out of memory situation. */ bool HasOutOfMemoryException(); /** Returns true if V8 has a current context. */ static bool InContext(); /** * Associate an additional data object with the context. This is mainly used * with the debugger to provide additional information on the context through * the debugger API. */ void SetData(Handle<Value> data); Local<Value> GetData(); /** * Stack-allocated class which sets the execution context for all * operations executed within a local scope. */ class V8EXPORT Scope { public: inline Scope(Handle<Context> context) : context_(context) { context_->Enter(); } inline ~Scope() { context_->Exit(); } private: Handle<Context> context_; }; private: friend class Value; friend class Script; friend class Object; friend class Function; }; /** * Multiple threads in V8 are allowed, but only one thread at a time * is allowed to use V8. The definition of 'using V8' includes * accessing handles or holding onto object pointers obtained from V8 * handles. It is up to the user of V8 to ensure (perhaps with * locking) that this constraint is not violated. * * If you wish to start using V8 in a thread you can do this by constructing * a v8::Locker object. After the code using V8 has completed for the * current thread you can call the destructor. This can be combined * with C++ scope-based construction as follows: * * \code * ... * { * v8::Locker locker; * ... * // Code using V8 goes here. * ... * } // Destructor called here * \endcode * * If you wish to stop using V8 in a thread A you can do this by either * by destroying the v8::Locker object as above or by constructing a * v8::Unlocker object: * * \code * { * v8::Unlocker unlocker; * ... * // Code not using V8 goes here while V8 can run in another thread. * ... * } // Destructor called here. * \endcode * * The Unlocker object is intended for use in a long-running callback * from V8, where you want to release the V8 lock for other threads to * use. * * The v8::Locker is a recursive lock. That is, you can lock more than * once in a given thread. This can be useful if you have code that can * be called either from code that holds the lock or from code that does * not. The Unlocker is not recursive so you can not have several * Unlockers on the stack at once, and you can not use an Unlocker in a * thread that is not inside a Locker's scope. * * An unlocker will unlock several lockers if it has to and reinstate * the correct depth of locking on its destruction. eg.: * * \code * // V8 not locked. * { * v8::Locker locker; * // V8 locked. * { * v8::Locker another_locker; * // V8 still locked (2 levels). * { * v8::Unlocker unlocker; * // V8 not locked. * } * // V8 locked again (2 levels). * } * // V8 still locked (1 level). * } * // V8 Now no longer locked. * \endcode */ class V8EXPORT Unlocker { public: Unlocker(); ~Unlocker(); }; class V8EXPORT Locker { public: Locker(); ~Locker(); /** * Start preemption. * * When preemption is started, a timer is fired every n milli seconds * that will switch between multiple threads that are in contention * for the V8 lock. */ static void StartPreemption(int every_n_ms); /** * Stop preemption. */ static void StopPreemption(); /** * Returns whether or not the locker is locked by the current thread. */ static bool IsLocked(); /** * Returns whether v8::Locker is being used by this V8 instance. */ static bool IsActive() { return active_; } private: bool has_lock_; bool top_level_; static bool active_; // Disallow copying and assigning. Locker(const Locker&); void operator=(const Locker&); }; // --- I m p l e m e n t a t i o n --- namespace internal { // Tag information for HeapObject. const int kHeapObjectTag = 1; const int kHeapObjectTagSize = 2; const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1; // Tag information for Smi. const int kSmiTag = 0; const int kSmiTagSize = 1; const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1; /** * This class exports constants and functionality from within v8 that * is necessary to implement inline functions in the v8 api. Don't * depend on functions and constants defined here. */ class Internals { public: // These values match non-compiler-dependent values defined within // the implementation of v8. static const int kHeapObjectMapOffset = 0; static const int kMapInstanceTypeOffset = sizeof(void*) + sizeof(int); static const int kStringResourceOffset = 2 * sizeof(void*); static const int kProxyProxyOffset = sizeof(void*); static const int kJSObjectHeaderSize = 3 * sizeof(void*); static const int kFullStringRepresentationMask = 0x07; static const int kExternalTwoByteRepresentationTag = 0x03; static const int kAlignedPointerShift = 2; // These constants are compiler dependent so their values must be // defined within the implementation. static int kJSObjectType; static int kFirstNonstringType; static int kProxyType; static inline bool HasHeapObjectTag(internal::Object* value) { return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) == kHeapObjectTag); } static inline bool HasSmiTag(internal::Object* value) { return ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag); } static inline int SmiValue(internal::Object* value) { return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> kSmiTagSize; } static inline bool IsExternalTwoByteString(int instance_type) { int representation = (instance_type & kFullStringRepresentationMask); return representation == kExternalTwoByteRepresentationTag; } template <typename T> static inline T ReadField(Object* ptr, int offset) { uint8_t* addr = reinterpret_cast<uint8_t*>(ptr) + offset - kHeapObjectTag; return *reinterpret_cast<T*>(addr); } }; } template <class T> Handle<T>::Handle() : val_(0) { } template <class T> Local<T>::Local() : Handle<T>() { } template <class T> Local<T> Local<T>::New(Handle<T> that) { if (that.IsEmpty()) return Local<T>(); internal::Object** p = reinterpret_cast<internal::Object**>(*that); return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(*p))); } template <class T> Persistent<T> Persistent<T>::New(Handle<T> that) { if (that.IsEmpty()) return Persistent<T>(); internal::Object** p = reinterpret_cast<internal::Object**>(*that); return Persistent<T>(reinterpret_cast<T*>(V8::GlobalizeReference(p))); } template <class T> bool Persistent<T>::IsNearDeath() const { if (this->IsEmpty()) return false; return V8::IsGlobalNearDeath(reinterpret_cast<internal::Object**>(**this)); } template <class T> bool Persistent<T>::IsWeak() const { if (this->IsEmpty()) return false; return V8::IsGlobalWeak(reinterpret_cast<internal::Object**>(**this)); } template <class T> void Persistent<T>::Dispose() { if (this->IsEmpty()) return; V8::DisposeGlobal(reinterpret_cast<internal::Object**>(**this)); } template <class T> Persistent<T>::Persistent() : Handle<T>() { } template <class T> void Persistent<T>::MakeWeak(void* parameters, WeakReferenceCallback callback) { V8::MakeWeak(reinterpret_cast<internal::Object**>(**this), parameters, callback); } template <class T> void Persistent<T>::ClearWeak() { V8::ClearWeak(reinterpret_cast<internal::Object**>(**this)); } Local<Value> Arguments::operator[](int i) const { if (i < 0 || length_ <= i) return Local<Value>(*Undefined()); return Local<Value>(reinterpret_cast<Value*>(values_ - i)); } Local<Function> Arguments::Callee() const { return callee_; } Local<Object> Arguments::This() const { return Local<Object>(reinterpret_cast<Object*>(values_ + 1)); } Local<Object> Arguments::Holder() const { return holder_; } Local<Value> Arguments::Data() const { return data_; } bool Arguments::IsConstructCall() const { return is_construct_call_; } int Arguments::Length() const { return length_; } Local<Value> AccessorInfo::Data() const { return data_; } Local<Object> AccessorInfo::This() const { return self_; } Local<Object> AccessorInfo::Holder() const { return holder_; } template <class T> Local<T> HandleScope::Close(Handle<T> value) { internal::Object** before = reinterpret_cast<internal::Object**>(*value); internal::Object** after = RawClose(before); return Local<T>(reinterpret_cast<T*>(after)); } Handle<Value> ScriptOrigin::ResourceName() const { return resource_name_; } Handle<Integer> ScriptOrigin::ResourceLineOffset() const { return resource_line_offset_; } Handle<Integer> ScriptOrigin::ResourceColumnOffset() const { return resource_column_offset_; } Handle<Boolean> Boolean::New(bool value) { return value ? True() : False(); } void Template::Set(const char* name, v8::Handle<Data> value) { Set(v8::String::New(name), value); } Local<Value> Object::GetInternalField(int index) { #ifndef V8_ENABLE_CHECKS Local<Value> quick_result = UncheckedGetInternalField(index); if (!quick_result.IsEmpty()) return quick_result; #endif return CheckedGetInternalField(index); } Local<Value> Object::UncheckedGetInternalField(int index) { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O**>(this); O* map = I::ReadField<O*>(obj, I::kHeapObjectMapOffset); int instance_type = I::ReadField<uint8_t>(map, I::kMapInstanceTypeOffset); if (instance_type == I::kJSObjectType) { // If the object is a plain JSObject, which is the common case, // we know where to find the internal fields and can return the // value directly. int offset = I::kJSObjectHeaderSize + (sizeof(void*) * index); O* value = I::ReadField<O*>(obj, offset); O** result = HandleScope::CreateHandle(value); return Local<Value>(reinterpret_cast<Value*>(result)); } else { return Local<Value>(); } } void* External::Unwrap(Handle<v8::Value> obj) { #ifdef V8_ENABLE_CHECKS return FullUnwrap(obj); #else return QuickUnwrap(obj); #endif } void* External::QuickUnwrap(Handle<v8::Value> wrapper) { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O**>(const_cast<v8::Value*>(*wrapper)); if (I::HasSmiTag(obj)) { int value = I::SmiValue(obj) << I::kAlignedPointerShift; return reinterpret_cast<void*>(value); } else { O* map = I::ReadField<O*>(obj, I::kHeapObjectMapOffset); int instance_type = I::ReadField<uint8_t>(map, I::kMapInstanceTypeOffset); if (instance_type == I::kProxyType) { return I::ReadField<void*>(obj, I::kProxyProxyOffset); } else { return NULL; } } } void* Object::GetPointerFromInternalField(int index) { return External::Unwrap(GetInternalField(index)); } String* String::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<String*>(value); } String::ExternalStringResource* String::GetExternalStringResource() const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O**>(const_cast<String*>(this)); O* map = I::ReadField<O*>(obj, I::kHeapObjectMapOffset); int instance_type = I::ReadField<uint8_t>(map, I::kMapInstanceTypeOffset); String::ExternalStringResource* result; if (I::IsExternalTwoByteString(instance_type)) { void* value = I::ReadField<void*>(obj, I::kStringResourceOffset); result = reinterpret_cast<String::ExternalStringResource*>(value); } else { result = NULL; } #ifdef V8_ENABLE_CHECKS VerifyExternalStringResource(result); #endif return result; } bool Value::IsString() const { #ifdef V8_ENABLE_CHECKS return FullIsString(); #else return QuickIsString(); #endif } bool Value::QuickIsString() const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this)); if (!I::HasHeapObjectTag(obj)) return false; O* map = I::ReadField<O*>(obj, I::kHeapObjectMapOffset); int instance_type = I::ReadField<uint8_t>(map, I::kMapInstanceTypeOffset); return (instance_type < I::kFirstNonstringType); } Number* Number::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Number*>(value); } Integer* Integer::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Integer*>(value); } Date* Date::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Date*>(value); } Object* Object::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Object*>(value); } Array* Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Array*>(value); } Function* Function::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Function*>(value); } External* External::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<External*>(value); } /** * \example shell.cc * A simple shell that takes a list of expressions on the * command-line and executes them. */ /** * \example process.cc */ } // namespace v8 #undef V8EXPORT #undef V8EXPORT_INLINE #undef TYPE_CHECK #endif // V8_H_