// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_ARM_CODEGEN_ARM_H_ #define V8_ARM_CODEGEN_ARM_H_ namespace v8 { namespace internal { // Forward declarations class DeferredCode; class RegisterAllocator; class RegisterFile; enum InitState { CONST_INIT, NOT_CONST_INIT }; enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF }; // ------------------------------------------------------------------------- // Reference support // A reference is a C++ stack-allocated object that keeps an ECMA // reference on the execution stack while in scope. For variables // the reference is empty, indicating that it isn't necessary to // store state on the stack for keeping track of references to those. // For properties, we keep either one (named) or two (indexed) values // on the execution stack to represent the reference. class Reference BASE_EMBEDDED { public: // The values of the types is important, see size(). enum Type { ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 }; Reference(CodeGenerator* cgen, Expression* expression); ~Reference(); Expression* expression() const { return expression_; } Type type() const { return type_; } void set_type(Type value) { ASSERT(type_ == ILLEGAL); type_ = value; } // The size the reference takes up on the stack. int size() const { return (type_ == ILLEGAL) ? 0 : type_; } bool is_illegal() const { return type_ == ILLEGAL; } bool is_slot() const { return type_ == SLOT; } bool is_property() const { return type_ == NAMED || type_ == KEYED; } // Return the name. Only valid for named property references. Handle<String> GetName(); // Generate code to push the value of the reference on top of the // expression stack. The reference is expected to be already on top of // the expression stack, and it is left in place with its value above it. void GetValue(TypeofState typeof_state); // Generate code to push the value of a reference on top of the expression // stack and then spill the stack frame. This function is used temporarily // while the code generator is being transformed. inline void GetValueAndSpill(TypeofState typeof_state); // Generate code to store the value on top of the expression stack in the // reference. The reference is expected to be immediately below the value // on the expression stack. The stored value is left in place (with the // reference intact below it) to support chained assignments. void SetValue(InitState init_state); private: CodeGenerator* cgen_; Expression* expression_; Type type_; }; // ------------------------------------------------------------------------- // Code generation state // The state is passed down the AST by the code generator (and back up, in // the form of the state of the label pair). It is threaded through the // call stack. Constructing a state implicitly pushes it on the owning code // generator's stack of states, and destroying one implicitly pops it. class CodeGenState BASE_EMBEDDED { public: // Create an initial code generator state. Destroying the initial state // leaves the code generator with a NULL state. explicit CodeGenState(CodeGenerator* owner); // Create a code generator state based on a code generator's current // state. The new state has its own typeof state and pair of branch // labels. CodeGenState(CodeGenerator* owner, TypeofState typeof_state, JumpTarget* true_target, JumpTarget* false_target); // Destroy a code generator state and restore the owning code generator's // previous state. ~CodeGenState(); TypeofState typeof_state() const { return typeof_state_; } JumpTarget* true_target() const { return true_target_; } JumpTarget* false_target() const { return false_target_; } private: CodeGenerator* owner_; TypeofState typeof_state_; JumpTarget* true_target_; JumpTarget* false_target_; CodeGenState* previous_; }; // ------------------------------------------------------------------------- // CodeGenerator class CodeGenerator: public AstVisitor { public: // Takes a function literal, generates code for it. This function should only // be called by compiler.cc. static Handle<Code> MakeCode(FunctionLiteral* fun, Handle<Script> script, bool is_eval); #ifdef ENABLE_LOGGING_AND_PROFILING static bool ShouldGenerateLog(Expression* type); #endif static void SetFunctionInfo(Handle<JSFunction> fun, FunctionLiteral* lit, bool is_toplevel, Handle<Script> script); // Accessors MacroAssembler* masm() { return masm_; } VirtualFrame* frame() const { return frame_; } bool has_valid_frame() const { return frame_ != NULL; } // Set the virtual frame to be new_frame, with non-frame register // reference counts given by non_frame_registers. The non-frame // register reference counts of the old frame are returned in // non_frame_registers. void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers); void DeleteFrame(); RegisterAllocator* allocator() const { return allocator_; } CodeGenState* state() { return state_; } void set_state(CodeGenState* state) { state_ = state; } void AddDeferred(DeferredCode* code) { deferred_.Add(code); } static const int kUnknownIntValue = -1; private: // Construction/Destruction CodeGenerator(int buffer_size, Handle<Script> script, bool is_eval); virtual ~CodeGenerator() { delete masm_; } // Accessors Scope* scope() const { return scope_; } // Generating deferred code. void ProcessDeferred(); bool is_eval() { return is_eval_; } // State bool has_cc() const { return cc_reg_ != al; } TypeofState typeof_state() const { return state_->typeof_state(); } JumpTarget* true_target() const { return state_->true_target(); } JumpTarget* false_target() const { return state_->false_target(); } // We don't track loop nesting level on ARM yet. int loop_nesting() const { return 0; } // Node visitors. void VisitStatements(ZoneList<Statement*>* statements); #define DEF_VISIT(type) \ void Visit##type(type* node); AST_NODE_LIST(DEF_VISIT) #undef DEF_VISIT // Visit a statement and then spill the virtual frame if control flow can // reach the end of the statement (ie, it does not exit via break, // continue, return, or throw). This function is used temporarily while // the code generator is being transformed. inline void VisitAndSpill(Statement* statement); // Visit a list of statements and then spill the virtual frame if control // flow can reach the end of the list. inline void VisitStatementsAndSpill(ZoneList<Statement*>* statements); // Main code generation function void GenCode(FunctionLiteral* fun); // The following are used by class Reference. void LoadReference(Reference* ref); void UnloadReference(Reference* ref); MemOperand ContextOperand(Register context, int index) const { return MemOperand(context, Context::SlotOffset(index)); } MemOperand SlotOperand(Slot* slot, Register tmp); MemOperand ContextSlotOperandCheckExtensions(Slot* slot, Register tmp, Register tmp2, JumpTarget* slow); // Expressions MemOperand GlobalObject() const { return ContextOperand(cp, Context::GLOBAL_INDEX); } void LoadCondition(Expression* x, TypeofState typeof_state, JumpTarget* true_target, JumpTarget* false_target, bool force_cc); void Load(Expression* x, TypeofState typeof_state = NOT_INSIDE_TYPEOF); void LoadGlobal(); void LoadGlobalReceiver(Register scratch); // Generate code to push the value of an expression on top of the frame // and then spill the frame fully to memory. This function is used // temporarily while the code generator is being transformed. inline void LoadAndSpill(Expression* expression, TypeofState typeof_state = NOT_INSIDE_TYPEOF); // Call LoadCondition and then spill the virtual frame unless control flow // cannot reach the end of the expression (ie, by emitting only // unconditional jumps to the control targets). inline void LoadConditionAndSpill(Expression* expression, TypeofState typeof_state, JumpTarget* true_target, JumpTarget* false_target, bool force_control); // Read a value from a slot and leave it on top of the expression stack. void LoadFromSlot(Slot* slot, TypeofState typeof_state); void LoadFromGlobalSlotCheckExtensions(Slot* slot, TypeofState typeof_state, Register tmp, Register tmp2, JumpTarget* slow); // Special code for typeof expressions: Unfortunately, we must // be careful when loading the expression in 'typeof' // expressions. We are not allowed to throw reference errors for // non-existing properties of the global object, so we must make it // look like an explicit property access, instead of an access // through the context chain. void LoadTypeofExpression(Expression* x); void ToBoolean(JumpTarget* true_target, JumpTarget* false_target); void GenericBinaryOperation(Token::Value op, OverwriteMode overwrite_mode, int known_rhs = kUnknownIntValue); void Comparison(Condition cc, Expression* left, Expression* right, bool strict = false); void SmiOperation(Token::Value op, Handle<Object> value, bool reversed, OverwriteMode mode); void CallWithArguments(ZoneList<Expression*>* arguments, int position); // Control flow void Branch(bool if_true, JumpTarget* target); void CheckStack(); struct InlineRuntimeLUT { void (CodeGenerator::*method)(ZoneList<Expression*>*); const char* name; }; static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name); bool CheckForInlineRuntimeCall(CallRuntime* node); static bool PatchInlineRuntimeEntry(Handle<String> name, const InlineRuntimeLUT& new_entry, InlineRuntimeLUT* old_entry); Handle<JSFunction> BuildBoilerplate(FunctionLiteral* node); void ProcessDeclarations(ZoneList<Declaration*>* declarations); Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop); // Declare global variables and functions in the given array of // name/value pairs. void DeclareGlobals(Handle<FixedArray> pairs); // Instantiate the function boilerplate. void InstantiateBoilerplate(Handle<JSFunction> boilerplate); // Support for type checks. void GenerateIsSmi(ZoneList<Expression*>* args); void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args); void GenerateIsArray(ZoneList<Expression*>* args); // Support for construct call checks. void GenerateIsConstructCall(ZoneList<Expression*>* args); // Support for arguments.length and arguments[?]. void GenerateArgumentsLength(ZoneList<Expression*>* args); void GenerateArgumentsAccess(ZoneList<Expression*>* args); // Support for accessing the class and value fields of an object. void GenerateClassOf(ZoneList<Expression*>* args); void GenerateValueOf(ZoneList<Expression*>* args); void GenerateSetValueOf(ZoneList<Expression*>* args); // Fast support for charCodeAt(n). void GenerateFastCharCodeAt(ZoneList<Expression*>* args); // Fast support for object equality testing. void GenerateObjectEquals(ZoneList<Expression*>* args); void GenerateLog(ZoneList<Expression*>* args); // Fast support for Math.random(). void GenerateRandomPositiveSmi(ZoneList<Expression*>* args); // Fast support for Math.sin and Math.cos. enum MathOp { SIN, COS }; void GenerateFastMathOp(MathOp op, ZoneList<Expression*>* args); inline void GenerateMathSin(ZoneList<Expression*>* args); inline void GenerateMathCos(ZoneList<Expression*>* args); // Methods used to indicate which source code is generated for. Source // positions are collected by the assembler and emitted with the relocation // information. void CodeForFunctionPosition(FunctionLiteral* fun); void CodeForReturnPosition(FunctionLiteral* fun); void CodeForStatementPosition(AstNode* node); void CodeForSourcePosition(int pos); #ifdef DEBUG // True if the registers are valid for entry to a block. bool HasValidEntryRegisters(); #endif bool is_eval_; // Tells whether code is generated for eval. Handle<Script> script_; List<DeferredCode*> deferred_; // Assembler MacroAssembler* masm_; // to generate code // Code generation state Scope* scope_; VirtualFrame* frame_; RegisterAllocator* allocator_; Condition cc_reg_; CodeGenState* state_; // Jump targets BreakTarget function_return_; // True if the function return is shadowed (ie, jumping to the target // function_return_ does not jump to the true function return, but rather // to some unlinking code). bool function_return_is_shadowed_; static InlineRuntimeLUT kInlineRuntimeLUT[]; friend class VirtualFrame; friend class JumpTarget; friend class Reference; DISALLOW_COPY_AND_ASSIGN(CodeGenerator); }; class GenericBinaryOpStub : public CodeStub { public: GenericBinaryOpStub(Token::Value op, OverwriteMode mode, int constant_rhs = CodeGenerator::kUnknownIntValue) : op_(op), mode_(mode), constant_rhs_(constant_rhs), specialized_on_rhs_(RhsIsOneWeWantToOptimizeFor(op, constant_rhs)) { } private: Token::Value op_; OverwriteMode mode_; int constant_rhs_; bool specialized_on_rhs_; static const int kMaxKnownRhs = 0x40000000; // Minor key encoding in 16 bits. class ModeBits: public BitField<OverwriteMode, 0, 2> {}; class OpBits: public BitField<Token::Value, 2, 6> {}; class KnownIntBits: public BitField<int, 8, 8> {}; Major MajorKey() { return GenericBinaryOp; } int MinorKey() { // Encode the parameters in a unique 16 bit value. return OpBits::encode(op_) | ModeBits::encode(mode_) | KnownIntBits::encode(MinorKeyForKnownInt()); } void Generate(MacroAssembler* masm); void HandleNonSmiBitwiseOp(MacroAssembler* masm); static bool RhsIsOneWeWantToOptimizeFor(Token::Value op, int constant_rhs) { if (constant_rhs == CodeGenerator::kUnknownIntValue) return false; if (op == Token::DIV) return constant_rhs >= 2 && constant_rhs <= 3; if (op == Token::MOD) { if (constant_rhs <= 1) return false; if (constant_rhs <= 10) return true; if (constant_rhs <= kMaxKnownRhs && IsPowerOf2(constant_rhs)) return true; return false; } return false; } int MinorKeyForKnownInt() { if (!specialized_on_rhs_) return 0; if (constant_rhs_ <= 10) return constant_rhs_ + 1; ASSERT(IsPowerOf2(constant_rhs_)); int key = 12; int d = constant_rhs_; while ((d & 1) == 0) { key++; d >>= 1; } return key; } const char* GetName() { switch (op_) { case Token::ADD: return "GenericBinaryOpStub_ADD"; case Token::SUB: return "GenericBinaryOpStub_SUB"; case Token::MUL: return "GenericBinaryOpStub_MUL"; case Token::DIV: return "GenericBinaryOpStub_DIV"; case Token::MOD: return "GenericBinaryOpStub_MOD"; case Token::BIT_OR: return "GenericBinaryOpStub_BIT_OR"; case Token::BIT_AND: return "GenericBinaryOpStub_BIT_AND"; case Token::BIT_XOR: return "GenericBinaryOpStub_BIT_XOR"; case Token::SAR: return "GenericBinaryOpStub_SAR"; case Token::SHL: return "GenericBinaryOpStub_SHL"; case Token::SHR: return "GenericBinaryOpStub_SHR"; default: return "GenericBinaryOpStub"; } } #ifdef DEBUG void Print() { if (!specialized_on_rhs_) { PrintF("GenericBinaryOpStub (%s)\n", Token::String(op_)); } else { PrintF("GenericBinaryOpStub (%s by %d)\n", Token::String(op_), constant_rhs_); } } #endif }; } } // namespace v8::internal #endif // V8_ARM_CODEGEN_ARM_H_