// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "bootstrapper.h" #include "codegen-inl.h" #include "debug.h" #include "oprofile-agent.h" #include "prettyprinter.h" #include "register-allocator-inl.h" #include "rewriter.h" #include "runtime.h" #include "scopeinfo.h" #include "stub-cache.h" namespace v8 { namespace internal { CodeGenerator* CodeGeneratorScope::top_ = NULL; DeferredCode::DeferredCode() : masm_(CodeGeneratorScope::Current()->masm()), statement_position_(masm_->current_statement_position()), position_(masm_->current_position()) { ASSERT(statement_position_ != RelocInfo::kNoPosition); ASSERT(position_ != RelocInfo::kNoPosition); CodeGeneratorScope::Current()->AddDeferred(this); #ifdef DEBUG comment_ = ""; #endif // Copy the register locations from the code generator's frame. // These are the registers that will be spilled on entry to the // deferred code and restored on exit. VirtualFrame* frame = CodeGeneratorScope::Current()->frame(); int sp_offset = frame->fp_relative(frame->stack_pointer_); for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { int loc = frame->register_location(i); if (loc == VirtualFrame::kIllegalIndex) { registers_[i] = kIgnore; } else if (frame->elements_[loc].is_synced()) { // Needs to be restored on exit but not saved on entry. registers_[i] = frame->fp_relative(loc) | kSyncedFlag; } else { int offset = frame->fp_relative(loc); registers_[i] = (offset < sp_offset) ? kPush : offset; } } } void CodeGenerator::ProcessDeferred() { while (!deferred_.is_empty()) { DeferredCode* code = deferred_.RemoveLast(); ASSERT(masm_ == code->masm()); // Record position of deferred code stub. masm_->RecordStatementPosition(code->statement_position()); if (code->position() != RelocInfo::kNoPosition) { masm_->RecordPosition(code->position()); } // Generate the code. Comment cmnt(masm_, code->comment()); masm_->bind(code->entry_label()); code->SaveRegisters(); code->Generate(); code->RestoreRegisters(); masm_->jmp(code->exit_label()); } } void CodeGenerator::SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers) { RegisterFile saved_counts; if (has_valid_frame()) { frame_->DetachFromCodeGenerator(); // The remaining register reference counts are the non-frame ones. allocator_->SaveTo(&saved_counts); } if (new_frame != NULL) { // Restore the non-frame register references that go with the new frame. allocator_->RestoreFrom(non_frame_registers); new_frame->AttachToCodeGenerator(); } frame_ = new_frame; saved_counts.CopyTo(non_frame_registers); } void CodeGenerator::DeleteFrame() { if (has_valid_frame()) { frame_->DetachFromCodeGenerator(); frame_ = NULL; } } // Generate the code. Takes a function literal, generates code for it, assemble // all the pieces into a Code object. This function is only to be called by // the compiler.cc code. Handle<Code> CodeGenerator::MakeCode(FunctionLiteral* flit, Handle<Script> script, bool is_eval) { #ifdef ENABLE_DISASSEMBLER bool print_code = Bootstrapper::IsActive() ? FLAG_print_builtin_code : FLAG_print_code; #endif #ifdef DEBUG bool print_source = false; bool print_ast = false; const char* ftype; if (Bootstrapper::IsActive()) { print_source = FLAG_print_builtin_source; print_ast = FLAG_print_builtin_ast; ftype = "builtin"; } else { print_source = FLAG_print_source; print_ast = FLAG_print_ast; ftype = "user-defined"; } if (FLAG_trace_codegen || print_source || print_ast) { PrintF("*** Generate code for %s function: ", ftype); flit->name()->ShortPrint(); PrintF(" ***\n"); } if (print_source) { PrintF("--- Source from AST ---\n%s\n", PrettyPrinter().PrintProgram(flit)); } if (print_ast) { PrintF("--- AST ---\n%s\n", AstPrinter().PrintProgram(flit)); } #endif // DEBUG // Generate code. const int initial_buffer_size = 4 * KB; CodeGenerator cgen(initial_buffer_size, script, is_eval); CodeGeneratorScope scope(&cgen); cgen.GenCode(flit); if (cgen.HasStackOverflow()) { ASSERT(!Top::has_pending_exception()); return Handle<Code>::null(); } // Allocate and install the code. Time the rest of this function as // code creation. HistogramTimerScope timer(&Counters::code_creation); CodeDesc desc; cgen.masm()->GetCode(&desc); ZoneScopeInfo sinfo(flit->scope()); InLoopFlag in_loop = (cgen.loop_nesting() != 0) ? IN_LOOP : NOT_IN_LOOP; Code::Flags flags = Code::ComputeFlags(Code::FUNCTION, in_loop); Handle<Code> code = Factory::NewCode(desc, &sinfo, flags, cgen.masm()->CodeObject()); // Add unresolved entries in the code to the fixup list. Bootstrapper::AddFixup(*code, cgen.masm()); #ifdef ENABLE_DISASSEMBLER if (print_code) { // Print the source code if available. if (!script->IsUndefined() && !script->source()->IsUndefined()) { PrintF("--- Raw source ---\n"); StringInputBuffer stream(String::cast(script->source())); stream.Seek(flit->start_position()); // flit->end_position() points to the last character in the stream. We // need to compensate by adding one to calculate the length. int source_len = flit->end_position() - flit->start_position() + 1; for (int i = 0; i < source_len; i++) { if (stream.has_more()) PrintF("%c", stream.GetNext()); } PrintF("\n\n"); } PrintF("--- Code ---\n"); code->Disassemble(*flit->name()->ToCString()); } #endif // ENABLE_DISASSEMBLER if (!code.is_null()) { Counters::total_compiled_code_size.Increment(code->instruction_size()); } return code; } #ifdef ENABLE_LOGGING_AND_PROFILING bool CodeGenerator::ShouldGenerateLog(Expression* type) { ASSERT(type != NULL); if (!Logger::is_logging()) return false; Handle<String> name = Handle<String>::cast(type->AsLiteral()->handle()); if (FLAG_log_regexp) { static Vector<const char> kRegexp = CStrVector("regexp"); if (name->IsEqualTo(kRegexp)) return true; } return false; } #endif // Sets the function info on a function. // The start_position points to the first '(' character after the function name // in the full script source. When counting characters in the script source the // the first character is number 0 (not 1). void CodeGenerator::SetFunctionInfo(Handle<JSFunction> fun, FunctionLiteral* lit, bool is_toplevel, Handle<Script> script) { fun->shared()->set_length(lit->num_parameters()); fun->shared()->set_formal_parameter_count(lit->num_parameters()); fun->shared()->set_script(*script); fun->shared()->set_function_token_position(lit->function_token_position()); fun->shared()->set_start_position(lit->start_position()); fun->shared()->set_end_position(lit->end_position()); fun->shared()->set_is_expression(lit->is_expression()); fun->shared()->set_is_toplevel(is_toplevel); fun->shared()->set_inferred_name(*lit->inferred_name()); fun->shared()->SetThisPropertyAssignmentsInfo( lit->has_only_this_property_assignments(), lit->has_only_simple_this_property_assignments(), *lit->this_property_assignments()); } static Handle<Code> ComputeLazyCompile(int argc) { CALL_HEAP_FUNCTION(StubCache::ComputeLazyCompile(argc), Code); } Handle<JSFunction> CodeGenerator::BuildBoilerplate(FunctionLiteral* node) { #ifdef DEBUG // We should not try to compile the same function literal more than // once. node->mark_as_compiled(); #endif // Determine if the function can be lazily compiled. This is // necessary to allow some of our builtin JS files to be lazily // compiled. These builtins cannot be handled lazily by the parser, // since we have to know if a function uses the special natives // syntax, which is something the parser records. bool allow_lazy = node->AllowsLazyCompilation(); // Generate code Handle<Code> code; if (FLAG_lazy && allow_lazy) { code = ComputeLazyCompile(node->num_parameters()); } else { // The bodies of function literals have not yet been visited by // the AST optimizer/analyzer. if (!Rewriter::Optimize(node)) { return Handle<JSFunction>::null(); } code = MakeCode(node, script_, false); // Check for stack-overflow exception. if (code.is_null()) { SetStackOverflow(); return Handle<JSFunction>::null(); } // Function compilation complete. LOG(CodeCreateEvent(Logger::FUNCTION_TAG, *code, *node->name())); #ifdef ENABLE_OPROFILE_AGENT OProfileAgent::CreateNativeCodeRegion(*node->name(), code->instruction_start(), code->instruction_size()); #endif } // Create a boilerplate function. Handle<JSFunction> function = Factory::NewFunctionBoilerplate(node->name(), node->materialized_literal_count(), node->contains_array_literal(), code); CodeGenerator::SetFunctionInfo(function, node, false, script_); #ifdef ENABLE_DEBUGGER_SUPPORT // Notify debugger that a new function has been added. Debugger::OnNewFunction(function); #endif // Set the expected number of properties for instances and return // the resulting function. SetExpectedNofPropertiesFromEstimate(function, node->expected_property_count()); return function; } Handle<Code> CodeGenerator::ComputeCallInitialize( int argc, InLoopFlag in_loop) { if (in_loop == IN_LOOP) { // Force the creation of the corresponding stub outside loops, // because it may be used when clearing the ICs later - it is // possible for a series of IC transitions to lose the in-loop // information, and the IC clearing code can't generate a stub // that it needs so we need to ensure it is generated already. ComputeCallInitialize(argc, NOT_IN_LOOP); } CALL_HEAP_FUNCTION(StubCache::ComputeCallInitialize(argc, in_loop), Code); } void CodeGenerator::ProcessDeclarations(ZoneList<Declaration*>* declarations) { int length = declarations->length(); int globals = 0; for (int i = 0; i < length; i++) { Declaration* node = declarations->at(i); Variable* var = node->proxy()->var(); Slot* slot = var->slot(); // If it was not possible to allocate the variable at compile // time, we need to "declare" it at runtime to make sure it // actually exists in the local context. if ((slot != NULL && slot->type() == Slot::LOOKUP) || !var->is_global()) { VisitDeclaration(node); } else { // Count global variables and functions for later processing globals++; } } // Return in case of no declared global functions or variables. if (globals == 0) return; // Compute array of global variable and function declarations. Handle<FixedArray> array = Factory::NewFixedArray(2 * globals, TENURED); for (int j = 0, i = 0; i < length; i++) { Declaration* node = declarations->at(i); Variable* var = node->proxy()->var(); Slot* slot = var->slot(); if ((slot != NULL && slot->type() == Slot::LOOKUP) || !var->is_global()) { // Skip - already processed. } else { array->set(j++, *(var->name())); if (node->fun() == NULL) { if (var->mode() == Variable::CONST) { // In case this is const property use the hole. array->set_the_hole(j++); } else { array->set_undefined(j++); } } else { Handle<JSFunction> function = BuildBoilerplate(node->fun()); // Check for stack-overflow exception. if (HasStackOverflow()) return; array->set(j++, *function); } } } // Invoke the platform-dependent code generator to do the actual // declaration the global variables and functions. DeclareGlobals(array); } // Special cases: These 'runtime calls' manipulate the current // frame and are only used 1 or two places, so we generate them // inline instead of generating calls to them. They are used // for implementing Function.prototype.call() and // Function.prototype.apply(). CodeGenerator::InlineRuntimeLUT CodeGenerator::kInlineRuntimeLUT[] = { {&CodeGenerator::GenerateIsSmi, "_IsSmi"}, {&CodeGenerator::GenerateIsNonNegativeSmi, "_IsNonNegativeSmi"}, {&CodeGenerator::GenerateIsArray, "_IsArray"}, {&CodeGenerator::GenerateIsConstructCall, "_IsConstructCall"}, {&CodeGenerator::GenerateArgumentsLength, "_ArgumentsLength"}, {&CodeGenerator::GenerateArgumentsAccess, "_Arguments"}, {&CodeGenerator::GenerateClassOf, "_ClassOf"}, {&CodeGenerator::GenerateValueOf, "_ValueOf"}, {&CodeGenerator::GenerateSetValueOf, "_SetValueOf"}, {&CodeGenerator::GenerateFastCharCodeAt, "_FastCharCodeAt"}, {&CodeGenerator::GenerateObjectEquals, "_ObjectEquals"}, {&CodeGenerator::GenerateLog, "_Log"}, {&CodeGenerator::GenerateRandomPositiveSmi, "_RandomPositiveSmi"}, {&CodeGenerator::GenerateMathSin, "_Math_sin"}, {&CodeGenerator::GenerateMathCos, "_Math_cos"} }; CodeGenerator::InlineRuntimeLUT* CodeGenerator::FindInlineRuntimeLUT( Handle<String> name) { const int entries_count = sizeof(kInlineRuntimeLUT) / sizeof(InlineRuntimeLUT); for (int i = 0; i < entries_count; i++) { InlineRuntimeLUT* entry = &kInlineRuntimeLUT[i]; if (name->IsEqualTo(CStrVector(entry->name))) { return entry; } } return NULL; } bool CodeGenerator::CheckForInlineRuntimeCall(CallRuntime* node) { ZoneList<Expression*>* args = node->arguments(); Handle<String> name = node->name(); if (name->length() > 0 && name->Get(0) == '_') { InlineRuntimeLUT* entry = FindInlineRuntimeLUT(name); if (entry != NULL) { ((*this).*(entry->method))(args); return true; } } return false; } bool CodeGenerator::PatchInlineRuntimeEntry(Handle<String> name, const CodeGenerator::InlineRuntimeLUT& new_entry, CodeGenerator::InlineRuntimeLUT* old_entry) { InlineRuntimeLUT* entry = FindInlineRuntimeLUT(name); if (entry == NULL) return false; if (old_entry != NULL) { old_entry->name = entry->name; old_entry->method = entry->method; } entry->name = new_entry.name; entry->method = new_entry.method; return true; } void CodeGenerator::CodeForFunctionPosition(FunctionLiteral* fun) { if (FLAG_debug_info) { int pos = fun->start_position(); if (pos != RelocInfo::kNoPosition) { masm()->RecordStatementPosition(pos); masm()->RecordPosition(pos); } } } void CodeGenerator::CodeForReturnPosition(FunctionLiteral* fun) { if (FLAG_debug_info) { int pos = fun->end_position(); if (pos != RelocInfo::kNoPosition) { masm()->RecordStatementPosition(pos); masm()->RecordPosition(pos); } } } void CodeGenerator::CodeForStatementPosition(AstNode* node) { if (FLAG_debug_info) { int pos = node->statement_pos(); if (pos != RelocInfo::kNoPosition) { masm()->RecordStatementPosition(pos); masm()->RecordPosition(pos); } } } void CodeGenerator::CodeForSourcePosition(int pos) { if (FLAG_debug_info) { if (pos != RelocInfo::kNoPosition) { masm()->RecordPosition(pos); } } } const char* RuntimeStub::GetName() { return Runtime::FunctionForId(id_)->stub_name; } void RuntimeStub::Generate(MacroAssembler* masm) { masm->TailCallRuntime(ExternalReference(id_), num_arguments_); } void ArgumentsAccessStub::Generate(MacroAssembler* masm) { switch (type_) { case READ_LENGTH: GenerateReadLength(masm); break; case READ_ELEMENT: GenerateReadElement(masm); break; case NEW_OBJECT: GenerateNewObject(masm); break; } } } } // namespace v8::internal