/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* ---- includes ----------------------------------------------------------- */
#include "b_BasicEm/Functions.h"
#include "b_BasicEm/Math.h"
#include "b_BitFeatureEm/Scanner.h"
/* ------------------------------------------------------------------------- */
/* ========================================================================= */
/* */
/* ---- \ghd{ auxiliary functions } ---------------------------------------- */
/* */
/* ========================================================================= */
/* ------------------------------------------------------------------------- */
/** multiplies a scale with a 0.32 scale factor */
uint32 bbf_Scanner_scalePrd( uint32 scaleA, uint32 factorA /*0.32 */ )\
{
return ( scaleA >> 16 ) * ( factorA >> 16 ) +
( ( ( scaleA & 0x0FFFF ) * ( factorA >> 16 ) ) >> 16 ) +
( ( ( scaleA >> 16 ) * ( factorA & 0x0FFFF ) ) >> 16 );
}
/* ------------------------------------------------------------------------- */
/** allocates arays */
void bbf_Scanner_alloc( struct bbs_Context* cpA,
struct bbf_Scanner* ptrA,
struct bbs_MemTbl* mtpA,
flag maximizeSharedMemoryA )
{
struct bbs_MemTbl memTblL = *mtpA;
struct bbs_MemSeg* espL = bbs_MemTbl_segPtr( cpA, &memTblL, 0 );
struct bbs_MemSeg* sspL = bbs_MemTbl_sharedSegPtr( cpA, &memTblL, 0 );
struct bbs_MemSeg* mspL = maximizeSharedMemoryA ? sspL : espL;
/* filter patch dimension */
uint32 proL = ptrA->maxRadiusE;
uint32 pwoL = ( proL << 1 ) + 1;
/* output image size (bit image) */
uint32 woL = ptrA->maxImageWidthE;
uint32 hoL = ptrA->maxImageHeightE;
/* extended output image size (bit image) considering borders */
uint32 xwoL = woL + ( ptrA->borderWidthE << 1 );
uint32 xhoL = hoL + ( ptrA->borderHeightE << 1 );
/* allocate working image */
bbs_UInt16Arr_create( cpA, &ptrA->workImageE, ( ( woL >> 1 ) + ( woL & 1 ) ) * hoL, mspL );
if( bbs_Context_error( cpA ) ) return;
bbs_UInt16Arr_fill( cpA, &ptrA->workImageE, 0 );
/* allocate bit image */
bim_UInt32Image_create( cpA, &ptrA->bitImageE, xwoL, ( xhoL >> 5 ) + ( ( ( xhoL & 0x1F ) != 0 ) ? 1 : 0 ), mspL );
if( bbs_Context_error( cpA ) ) return;
bim_UInt32Image_setAllPixels( cpA, &ptrA->bitImageE, 0, 0 );
/* allocate patch buffer */
bbs_UInt32Arr_create( cpA, &ptrA->patchBufferE, ptrA->bitImageE.widthE, mspL );
if( bbs_Context_error( cpA ) ) return;
bbs_UInt32Arr_fill( cpA, &ptrA->patchBufferE, 0 );
/* allocate line buffer */
bbs_UInt16Arr_create( cpA, &ptrA->lineBufE, woL + ( woL & 1 ), sspL );
/* allocate table */
bim_UInt32Image_create( cpA, &ptrA->satE, woL + pwoL, pwoL + 1, sspL );
/* allocate buffers */
bbs_UInt32Arr_create( cpA, &ptrA->idxArrE, ptrA->bufferSizeE, mspL );
bbs_Int32Arr_create( cpA, &ptrA->actArrE, ptrA->bufferSizeE, mspL );
bbs_Int32Arr_create( cpA, &ptrA->outArrE, ptrA->bufferSizeE >> 1, espL );
}
/* ------------------------------------------------------------------------- */
/** downscales work image */
void bbf_Scanner_downscale( struct bbs_Context* cpA, struct bbf_Scanner* ptrA )
{
uint32 w0L = ptrA->workWidthE;
uint32 h0L = ptrA->workHeightE;
uint32 w1L = w0L >> 1;
uint32 h1L = h0L >> 1;
uint32 w20L = ( w0L >> 1 ) + ( w0L & 1 );
uint16* arrL = ptrA->workImageE.arrPtrE;
uint32 iL, jL;
uint32 kL = 0;
for( jL = 0; jL < h1L; jL++ )
{
for( iL = 0; iL < ( w1L >> 1 ); iL++ )
{
uint16 loL, hiL;
uint32 idxL = jL * 2 * w20L + iL * 2;
loL = ( ( arrL[ idxL ] & 0x00FF ) + ( arrL[ idxL ] >> 8 ) + ( arrL[ idxL + w20L ] & 0x00FF ) + ( arrL[ idxL + w20L ] >> 8 ) + 2 ) >> 2;
idxL++;
hiL = ( ( arrL[ idxL ] & 0x00FF ) + ( arrL[ idxL ] >> 8 ) + ( arrL[ idxL + w20L ] & 0x00FF ) + ( arrL[ idxL + w20L ] >> 8 ) + 2 ) >> 2;
arrL[ kL ] = loL | ( hiL << 8 );
kL++;
}
if( ( w1L & 1 ) != 0 )
{
uint32 idxL = jL * 2 * w20L + iL;
arrL[ kL++ ] = ( ( arrL[ idxL ] & 0x00FF ) + ( arrL[ idxL ] >> 8 ) + ( arrL[ idxL + w20L ] & 0x00FF ) + ( arrL[ idxL + w20L ] >> 8 ) + 2 ) >> 2;
}
}
ptrA->workWidthE = w1L;
ptrA->workHeightE = h1L;
ptrA->scaleExpE++;
}
/* ------------------------------------------------------------------------- */
/** copies image
* handling for 8 bit images is implemented
* 16 bit image handling for the whole class needs to be added in this function only
*/
void bbf_Scanner_copyImage( struct bbs_Context* cpA, struct bbf_Scanner* ptrA, const void* imagePtrA, uint32 imageWidthA, uint32 imageHeightA, const struct bts_Int16Rect* roiPtrA )
{
bbs_DEF_fNameL( "void bbf_Scanner_copyImage( struct bbs_Context* cpA, struct bbf_Scanner* ptrA, const struct bim_UInt16ByteImage* imagePtrA, const struct bts_Int16Rect* roiPtrA )" )
if( imageWidthA > ptrA->maxImageWidthE || imageHeightA > ptrA->maxImageHeightE )
{
bbs_ERROR5( "%s:\n Input image (%ix%i)is too large; Scanner is configured for maximal (%ix%i)",
fNameL, imageWidthA, imageHeightA, ptrA->maxImageWidthE, ptrA->maxImageHeightE );
return;
}
if( roiPtrA == 0 )
{
uint32 iL, jL;
const uint8* srcL = ( uint8* )imagePtrA;
uint16* dstL = ptrA->workImageE.arrPtrE;
ptrA->workWidthE = imageWidthA;
ptrA->workHeightE = imageHeightA;
for( iL = 0; iL < ptrA->workHeightE; iL++ )
{
for( jL = ptrA->workWidthE >> 1; jL > 0; jL-- )
{
*dstL++ = ( uint16 )srcL[ 0 ] | ( uint16 )srcL[ 1 ] << 8;
srcL += 2;
}
/* uneven width */
if( ptrA->workWidthE & 1 ) *dstL++ = *srcL++;
}
}
else
{
uint32 iL, jL;
const uint8* srcL = ( uint8* )imagePtrA + roiPtrA->y1E * imageWidthA + roiPtrA->x1E;
uint16* dstL = ptrA->workImageE.arrPtrE;
if( roiPtrA->x2E <= roiPtrA->x1E || roiPtrA->y2E <= roiPtrA->y1E )
{
bbs_ERROR1( "%s:\n ROI is invalid or zero", fNameL );
return;
}
if( roiPtrA->x1E < 0 || roiPtrA->y1E < 0 || roiPtrA->x2E > ( int32 )imageWidthA || roiPtrA->y2E > ( int32 )imageHeightA )
{
bbs_ERROR1( "%s:\n ROI exceeds image boundary", fNameL );
return;
}
ptrA->workWidthE = roiPtrA->x2E - roiPtrA->x1E;
ptrA->workHeightE = roiPtrA->y2E - roiPtrA->y1E;
for( iL = 0; iL < ptrA->workHeightE; iL++ )
{
for( jL = ptrA->workWidthE >> 1; jL > 0; jL-- )
{
*dstL++ = ( uint16 )srcL[ 0 ] | ( uint16 )srcL[ 1 ] << 8;
srcL += 2;
}
/* uneven width */
if( ptrA->workWidthE & 1 ) *dstL++ = *srcL++;
srcL += imageWidthA - ptrA->workWidthE;
}
}
}
/* ------------------------------------------------------------------------- */
/** creates bit image */
void bbf_Scanner_createBitImage( struct bbs_Context* cpA, struct bbf_Scanner* ptrA )
{
bbs_DEF_fNameL( "void bbf_Scanner_createBitImage( struct bbs_Context* cpA, struct bbf_Scanner* ptrA )" )
/* declarations */
uint32 proL, priL, pwoL, pwiL;
uint32 wiL, wi2L, hiL, woL, hoL, xwoL, xhoL; /* image size specifies */
uint32 stepL; /* scan step (16.16) */
uint32 bitMaskL; /* current bit mask */
uint32* bitRowL; /* pointer to bit-row */
uint32 wsL, hsL; /* size of summed area table (ringbuffer) */
uint32 satSizeL;
uint32* satL; /* pointer to summed area table */
uint16* lBufL; /* pointer to line buffer */
uint32 yfL; /* fixed point y-coordinate (16.16) */
uint32 iL, jL;
uint32 swi1L; /* table writing index */
uint32 swi2L; /* table writing index */
uint32 sriL; /* table reading index */
uint32 poAreaL, piAreaL; /* areas of inner and outer rectangles */
uint32 siL[ 8 ]; /* table indices */
proL = ptrA->bitParamE.outerRadiusE;
priL = ptrA->bitParamE.innerRadiusE;
pwoL = ( proL << 1 ) + 1;
pwiL = ( priL << 1 ) + 1;
if( ptrA->borderHeightE >= 32 )
{
bbs_ERROR1( "%s:\n borderHeightE >= 32", fNameL );
return;
}
if( proL <= priL )
{
bbs_ERROR1( "%s:\n outer radius <= inner radius", fNameL );
return;
}
/* input image size (bit image) */
wiL = ptrA->workWidthE;
hiL = ptrA->workHeightE;
wi2L = ( wiL >> 1 ) + ( wiL & 1 );
/* 16.16 */
stepL = ptrA->scaleE >> ( ptrA->scaleExpE + 4 );
/* output image size (bit image) */
woL = ( wiL << 16 ) / stepL;
hoL = ( hiL << 16 ) / stepL;
if( woL <= pwoL || hoL <= pwoL )
{
bbs_ERROR1( "%s:\n scaled image is too small", fNameL );
return;
}
if( woL * stepL >= ( wiL << 16 ) ) woL--;
if( hoL * stepL >= ( hiL << 16 ) ) hoL--;
/* extended output image size (bit image) considering borders */
xwoL = woL + ( ptrA->borderWidthE << 1 );
xhoL = hoL + ( ptrA->borderHeightE << 1 );
ptrA->currentWidthE = xwoL;
ptrA->currentHeightE = xhoL;
/* initialize bit image */
bim_UInt32Image_size( cpA, &ptrA->bitImageE, xwoL, ( xhoL >> 5 ) + ( ( ( xhoL & 0x1F ) != 0 ) ? 1 : 0 ) );
bim_UInt32Image_setAllPixels( cpA, &ptrA->bitImageE, 0, 0 );
bitMaskL = ( uint32 )1 << ptrA->borderHeightE;
bitRowL = ( uint32* )ptrA->bitImageE.arrE.arrPtrE + ptrA->borderWidthE;
/* width of table */
wsL = woL + pwoL;
/* height of table */
hsL = pwoL + 1;
bim_UInt32Image_size( cpA, &ptrA->satE, wsL, hsL );
satL = ptrA->satE.arrE.arrPtrE;
satSizeL = wsL * hsL;
lBufL = ptrA->lineBufE.arrPtrE;
yfL = 0; /* fixed point y-coordinate ( 16.16 )*/
swi1L = 0; /* table writing index */
swi2L = 0; /* table writing index */
sriL = 0; /* table reading index */
/* areas of inner and outer rectangles */
poAreaL = pwoL * pwoL;
piAreaL = pwiL * pwiL;
/* interpolate pixels; compute table and bit image */
for( iL = wsL * ( proL + 1 ); iL > 0; iL-- ) satL[ swi1L++ ] = 0;
swi2L = swi1L - wsL;
for( jL = 0; jL < hoL + proL; jL++ )
{
if( jL < hoL ) /* rescale area */
{
uint32 ypL = ( yfL >> 16 );
uint32 yoff1L = yfL & 0x0FFFF;
uint32 yoff0L = 0x010000 - yoff1L;
const uint16* arr0L = ptrA->workImageE.arrPtrE + ypL * wi2L;
const uint16* arr1L = arr0L + wi2L;
uint32 xfL = 0; /* fixed point x-coordinate (16.16) */
uint32 hSumL = 0;
yfL += stepL;
for( iL = 0; iL <= proL; iL++ ) satL[ swi1L++ ] = 0;
swi2L += iL;
/* fill line buffer */
for( iL = 0; iL < wi2L; iL++ )
{
lBufL[ iL * 2 ] = ( ( ( arr0L[ iL ] & 0x0FF ) * yoff0L ) + ( ( arr1L[ iL ] & 0x0FF ) * yoff1L ) ) >> 10;
lBufL[ iL * 2 + 1 ] = ( ( ( arr0L[ iL ] >> 8 ) * yoff0L ) + ( ( arr1L[ iL ] >> 8 ) * yoff1L ) ) >> 10;
}
for( iL = 0; iL < woL; iL++ )
{
uint32 xpL = ( xfL >> 16 );
uint32 xoff1L = xfL & 0x0FFFF;
uint16 pixL = ( lBufL[ xpL ] * ( 0x010000 - xoff1L ) + lBufL[ xpL + 1 ] * xoff1L ) >> 22;
satL[ swi1L ] = ( hSumL += pixL ) + satL[ swi2L ];
xfL += stepL;
swi1L++;
swi2L++;
}
for( iL = 0; iL < proL; iL++ )
{
satL[ swi1L ] = hSumL + satL[ swi2L ];
swi1L++;
swi2L++;
}
}
else /* image is processed - fill in 0s */
{
for( iL = 0; iL < wsL; iL++ ) satL[ swi1L++ ] = satL[ swi2L++ ];
}
swi1L = ( swi1L < satSizeL ) ? swi1L : 0;
swi2L = ( swi2L < satSizeL ) ? swi2L : 0;
/* fill line in bit image */
if( jL >= proL )
{
const uint32* rSatL = satL;
/* table coordinate indices for outer rectangle */
siL[ 0 ] = sriL;
siL[ 1 ] = siL[ 0 ] + pwoL;
siL[ 2 ] = siL[ 0 ] + pwoL * wsL;
siL[ 2 ] -= ( siL[ 2 ] >= satSizeL ) ? satSizeL : 0;
siL[ 3 ] = siL[ 2 ] + pwoL;
/* table coordinate indices for inner rectangle */
siL[ 4 ] = siL[ 0 ] + ( proL - priL ) * wsL + ( proL - priL );
siL[ 4 ] -= ( siL[ 4 ] >= satSizeL ) ? satSizeL : 0;
siL[ 5 ] = siL[ 4 ] + pwiL;
siL[ 6 ] = siL[ 4 ] + pwiL * wsL;
siL[ 6 ] -= ( siL[ 6 ] >= satSizeL ) ? satSizeL : 0;
siL[ 7 ] = siL[ 6 ] + pwiL;
sriL += wsL;
if( sriL == satSizeL ) sriL = 0;
for( iL = 0; iL < woL; iL++ )
{
uint32 oAvgL = ( rSatL[ siL[ 0 ] ] - rSatL[ siL[ 1 ] ] - rSatL[ siL[ 2 ] ] + rSatL[ siL[ 3 ] ] ) * piAreaL;
uint32 iAvgL = ( rSatL[ siL[ 4 ] ] - rSatL[ siL[ 5 ] ] - rSatL[ siL[ 6 ] ] + rSatL[ siL[ 7 ] ] ) * poAreaL;
bitRowL[ iL ] |= ( iAvgL > oAvgL ) ? bitMaskL : 0;
rSatL++;
}
if( ( bitMaskL <<= 1 ) == 0 )
{
bitRowL += xwoL;
bitMaskL = 1;
}
}
}
}
/* ------------------------------------------------------------------------- */
/** initialize patch buffer */
void bbf_Scanner_initPatchBuffer( struct bbs_Context* cpA, struct bbf_Scanner* ptrA )
{
bbs_UInt32Arr_size( cpA, &ptrA->patchBufferE, ptrA->bitImageE.widthE );
bbs_memcpy32( ptrA->patchBufferE.arrPtrE, ptrA->bitImageE.arrE.arrPtrE, ptrA->bitImageE.widthE );
}
/* ------------------------------------------------------------------------- */
/* ========================================================================= */
/* */
/* ---- \ghd{ constructor / destructor } ----------------------------------- */
/* */
/* ========================================================================= */
/* ------------------------------------------------------------------------- */
void bbf_Scanner_init( struct bbs_Context* cpA,
struct bbf_Scanner* ptrA )
{
ptrA->scaleExpE = 0;
ptrA->scaleE = 0;
ptrA->xE = 0;
ptrA->yE = 0;
ptrA->effMaxScaleE = 0;
ptrA->currentWidthE = 0;
ptrA->currentHeightE = 0;
ptrA->workWidthE = 0;
ptrA->workHeightE = 0;
bbf_BitParam_init( cpA, &ptrA->bitParamE );
bbs_UInt16Arr_init( cpA, &ptrA->workImageE );
bim_UInt32Image_init( cpA, &ptrA->satE );
bim_UInt32Image_init( cpA, &ptrA->bitImageE );
bbs_UInt32Arr_init( cpA, &ptrA->patchBufferE );
bbs_UInt16Arr_init( cpA, &ptrA->lineBufE );
bbs_UInt32Arr_init( cpA, &ptrA->idxArrE );
bbs_Int32Arr_init( cpA, &ptrA->actArrE );
bbs_Int32Arr_init( cpA, &ptrA->outArrE );
ptrA->outCountE = 0;
ptrA->intCountE = 0;
ptrA->bufferSizeE = 1024;
ptrA->maxImageWidthE = 0;
ptrA->maxImageHeightE = 0;
ptrA->maxRadiusE = 0;
ptrA->patchWidthE = 0;
ptrA->patchHeightE = 0;
ptrA->minScaleE = 0;
ptrA->maxScaleE = 0;
ptrA->scaleStepE = 0;
ptrA->borderWidthE = 0;
ptrA->borderHeightE = 0;
}
/* ------------------------------------------------------------------------- */
void bbf_Scanner_exit( struct bbs_Context* cpA,
struct bbf_Scanner* ptrA )
{
ptrA->scaleExpE = 0;
ptrA->scaleE = 0;
ptrA->xE = 0;
ptrA->yE = 0;
ptrA->effMaxScaleE = 0;
ptrA->currentWidthE = 0;
ptrA->currentHeightE = 0;
ptrA->workWidthE = 0;
ptrA->workHeightE = 0;
bbf_BitParam_exit( cpA, &ptrA->bitParamE );
bbs_UInt16Arr_exit( cpA, &ptrA->workImageE );
bim_UInt32Image_exit( cpA, &ptrA->satE );
bim_UInt32Image_exit( cpA, &ptrA->bitImageE );
bbs_UInt32Arr_exit( cpA, &ptrA->patchBufferE );
bbs_UInt16Arr_exit( cpA, &ptrA->lineBufE );
bbs_UInt32Arr_exit( cpA, &ptrA->idxArrE );
bbs_Int32Arr_exit( cpA, &ptrA->actArrE );
bbs_Int32Arr_exit( cpA, &ptrA->outArrE );
ptrA->outCountE = 0;
ptrA->intCountE = 0;
ptrA->bufferSizeE = 1024;
ptrA->maxImageWidthE = 0;
ptrA->maxImageHeightE = 0;
ptrA->maxRadiusE = 0;
ptrA->patchWidthE = 0;
ptrA->patchHeightE = 0;
ptrA->minScaleE = 0;
ptrA->maxScaleE = 0;
ptrA->scaleStepE = 0;
ptrA->borderWidthE = 0;
ptrA->borderHeightE = 0;
}
/* ------------------------------------------------------------------------- */
/* ========================================================================= */
/* */
/* ---- \ghd{ operators } -------------------------------------------------- */
/* */
/* ========================================================================= */
/* ------------------------------------------------------------------------- */
void bbf_Scanner_copy( struct bbs_Context* cpA,
struct bbf_Scanner* ptrA,
const struct bbf_Scanner* srcPtrA )
{
ptrA->scaleExpE = srcPtrA->scaleExpE;
ptrA->scaleE = srcPtrA->scaleE;
ptrA->xE = srcPtrA->xE;
ptrA->yE = srcPtrA->yE;
ptrA->effMaxScaleE = srcPtrA->effMaxScaleE;
ptrA->currentWidthE = srcPtrA->currentWidthE;
ptrA->currentHeightE = srcPtrA->currentHeightE;
ptrA->workWidthE = srcPtrA->workWidthE;
ptrA->workHeightE = srcPtrA->workHeightE;
bbf_BitParam_copy( cpA, &ptrA->bitParamE, &srcPtrA->bitParamE );
bbs_UInt16Arr_copy( cpA, &ptrA->workImageE, &srcPtrA->workImageE );
bim_UInt32Image_copy( cpA, &ptrA->satE, &srcPtrA->satE );
bim_UInt32Image_copy( cpA, &ptrA->bitImageE, &srcPtrA->bitImageE );
bbs_UInt32Arr_copy( cpA, &ptrA->patchBufferE, &srcPtrA->patchBufferE );
bbs_UInt16Arr_copy( cpA, &ptrA->lineBufE, &srcPtrA->lineBufE );
ptrA->maxImageWidthE = srcPtrA->maxImageWidthE;
ptrA->maxImageHeightE = srcPtrA->maxImageHeightE;
ptrA->maxRadiusE = srcPtrA->maxRadiusE;
ptrA->patchWidthE = srcPtrA->patchWidthE;
ptrA->patchHeightE = srcPtrA->patchHeightE;
ptrA->minScaleE = srcPtrA->minScaleE;
ptrA->maxScaleE = srcPtrA->maxScaleE;
ptrA->scaleStepE = srcPtrA->scaleStepE;
ptrA->borderWidthE = srcPtrA->borderWidthE;
ptrA->borderHeightE = srcPtrA->borderHeightE;
}
/* ------------------------------------------------------------------------- */
flag bbf_Scanner_equal( struct bbs_Context* cpA,
const struct bbf_Scanner* ptrA,
const struct bbf_Scanner* srcPtrA )
{
if( ptrA->maxImageWidthE != srcPtrA->maxImageWidthE ) return FALSE;
if( ptrA->maxImageHeightE != srcPtrA->maxImageHeightE ) return FALSE;
if( ptrA->maxRadiusE != srcPtrA->maxRadiusE ) return FALSE;
if( ptrA->patchWidthE != srcPtrA->patchWidthE ) return FALSE;
if( ptrA->patchHeightE != srcPtrA->patchHeightE ) return FALSE;
if( ptrA->minScaleE != srcPtrA->minScaleE ) return FALSE;
if( ptrA->maxScaleE != srcPtrA->maxScaleE ) return FALSE;
if( ptrA->scaleStepE != srcPtrA->scaleStepE ) return FALSE;
if( ptrA->borderWidthE != srcPtrA->borderWidthE ) return FALSE;
if( ptrA->borderHeightE != srcPtrA->borderHeightE ) return FALSE;
return TRUE;
}
/* ------------------------------------------------------------------------- */
/* ========================================================================= */
/* */
/* ---- \ghd{ query functions } -------------------------------------------- */
/* */
/* ========================================================================= */
/* ------------------------------------------------------------------------- */
uint32 bbf_Scanner_positions( const struct bbf_Scanner* ptrA )
{
int32 wL = ( int32 )ptrA->currentWidthE - ptrA->patchWidthE;
int32 hL = ( int32 )ptrA->currentHeightE - ptrA->patchHeightE;
return ( wL >= 0 ? wL : 0 ) * ( hL >= 0 ? hL : 0 );
}
/* ------------------------------------------------------------------------- */
uint32 bbf_Scanner_scanIndex( const struct bbf_Scanner* ptrA )
{
return ptrA->yE * ptrA->currentWidthE + ptrA->xE;
}
/* ------------------------------------------------------------------------- */
void bbf_Scanner_pos( const struct bbf_Scanner* ptrA,
int32* xPtrA, int32* yPtrA, uint32* scalePtrA )
{
/* 16.16 */
*xPtrA = ( int32 )( ptrA->xE - ptrA->borderWidthE ) * ( int32 )( ptrA->scaleE >> 4 );
/* 16.16 */
*yPtrA = ( int32 )( ptrA->yE - ptrA->borderHeightE ) * ( int32 )( ptrA->scaleE >> 4 );
/* 12.20 */
*scalePtrA = ptrA->scaleE;
}
/* ------------------------------------------------------------------------- */
void bbf_Scanner_idxPos( const struct bbf_Scanner* ptrA, uint32 scanIndexA,
int32* xPtrA, int32* yPtrA, uint32* scalePtrA )
{
int32 yL = scanIndexA / ptrA->currentWidthE;
int32 xL = scanIndexA - ( yL * ptrA->currentWidthE );
/* 16.16 */
*xPtrA = ( int32 )( xL - ptrA->borderWidthE ) * ( int32 )( ptrA->scaleE >> 4 );
/* 16.16 */
*yPtrA = ( int32 )( yL - ptrA->borderHeightE ) * ( int32 )( ptrA->scaleE >> 4 );
*scalePtrA = ptrA->scaleE;
}
/* ------------------------------------------------------------------------- */
/* ========================================================================= */
/* */
/* ---- \ghd{ modify functions } ------------------------------------------- */
/* */
/* ========================================================================= */
/* ------------------------------------------------------------------------- */
void bbf_Scanner_create( struct bbs_Context* cpA,
struct bbf_Scanner* ptrA,
flag maximizeSharedMemoryA,
uint32 maxImageWidthA,
uint32 maxImageHeightA,
uint32 maxRadiusA,
uint32 patchWidthA,
uint32 patchHeightA,
uint32 minScaleA,
uint32 maxScaleA,
uint32 scaleStepA,
uint32 borderWidthA,
uint32 borderHeightA,
uint32 bufferSizeA,
struct bbs_MemTbl* mtpA )
{
ptrA->maxImageWidthE = maxImageWidthA;
ptrA->maxImageHeightE = maxImageHeightA;
ptrA->maxRadiusE = maxRadiusA;
ptrA->patchWidthE = patchWidthA;
ptrA->patchHeightE = patchHeightA;
ptrA->minScaleE = minScaleA;
ptrA->maxScaleE = maxScaleA;
ptrA->scaleStepE = scaleStepA;
ptrA->borderWidthE = borderWidthA;
ptrA->borderHeightE = borderHeightA;
ptrA->bufferSizeE = bufferSizeA;
bbf_Scanner_alloc( cpA, ptrA, mtpA, maximizeSharedMemoryA );
}
/* ------------------------------------------------------------------------- */
void bbf_Scanner_bitParam( struct bbs_Context* cpA,
struct bbf_Scanner* ptrA,
const struct bbf_BitParam* bitParamPtrA )
{
if( !bbf_BitParam_equal( cpA, &ptrA->bitParamE, bitParamPtrA ) )
{
bbf_BitParam_copy( cpA, &ptrA->bitParamE, bitParamPtrA );
bbf_Scanner_createBitImage( cpA, ptrA );
}
bbf_Scanner_resetScan( cpA, ptrA );
}
/* ------------------------------------------------------------------------- */
/* ========================================================================= */
/* */
/* ---- \ghd{ I/O } -------------------------------------------------------- */
/* */
/* ========================================================================= */
/* ------------------------------------------------------------------------- */
uint32 bbf_Scanner_memSize( struct bbs_Context* cpA,
const struct bbf_Scanner* ptrA )
{
uint32 memSizeL = bbs_SIZEOF16( uint32 ) +
bbs_SIZEOF16( uint32 ); /* version */
memSizeL += bbs_SIZEOF16( ptrA->maxImageWidthE );
memSizeL += bbs_SIZEOF16( ptrA->maxImageHeightE );
memSizeL += bbs_SIZEOF16( ptrA->maxRadiusE );
memSizeL += bbs_SIZEOF16( ptrA->patchWidthE );
memSizeL += bbs_SIZEOF16( ptrA->patchHeightE );
memSizeL += bbs_SIZEOF16( ptrA->minScaleE );
memSizeL += bbs_SIZEOF16( ptrA->maxScaleE );
memSizeL += bbs_SIZEOF16( ptrA->scaleStepE );
memSizeL += bbs_SIZEOF16( ptrA->borderWidthE );
memSizeL += bbs_SIZEOF16( ptrA->borderHeightE );
return memSizeL;
}
/* ------------------------------------------------------------------------- */
uint32 bbf_Scanner_memWrite( struct bbs_Context* cpA,
const struct bbf_Scanner* ptrA,
uint16* memPtrA )
{
uint32 memSizeL = bbf_Scanner_memSize( cpA, ptrA );
memPtrA += bbs_memWrite32( &memSizeL, memPtrA );
memPtrA += bbs_memWriteUInt32( bbf_SCANNER_VERSION, memPtrA );
memPtrA += bbs_memWrite32( &ptrA->maxImageWidthE, memPtrA );
memPtrA += bbs_memWrite32( &ptrA->maxImageHeightE, memPtrA );
memPtrA += bbs_memWrite32( &ptrA->maxRadiusE, memPtrA );
memPtrA += bbs_memWrite32( &ptrA->patchWidthE, memPtrA );
memPtrA += bbs_memWrite32( &ptrA->patchHeightE, memPtrA );
memPtrA += bbs_memWrite32( &ptrA->minScaleE, memPtrA );
memPtrA += bbs_memWrite32( &ptrA->maxScaleE, memPtrA );
memPtrA += bbs_memWrite32( &ptrA->scaleStepE, memPtrA );
memPtrA += bbs_memWrite32( &ptrA->borderWidthE, memPtrA );
memPtrA += bbs_memWrite32( &ptrA->borderHeightE, memPtrA );
return memSizeL;
}
/* ------------------------------------------------------------------------- */
uint32 bbf_Scanner_memRead( struct bbs_Context* cpA,
struct bbf_Scanner* ptrA,
const uint16* memPtrA,
struct bbs_MemTbl* mtpA )
{
uint32 memSizeL, versionL;
if( bbs_Context_error( cpA ) ) return 0;
memPtrA += bbs_memRead32( &memSizeL, memPtrA );
memPtrA += bbs_memReadVersion32( cpA, &versionL, bbf_SCANNER_VERSION, memPtrA );
memPtrA += bbs_memRead32( &ptrA->maxImageWidthE, memPtrA );
memPtrA += bbs_memRead32( &ptrA->maxImageHeightE, memPtrA );
memPtrA += bbs_memRead32( &ptrA->maxRadiusE, memPtrA );
memPtrA += bbs_memRead32( &ptrA->patchWidthE, memPtrA );
memPtrA += bbs_memRead32( &ptrA->patchHeightE, memPtrA );
memPtrA += bbs_memRead32( &ptrA->minScaleE, memPtrA );
memPtrA += bbs_memRead32( &ptrA->maxScaleE, memPtrA );
memPtrA += bbs_memRead32( &ptrA->scaleStepE, memPtrA );
memPtrA += bbs_memRead32( &ptrA->borderWidthE, memPtrA );
memPtrA += bbs_memRead32( &ptrA->borderHeightE, memPtrA );
if( memSizeL != bbf_Scanner_memSize( cpA, ptrA ) )
{
bbs_ERR0( bbs_ERR_CORRUPT_DATA, "uint32 bbf_Scanner_memRead( struct bem_ScanGradientMove* ptrA, const uint16* memPtrA ):\n"
"size mismatch" );
return 0;
}
if( bbs_Context_error( cpA ) ) return 0;
/* allocate arrays */
bbf_Scanner_alloc( cpA, ptrA, mtpA, FALSE );
if( bbs_Context_error( cpA ) ) return 0;
return memSizeL;
}
/* ------------------------------------------------------------------------- */
/* ========================================================================= */
/* */
/* ---- \ghd{ exec functions } --------------------------------------------- */
/* */
/* ========================================================================= */
/* ------------------------------------------------------------------------- */
void bbf_Scanner_resetScan( struct bbs_Context* cpA, struct bbf_Scanner* ptrA )
{
ptrA->xE = 0;
ptrA->yE = 0;
bbf_Scanner_initPatchBuffer( cpA, ptrA );
}
/* ------------------------------------------------------------------------- */
void bbf_Scanner_assign( struct bbs_Context* cpA, struct bbf_Scanner* ptrA,
const void* imagePtrA,
uint32 imageWidthA,
uint32 imageHeightA,
const struct bts_Int16Rect* roiPtrA,
const struct bbf_BitParam* paramPtrA )
{
/* copy image */
bbf_Scanner_copyImage( cpA, ptrA, imagePtrA, imageWidthA, imageHeightA, roiPtrA );
ptrA->scaleE = ptrA->minScaleE;
bbf_BitParam_copy( cpA, &ptrA->bitParamE, paramPtrA );
/* compute effective max scale */
{
/* 16.16 */
uint32 maxHScaleL = ( ptrA->workWidthE << 16 ) / ( ptrA->patchWidthE + 1 );
uint32 maxVScaleL = ( ptrA->workHeightE << 16 ) / ( ptrA->patchHeightE + 1 );
/* 12.20 */
ptrA->effMaxScaleE = maxHScaleL < maxVScaleL ? ( maxHScaleL << 4 ) : ( maxVScaleL << 4 );
if( ptrA->maxScaleE > 0 ) ptrA->effMaxScaleE = ptrA->effMaxScaleE < ptrA->maxScaleE ? ptrA->effMaxScaleE : ptrA->maxScaleE;
}
ptrA->scaleExpE = 0;
/* downscale work image if necessary */
while( ptrA->scaleE > ( ( uint32 )( 2 << ptrA->scaleExpE ) << 20 ) ) bbf_Scanner_downscale( cpA, ptrA );
bbf_Scanner_createBitImage( cpA, ptrA );
bbf_Scanner_resetScan( cpA, ptrA );
}
/* ------------------------------------------------------------------------- */
flag bbf_Scanner_nextScale( struct bbs_Context* cpA, struct bbf_Scanner* ptrA )
{
if( ptrA->scaleE + bbf_Scanner_scalePrd( ptrA->scaleE, ptrA->scaleStepE ) >= ptrA->effMaxScaleE ) return FALSE;
ptrA->scaleE += bbf_Scanner_scalePrd( ptrA->scaleE, ptrA->scaleStepE );
/* downscale work image if necessary */
while( ptrA->scaleE > ( ( uint32 )( 2 << ptrA->scaleExpE ) << 20 ) ) bbf_Scanner_downscale( cpA, ptrA );
bbf_Scanner_createBitImage( cpA, ptrA );
bbf_Scanner_resetScan( cpA, ptrA );
return TRUE;
}
/* ------------------------------------------------------------------------- */
const uint32* bbf_Scanner_getPatch( const struct bbf_Scanner* ptrA )
{
return ptrA->patchBufferE.arrPtrE + ptrA->xE;
}
/* ------------------------------------------------------------------------- */
flag bbf_Scanner_next( struct bbs_Context* cpA, struct bbf_Scanner* ptrA )
{
if( ( ptrA->xE + 1 ) < ( int32 )( ptrA->currentWidthE - ptrA->patchWidthE ) )
{
ptrA->xE++;
return TRUE;
}
if( ( ptrA->yE + 1 ) >= ( int32 )( ptrA->currentHeightE - ptrA->patchHeightE ) ) return FALSE;
ptrA->xE = 0;
ptrA->yE++;
{
uint32 offL = ( ptrA->yE & 0x1F );
uint32 rowL = ( ptrA->yE >> 5 ) + ( offL > 0 ? 1 : 0 );
uint32 sizeL = ptrA->bitImageE.widthE;
uint32* dstL = ptrA->patchBufferE.arrPtrE;
uint32 iL;
if( rowL < ptrA->bitImageE.heightE )
{
uint32* srcL = ( uint32* )ptrA->bitImageE.arrE.arrPtrE + rowL * sizeL;
if( offL > 0 )
{
uint32 shlL = 32 - offL;
for( iL = 0; iL < sizeL; iL++ ) dstL[ iL ] = ( dstL[ iL ] >> 1 ) | ( srcL[ iL ] << shlL );
}
else
{
bbs_memcpy32( dstL, srcL, sizeL );
}
}
else
{
for( iL = 0; iL < sizeL; iL++ ) dstL[ iL ] >>= 1;
}
}
return TRUE;
}
/* ------------------------------------------------------------------------- */
void bbf_Scanner_goToXY( struct bbs_Context* cpA, struct bbf_Scanner* ptrA, int32 xA, int32 yA )
{
bbs_DEF_fNameL( "void bbf_Scanner_goToXY( struct bbs_Context* cpA, struct bbf_Scanner* ptrA, int32 xA, int32 yA )" )
if( xA > ( int32 )( ptrA->currentWidthE - ptrA->patchWidthE ) )
{
bbs_ERROR1( "%s:\nyA out of range", fNameL );
return;
}
ptrA->xE = xA;
if( ptrA->yE == yA ) return;
if( yA >= ( int32 )( ptrA->currentHeightE - ptrA->patchHeightE ) )
{
bbs_ERROR1( "%s:\nyA out of range", fNameL );
return;
}
if( yA == ptrA->yE + 1 )
{
uint32 offL, rowL;
uint32 sizeL;
uint32* dstL;
uint32 iL;
ptrA->yE = yA;
offL = ( ptrA->yE & 0x1F );
rowL = ( ptrA->yE >> 5 ) + ( offL > 0 ? 1 : 0 );
sizeL = ptrA->bitImageE.widthE;
dstL = ptrA->patchBufferE.arrPtrE;
if( rowL < ptrA->bitImageE.heightE )
{
uint32* srcL = ptrA->bitImageE.arrE.arrPtrE + rowL * sizeL;
if( offL > 0 )
{
uint32 shlL = 32 - offL;
for( iL = 0; iL < sizeL; iL++ ) dstL[ iL ] = ( dstL[ iL ] >> 1 ) | ( srcL[ iL ] << shlL );
}
else
{
bbs_memcpy32( dstL, srcL, sizeL );
}
}
else
{
for( iL = 0; iL < sizeL; iL++ ) dstL[ iL ] >>= 1;
}
}
else
{
uint32 offL, rowL;
uint32 sizeL;
uint32* dstL;
uint32 iL;
ptrA->yE = yA;
offL = ( ptrA->yE & 0x1F );
rowL = ( ptrA->yE >> 5 ) + ( offL > 0 ? 1 : 0 );
sizeL = ptrA->bitImageE.widthE;
dstL = ptrA->patchBufferE.arrPtrE;
if( rowL < ptrA->bitImageE.heightE )
{
if( offL > 0 )
{
uint32* src1L = ptrA->bitImageE.arrE.arrPtrE + rowL * sizeL;
uint32* src0L = src1L - sizeL;
uint32 shlL = 32 - offL;
for( iL = 0; iL < sizeL; iL++ ) dstL[ iL ] = ( src0L[ iL ] >> offL ) | ( src1L[ iL ] << shlL );
}
else
{
bbs_memcpy32( dstL, ptrA->bitImageE.arrE.arrPtrE + rowL * sizeL, sizeL );
}
}
else
{
uint32* srcL = ptrA->bitImageE.arrE.arrPtrE + ( rowL - 1 ) * sizeL;
for( iL = 0; iL < sizeL; iL++ ) dstL[ iL ] = srcL[ iL ] >> offL;
}
}
}
/* ------------------------------------------------------------------------- */
void bbf_Scanner_goToIndex( struct bbs_Context* cpA, struct bbf_Scanner* ptrA, uint32 scanIndexA )
{
int32 yL = scanIndexA / ptrA->currentWidthE;
int32 xL = scanIndexA - yL * ptrA->currentWidthE;
bbf_Scanner_goToXY( cpA, ptrA, xL, yL );
}
/* ------------------------------------------------------------------------- */
void bbf_Scanner_goToUls( struct bbs_Context* cpA, struct bbf_Scanner* ptrA,
int32 xA, int32 yA, uint32 scaleA )
{
int32 xL = ( xA / ( int32 )( ptrA->scaleE >> 4 ) ) + ptrA->borderWidthE;
int32 yL = ( yA / ( int32 )( ptrA->scaleE >> 4 ) ) + ptrA->borderHeightE;
if( ptrA->scaleE != scaleA )
{
bbs_ERROR0( "bbf_Scanner_goToUls:\nScales no not match" );
return;
}
bbf_Scanner_goToXY( cpA, ptrA, xL, yL );
}
/* ------------------------------------------------------------------------- */
/* resets output positions */
void bbf_Scanner_resetOutPos( struct bbs_Context* cpA, struct bbf_Scanner* ptrA )
{
ptrA->outCountE = 0;
}
/* ------------------------------------------------------------------------- */
/* resets internal positions */
void bbf_Scanner_resetIntPos( struct bbs_Context* cpA, struct bbf_Scanner* ptrA )
{
ptrA->intCountE = 0;
}
/* ------------------------------------------------------------------------- */
/* add internal position */
void bbf_Scanner_addIntPos( struct bbs_Context* cpA,
struct bbf_Scanner* ptrA,
uint32 idxA,
int32 actA )
{
if( ptrA->intCountE < ptrA->idxArrE.sizeE )
{
ptrA->idxArrE.arrPtrE[ ptrA->intCountE ] = idxA;
ptrA->actArrE.arrPtrE[ ptrA->intCountE ] = actA;
ptrA->intCountE++;
}
else
{
/* When buffer is full then replace lowest confidence-entry with new input
* This fallback solution causes soft degradation of performance when the buffer limit is reached.
*/
int32 minActL = 0x7FFFFFFF;
uint32 minIdxL = 0;
uint32 iL;
int32* actArrL = ptrA->actArrE.arrPtrE;
for( iL = 0; iL < ptrA->intCountE; iL++ )
{
if( actArrL[ iL ] < minActL )
{
minActL = actArrL[ iL ];
minIdxL = iL;
}
}
if( actA > minActL )
{
ptrA->idxArrE.arrPtrE[ minIdxL ] = idxA;
ptrA->actArrE.arrPtrE[ minIdxL ] = actA;
}
}
}
/* ------------------------------------------------------------------------- */
/* add external position */
void bbf_Scanner_addOutPos( struct bbs_Context* cpA,
struct bbf_Scanner* ptrA,
int32 xA,
int32 yA,
uint32 scaleA,
int32 actA )
{
if( ( ptrA->outCountE * 4 ) < ptrA->outArrE.sizeE )
{
ptrA->outArrE.arrPtrE[ ptrA->outCountE * 4 + 0 ] = xA;
ptrA->outArrE.arrPtrE[ ptrA->outCountE * 4 + 1 ] = yA;
ptrA->outArrE.arrPtrE[ ptrA->outCountE * 4 + 2 ] = scaleA;
ptrA->outArrE.arrPtrE[ ptrA->outCountE * 4 + 3 ] = actA;
ptrA->outCountE++;
}
else
{
/* When buffer is full then replace lowest confidence-entry with new input
* This fallback solution causes soft degradation of performance when the buffer limit is reached.
*/
int32 minActL = 0x7FFFFFFF;
uint32 minIdxL = 0;
uint32 iL;
int32* outArrL = ptrA->outArrE.arrPtrE;
for( iL = 0; iL < ptrA->outCountE; iL++ )
{
if( outArrL[ iL * 4 + 3 ] < minActL )
{
minActL = outArrL[ iL * 4 + 3 ];
minIdxL = iL;
}
}
if( actA > minActL )
{
ptrA->idxArrE.arrPtrE[ minIdxL * 4 + 0 ] = xA;
ptrA->idxArrE.arrPtrE[ minIdxL * 4 + 1 ] = yA;
ptrA->idxArrE.arrPtrE[ minIdxL * 4 + 2 ] = scaleA;
ptrA->idxArrE.arrPtrE[ minIdxL * 4 + 3 ] = actA;
}
}
}
/* ------------------------------------------------------------------------- */
/* remove overlaps */
uint32 bbf_Scanner_removeOutOverlaps( struct bbs_Context* cpA,
struct bbf_Scanner* ptrA,
uint32 overlapThrA )
{
uint32 begIdxL = 0; /* begin index */
uint32 endIdxL = ptrA->outCountE; /* end index */
uint32 iL;
uint32 rw0L = ptrA->patchWidthE;
uint32 rh0L = ptrA->patchHeightE;
int32* outArrL = ptrA->outArrE.arrPtrE;
if( overlapThrA >= 0x010000 ) return ptrA->outCountE;
while( endIdxL - begIdxL > 1 )
{
int32 x1L, y1L, s1L, a1L;
int32 r1wL, r1hL;
uint32 r1aL;
/* find maximum activity */
uint32 maxIdxL = 0;
{
int32 maxActL = ( int32 )0x80000000;
for( iL = begIdxL; iL < endIdxL; iL++ )
{
if( outArrL[ iL * 4 + 3 ] > maxActL )
{
maxActL = outArrL[ iL * 4 + 3 ];
maxIdxL = iL;
}
}
}
/* swap with position 0 */
x1L = outArrL[ maxIdxL * 4 + 0 ];
y1L = outArrL[ maxIdxL * 4 + 1 ];
s1L = outArrL[ maxIdxL * 4 + 2 ];
a1L = outArrL[ maxIdxL * 4 + 3 ];
outArrL[ maxIdxL * 4 + 0 ] = outArrL[ begIdxL * 4 + 0 ];
outArrL[ maxIdxL * 4 + 1 ] = outArrL[ begIdxL * 4 + 1 ];
outArrL[ maxIdxL * 4 + 2 ] = outArrL[ begIdxL * 4 + 2 ];
outArrL[ maxIdxL * 4 + 3 ] = outArrL[ begIdxL * 4 + 3 ];
outArrL[ begIdxL * 4 + 0 ] = x1L;
outArrL[ begIdxL * 4 + 1 ] = y1L;
outArrL[ begIdxL * 4 + 2 ] = s1L;
outArrL[ begIdxL * 4 + 3 ] = a1L;
/* rectangle */
r1wL = ( rw0L * ( s1L >> 12 ) + 128 ) >> 8;
r1hL = ( rh0L * ( s1L >> 12 ) + 128 ) >> 8;
r1aL = ( uint32 )r1wL * ( uint32 )r1hL;
/* remove coordinate fractions */
x1L = ( x1L + ( 1 << 15 ) ) >> 16;
y1L = ( y1L + ( 1 << 15 ) ) >> 16;
/* compare to other rectangles and remove overlaps */
for( iL = endIdxL - 1; iL > begIdxL; iL-- )
{
int32* x2pL = &outArrL[ iL * 4 + 0 ];
int32* y2pL = &outArrL[ iL * 4 + 1 ];
int32* s2pL = &outArrL[ iL * 4 + 2 ];
int32* a2pL = &outArrL[ iL * 4 + 3 ];
int32 x2L = ( *x2pL + ( 1 << 15 ) ) >> 16;
int32 y2L = ( *y2pL + ( 1 << 15 ) ) >> 16;
/* rectangle */
int32 r2wL = ( rw0L * ( *s2pL >> 12 ) + 128 ) >> 8;
int32 r2hL = ( rh0L * ( *s2pL >> 12 ) + 128 ) >> 8;
uint32 r2aL = r2wL * r2hL;
/* intersection */
int32 rx1L = x1L > x2L ? x1L : x2L;
int32 rx2L = ( x1L + r1wL ) < ( x2L + r2wL ) ? ( x1L + r1wL ) : ( x2L + r2wL );
int32 ry1L = y1L > y2L ? y1L : y2L;
int32 ry2L = ( y1L + r1hL ) < ( y2L + r2hL ) ? ( y1L + r1hL ) : ( y2L + r2hL );
uint32 riwL;
rx2L = ( rx2L > rx1L ) ? rx2L : rx1L;
ry2L = ( ry2L > ry1L ) ? ry2L : ry1L;
riwL = ( uint32 )( rx2L - rx1L ) * ( uint32 )( ry2L - ry1L );
if( riwL > ( ( ( overlapThrA >> 8 ) * ( r1aL < r2aL ? r1aL : r2aL ) ) >> 8 ) )
{
endIdxL--;
*x2pL = outArrL[ endIdxL * 4 + 0 ];
*y2pL = outArrL[ endIdxL * 4 + 1 ];
*s2pL = outArrL[ endIdxL * 4 + 2 ];
*a2pL = outArrL[ endIdxL * 4 + 3 ];
}
}
begIdxL++;
}
ptrA->outCountE = endIdxL;
return endIdxL;
}
/* ------------------------------------------------------------------------- */
/* remove internal overlaps */
uint32 bbf_Scanner_removeIntOverlaps( struct bbs_Context* cpA,
struct bbf_Scanner* ptrA,
uint32 overlapThrA )
{
uint32 begIdxL = 0; /* begin index */
uint32 endIdxL = ptrA->intCountE; /* end index */
uint32 iL;
uint32 rw0L = ptrA->patchWidthE;
uint32 rh0L = ptrA->patchHeightE;
int32 minAreaL = ( overlapThrA * rw0L * rh0L ) >> 16;
int32* actArrL = ptrA->actArrE.arrPtrE;
uint32* idxArrL = ptrA->idxArrE.arrPtrE;
if( overlapThrA >= 0x010000 ) return ptrA->intCountE;
while( endIdxL - begIdxL > 1 )
{
/* find maximum activity */
int32 a1L = ( int32 )0x80000000;
uint32 i1L = 0;
uint32 maxIdxL = 0;
int32 x1L, y1L;
for( iL = begIdxL; iL < endIdxL; iL++ )
{
if( actArrL[ iL ] > a1L )
{
a1L = actArrL[ iL ];
maxIdxL = iL;
}
}
/* swap with position 0 */
i1L = idxArrL[ maxIdxL ];
idxArrL[ maxIdxL ] = idxArrL[ begIdxL ];
actArrL[ maxIdxL ] = actArrL[ begIdxL ];
idxArrL[ begIdxL ] = i1L;
actArrL[ begIdxL ] = a1L;
/* upper left coordinates */
y1L = i1L / ptrA->currentWidthE;
x1L = i1L - ( y1L * ptrA->currentWidthE );
/* compare to other rectangles and remove overlaps */
for( iL = endIdxL - 1; iL > begIdxL; iL-- )
{
int32* a2pL = &actArrL[ iL ];
uint32* i2pL = &idxArrL[ iL ];
int32 y2L = *i2pL / ptrA->currentWidthE;
int32 x2L = *i2pL - ( y2L * ptrA->currentWidthE );
int32 dxL = rw0L - ( x1L > x2L ? x1L - x2L : x2L - x1L );
int32 dyL = rh0L - ( y1L > y2L ? y1L - y2L : y2L - y1L );
dxL = dxL > 0 ? dxL : 0;
dyL = dyL > 0 ? dyL : 0;
if( dxL * dyL > minAreaL )
{
endIdxL--;
*a2pL = actArrL[ endIdxL ];
*i2pL = idxArrL[ endIdxL ];
}
}
begIdxL++;
}
ptrA->intCountE = endIdxL;
return ptrA->intCountE;
}
/* ------------------------------------------------------------------------- */
/* ========================================================================= */