/*
* Copyright (C) 1999-2002 Harri Porten (porten@kde.org)
* Copyright (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved.
* Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca)
* Copyright (C) 2007 Maks Orlovich
* Copyright (C) 2007 Eric Seidel <eric@webkit.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "Nodes.h"
#include "NodeConstructors.h"
#include "BytecodeGenerator.h"
#include "CallFrame.h"
#include "Debugger.h"
#include "JIT.h"
#include "JSFunction.h"
#include "JSGlobalObject.h"
#include "JSStaticScopeObject.h"
#include "LabelScope.h"
#include "Lexer.h"
#include "Operations.h"
#include "Parser.h"
#include "PropertyNameArray.h"
#include "RegExpObject.h"
#include "SamplingTool.h"
#include <wtf/Assertions.h>
#include <wtf/RefCountedLeakCounter.h>
#include <wtf/Threading.h>
using namespace WTF;
namespace JSC {
static void substitute(UString& string, const UString& substring);
// ------------------------------ ThrowableExpressionData --------------------------------
static void substitute(UString& string, const UString& substring)
{
int position = string.find("%s");
ASSERT(position != -1);
UString newString = string.substr(0, position);
newString.append(substring);
newString.append(string.substr(position + 2));
string = newString;
}
RegisterID* ThrowableExpressionData::emitThrowError(BytecodeGenerator& generator, ErrorType e, const char* msg)
{
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
RegisterID* exception = generator.emitNewError(generator.newTemporary(), e, jsString(generator.globalData(), msg));
generator.emitThrow(exception);
return exception;
}
RegisterID* ThrowableExpressionData::emitThrowError(BytecodeGenerator& generator, ErrorType e, const char* msg, const Identifier& label)
{
UString message = msg;
substitute(message, label.ustring());
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
RegisterID* exception = generator.emitNewError(generator.newTemporary(), e, jsString(generator.globalData(), message));
generator.emitThrow(exception);
return exception;
}
// ------------------------------ StatementNode --------------------------------
void StatementNode::setLoc(int firstLine, int lastLine)
{
m_line = firstLine;
m_lastLine = lastLine;
}
// ------------------------------ SourceElements --------------------------------
void SourceElements::append(StatementNode* statement)
{
if (statement->isEmptyStatement())
return;
m_statements.append(statement);
}
// ------------------------------ NullNode -------------------------------------
RegisterID* NullNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (dst == generator.ignoredResult())
return 0;
return generator.emitLoad(dst, jsNull());
}
// ------------------------------ BooleanNode ----------------------------------
RegisterID* BooleanNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (dst == generator.ignoredResult())
return 0;
return generator.emitLoad(dst, m_value);
}
// ------------------------------ NumberNode -----------------------------------
RegisterID* NumberNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (dst == generator.ignoredResult())
return 0;
return generator.emitLoad(dst, m_double);
}
// ------------------------------ StringNode -----------------------------------
RegisterID* StringNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (dst == generator.ignoredResult())
return 0;
return generator.emitLoad(dst, m_value);
}
// ------------------------------ RegExpNode -----------------------------------
RegisterID* RegExpNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegExp> regExp = RegExp::create(generator.globalData(), m_pattern, m_flags);
if (!regExp->isValid())
return emitThrowError(generator, SyntaxError, ("Invalid regular expression: " + UString(regExp->errorMessage())).UTF8String().c_str());
if (dst == generator.ignoredResult())
return 0;
return generator.emitNewRegExp(generator.finalDestination(dst), regExp.get());
}
// ------------------------------ ThisNode -------------------------------------
RegisterID* ThisNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (dst == generator.ignoredResult())
return 0;
return generator.moveToDestinationIfNeeded(dst, generator.thisRegister());
}
// ------------------------------ ResolveNode ----------------------------------
bool ResolveNode::isPure(BytecodeGenerator& generator) const
{
return generator.isLocal(m_ident);
}
RegisterID* ResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (RegisterID* local = generator.registerFor(m_ident)) {
if (dst == generator.ignoredResult())
return 0;
return generator.moveToDestinationIfNeeded(dst, local);
}
generator.emitExpressionInfo(m_startOffset + m_ident.size(), m_ident.size(), 0);
return generator.emitResolve(generator.finalDestination(dst), m_ident);
}
// ------------------------------ ArrayNode ------------------------------------
RegisterID* ArrayNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
// FIXME: Should we put all of this code into emitNewArray?
unsigned length = 0;
ElementNode* firstPutElement;
for (firstPutElement = m_element; firstPutElement; firstPutElement = firstPutElement->next()) {
if (firstPutElement->elision())
break;
++length;
}
if (!firstPutElement && !m_elision)
return generator.emitNewArray(generator.finalDestination(dst), m_element);
RefPtr<RegisterID> array = generator.emitNewArray(generator.tempDestination(dst), m_element);
for (ElementNode* n = firstPutElement; n; n = n->next()) {
RegisterID* value = generator.emitNode(n->value());
length += n->elision();
generator.emitPutByIndex(array.get(), length++, value);
}
if (m_elision) {
RegisterID* value = generator.emitLoad(0, jsNumber(generator.globalData(), m_elision + length));
generator.emitPutById(array.get(), generator.propertyNames().length, value);
}
return generator.moveToDestinationIfNeeded(dst, array.get());
}
bool ArrayNode::isSimpleArray() const
{
if (m_elision || m_optional)
return false;
for (ElementNode* ptr = m_element; ptr; ptr = ptr->next()) {
if (ptr->elision())
return false;
}
return true;
}
ArgumentListNode* ArrayNode::toArgumentList(JSGlobalData* globalData) const
{
ASSERT(!m_elision && !m_optional);
ElementNode* ptr = m_element;
if (!ptr)
return 0;
ArgumentListNode* head = new (globalData) ArgumentListNode(globalData, ptr->value());
ArgumentListNode* tail = head;
ptr = ptr->next();
for (; ptr; ptr = ptr->next()) {
ASSERT(!ptr->elision());
tail = new (globalData) ArgumentListNode(globalData, tail, ptr->value());
}
return head;
}
// ------------------------------ ObjectLiteralNode ----------------------------
RegisterID* ObjectLiteralNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (!m_list) {
if (dst == generator.ignoredResult())
return 0;
return generator.emitNewObject(generator.finalDestination(dst));
}
return generator.emitNode(dst, m_list);
}
// ------------------------------ PropertyListNode -----------------------------
RegisterID* PropertyListNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> newObj = generator.tempDestination(dst);
generator.emitNewObject(newObj.get());
for (PropertyListNode* p = this; p; p = p->m_next) {
RegisterID* value = generator.emitNode(p->m_node->m_assign);
switch (p->m_node->m_type) {
case PropertyNode::Constant: {
generator.emitPutById(newObj.get(), p->m_node->name(), value);
break;
}
case PropertyNode::Getter: {
generator.emitPutGetter(newObj.get(), p->m_node->name(), value);
break;
}
case PropertyNode::Setter: {
generator.emitPutSetter(newObj.get(), p->m_node->name(), value);
break;
}
default:
ASSERT_NOT_REACHED();
}
}
return generator.moveToDestinationIfNeeded(dst, newObj.get());
}
// ------------------------------ BracketAccessorNode --------------------------------
RegisterID* BracketAccessorNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> base = generator.emitNodeForLeftHandSide(m_base, m_subscriptHasAssignments, m_subscript->isPure(generator));
RegisterID* property = generator.emitNode(m_subscript);
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
return generator.emitGetByVal(generator.finalDestination(dst), base.get(), property);
}
// ------------------------------ DotAccessorNode --------------------------------
RegisterID* DotAccessorNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RegisterID* base = generator.emitNode(m_base);
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
return generator.emitGetById(generator.finalDestination(dst), base, m_ident);
}
// ------------------------------ ArgumentListNode -----------------------------
RegisterID* ArgumentListNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
ASSERT(m_expr);
return generator.emitNode(dst, m_expr);
}
// ------------------------------ NewExprNode ----------------------------------
RegisterID* NewExprNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> func = generator.emitNode(m_expr);
return generator.emitConstruct(generator.finalDestination(dst), func.get(), m_args, divot(), startOffset(), endOffset());
}
// ------------------------------ EvalFunctionCallNode ----------------------------------
RegisterID* EvalFunctionCallNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> func = generator.tempDestination(dst);
RefPtr<RegisterID> thisRegister = generator.newTemporary();
generator.emitExpressionInfo(divot() - startOffset() + 4, 4, 0);
generator.emitResolveWithBase(thisRegister.get(), func.get(), generator.propertyNames().eval);
return generator.emitCallEval(generator.finalDestination(dst, func.get()), func.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
}
// ------------------------------ FunctionCallValueNode ----------------------------------
RegisterID* FunctionCallValueNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> func = generator.emitNode(m_expr);
RefPtr<RegisterID> thisRegister = generator.emitLoad(generator.newTemporary(), jsNull());
return generator.emitCall(generator.finalDestination(dst, func.get()), func.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
}
// ------------------------------ FunctionCallResolveNode ----------------------------------
RegisterID* FunctionCallResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (RefPtr<RegisterID> local = generator.registerFor(m_ident)) {
RefPtr<RegisterID> thisRegister = generator.emitLoad(generator.newTemporary(), jsNull());
return generator.emitCall(generator.finalDestination(dst, thisRegister.get()), local.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
}
int index = 0;
size_t depth = 0;
JSObject* globalObject = 0;
if (generator.findScopedProperty(m_ident, index, depth, false, globalObject) && index != missingSymbolMarker()) {
RefPtr<RegisterID> func = generator.emitGetScopedVar(generator.newTemporary(), depth, index, globalObject);
RefPtr<RegisterID> thisRegister = generator.emitLoad(generator.newTemporary(), jsNull());
return generator.emitCall(generator.finalDestination(dst, func.get()), func.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
}
RefPtr<RegisterID> func = generator.newTemporary();
RefPtr<RegisterID> thisRegister = generator.newTemporary();
int identifierStart = divot() - startOffset();
generator.emitExpressionInfo(identifierStart + m_ident.size(), m_ident.size(), 0);
generator.emitResolveWithBase(thisRegister.get(), func.get(), m_ident);
return generator.emitCall(generator.finalDestination(dst, func.get()), func.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
}
// ------------------------------ FunctionCallBracketNode ----------------------------------
RegisterID* FunctionCallBracketNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> base = generator.emitNode(m_base);
RegisterID* property = generator.emitNode(m_subscript);
generator.emitExpressionInfo(divot() - m_subexpressionDivotOffset, startOffset() - m_subexpressionDivotOffset, m_subexpressionEndOffset);
RefPtr<RegisterID> function = generator.emitGetByVal(generator.tempDestination(dst), base.get(), property);
RefPtr<RegisterID> thisRegister = generator.emitMove(generator.newTemporary(), base.get());
return generator.emitCall(generator.finalDestination(dst, function.get()), function.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
}
// ------------------------------ FunctionCallDotNode ----------------------------------
RegisterID* FunctionCallDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> function = generator.tempDestination(dst);
RefPtr<RegisterID> thisRegister = generator.newTemporary();
generator.emitNode(thisRegister.get(), m_base);
generator.emitExpressionInfo(divot() - m_subexpressionDivotOffset, startOffset() - m_subexpressionDivotOffset, m_subexpressionEndOffset);
generator.emitMethodCheck();
generator.emitGetById(function.get(), thisRegister.get(), m_ident);
return generator.emitCall(generator.finalDestination(dst, function.get()), function.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
}
RegisterID* CallFunctionCallDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<Label> realCall = generator.newLabel();
RefPtr<Label> end = generator.newLabel();
RefPtr<RegisterID> base = generator.emitNode(m_base);
generator.emitExpressionInfo(divot() - m_subexpressionDivotOffset, startOffset() - m_subexpressionDivotOffset, m_subexpressionEndOffset);
RefPtr<RegisterID> function = generator.emitGetById(generator.tempDestination(dst), base.get(), m_ident);
RefPtr<RegisterID> finalDestination = generator.finalDestination(dst, function.get());
generator.emitJumpIfNotFunctionCall(function.get(), realCall.get());
{
RefPtr<RegisterID> realFunction = generator.emitMove(generator.tempDestination(dst), base.get());
RefPtr<RegisterID> thisRegister = generator.newTemporary();
ArgumentListNode* oldList = m_args->m_listNode;
if (m_args->m_listNode && m_args->m_listNode->m_expr) {
generator.emitNode(thisRegister.get(), m_args->m_listNode->m_expr);
m_args->m_listNode = m_args->m_listNode->m_next;
} else
generator.emitLoad(thisRegister.get(), jsNull());
generator.emitCall(finalDestination.get(), realFunction.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
generator.emitJump(end.get());
m_args->m_listNode = oldList;
}
generator.emitLabel(realCall.get());
{
RefPtr<RegisterID> thisRegister = generator.emitMove(generator.newTemporary(), base.get());
generator.emitCall(finalDestination.get(), function.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
}
generator.emitLabel(end.get());
return finalDestination.get();
}
static bool areTrivialApplyArguments(ArgumentsNode* args)
{
return !args->m_listNode || !args->m_listNode->m_expr || !args->m_listNode->m_next
|| (!args->m_listNode->m_next->m_next && args->m_listNode->m_next->m_expr->isSimpleArray());
}
RegisterID* ApplyFunctionCallDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
// A few simple cases can be trivially handled as ordinary function calls.
// function.apply(), function.apply(arg) -> identical to function.call
// function.apply(thisArg, [arg0, arg1, ...]) -> can be trivially coerced into function.call(thisArg, arg0, arg1, ...) and saves object allocation
bool mayBeCall = areTrivialApplyArguments(m_args);
RefPtr<Label> realCall = generator.newLabel();
RefPtr<Label> end = generator.newLabel();
RefPtr<RegisterID> base = generator.emitNode(m_base);
generator.emitExpressionInfo(divot() - m_subexpressionDivotOffset, startOffset() - m_subexpressionDivotOffset, m_subexpressionEndOffset);
RefPtr<RegisterID> function = generator.emitGetById(generator.tempDestination(dst), base.get(), m_ident);
RefPtr<RegisterID> finalDestination = generator.finalDestination(dst, function.get());
generator.emitJumpIfNotFunctionApply(function.get(), realCall.get());
{
if (mayBeCall) {
RefPtr<RegisterID> realFunction = generator.emitMove(generator.tempDestination(dst), base.get());
RefPtr<RegisterID> thisRegister = generator.newTemporary();
ArgumentListNode* oldList = m_args->m_listNode;
if (m_args->m_listNode && m_args->m_listNode->m_expr) {
generator.emitNode(thisRegister.get(), m_args->m_listNode->m_expr);
m_args->m_listNode = m_args->m_listNode->m_next;
if (m_args->m_listNode) {
ASSERT(m_args->m_listNode->m_expr->isSimpleArray());
ASSERT(!m_args->m_listNode->m_next);
m_args->m_listNode = static_cast<ArrayNode*>(m_args->m_listNode->m_expr)->toArgumentList(generator.globalData());
}
} else
generator.emitLoad(thisRegister.get(), jsNull());
generator.emitCall(finalDestination.get(), realFunction.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
m_args->m_listNode = oldList;
} else {
ASSERT(m_args->m_listNode && m_args->m_listNode->m_next);
RefPtr<RegisterID> realFunction = generator.emitMove(generator.newTemporary(), base.get());
RefPtr<RegisterID> argsCountRegister = generator.newTemporary();
RefPtr<RegisterID> thisRegister = generator.newTemporary();
RefPtr<RegisterID> argsRegister = generator.newTemporary();
generator.emitNode(thisRegister.get(), m_args->m_listNode->m_expr);
ArgumentListNode* args = m_args->m_listNode->m_next;
bool isArgumentsApply = false;
if (args->m_expr->isResolveNode()) {
ResolveNode* resolveNode = static_cast<ResolveNode*>(args->m_expr);
isArgumentsApply = generator.willResolveToArguments(resolveNode->identifier());
if (isArgumentsApply)
generator.emitMove(argsRegister.get(), generator.uncheckedRegisterForArguments());
}
if (!isArgumentsApply)
generator.emitNode(argsRegister.get(), args->m_expr);
while ((args = args->m_next))
generator.emitNode(args->m_expr);
generator.emitLoadVarargs(argsCountRegister.get(), argsRegister.get());
generator.emitCallVarargs(finalDestination.get(), realFunction.get(), thisRegister.get(), argsCountRegister.get(), divot(), startOffset(), endOffset());
}
generator.emitJump(end.get());
}
generator.emitLabel(realCall.get());
{
RefPtr<RegisterID> thisRegister = generator.emitMove(generator.newTemporary(), base.get());
generator.emitCall(finalDestination.get(), function.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
}
generator.emitLabel(end.get());
return finalDestination.get();
}
// ------------------------------ PostfixResolveNode ----------------------------------
static RegisterID* emitPreIncOrDec(BytecodeGenerator& generator, RegisterID* srcDst, Operator oper)
{
return (oper == OpPlusPlus) ? generator.emitPreInc(srcDst) : generator.emitPreDec(srcDst);
}
static RegisterID* emitPostIncOrDec(BytecodeGenerator& generator, RegisterID* dst, RegisterID* srcDst, Operator oper)
{
if (srcDst == dst)
return generator.emitToJSNumber(dst, srcDst);
return (oper == OpPlusPlus) ? generator.emitPostInc(dst, srcDst) : generator.emitPostDec(dst, srcDst);
}
RegisterID* PostfixResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (RegisterID* local = generator.registerFor(m_ident)) {
if (generator.isLocalConstant(m_ident)) {
if (dst == generator.ignoredResult())
return 0;
return generator.emitToJSNumber(generator.finalDestination(dst), local);
}
if (dst == generator.ignoredResult())
return emitPreIncOrDec(generator, local, m_operator);
return emitPostIncOrDec(generator, generator.finalDestination(dst), local, m_operator);
}
int index = 0;
size_t depth = 0;
JSObject* globalObject = 0;
if (generator.findScopedProperty(m_ident, index, depth, true, globalObject) && index != missingSymbolMarker()) {
RefPtr<RegisterID> value = generator.emitGetScopedVar(generator.newTemporary(), depth, index, globalObject);
RegisterID* oldValue;
if (dst == generator.ignoredResult()) {
oldValue = 0;
emitPreIncOrDec(generator, value.get(), m_operator);
} else {
oldValue = emitPostIncOrDec(generator, generator.finalDestination(dst), value.get(), m_operator);
}
generator.emitPutScopedVar(depth, index, value.get(), globalObject);
return oldValue;
}
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
RefPtr<RegisterID> value = generator.newTemporary();
RefPtr<RegisterID> base = generator.emitResolveWithBase(generator.newTemporary(), value.get(), m_ident);
RegisterID* oldValue;
if (dst == generator.ignoredResult()) {
oldValue = 0;
emitPreIncOrDec(generator, value.get(), m_operator);
} else {
oldValue = emitPostIncOrDec(generator, generator.finalDestination(dst), value.get(), m_operator);
}
generator.emitPutById(base.get(), m_ident, value.get());
return oldValue;
}
// ------------------------------ PostfixBracketNode ----------------------------------
RegisterID* PostfixBracketNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> base = generator.emitNode(m_base);
RefPtr<RegisterID> property = generator.emitNode(m_subscript);
generator.emitExpressionInfo(divot() - m_subexpressionDivotOffset, startOffset() - m_subexpressionDivotOffset, m_subexpressionEndOffset);
RefPtr<RegisterID> value = generator.emitGetByVal(generator.newTemporary(), base.get(), property.get());
RegisterID* oldValue;
if (dst == generator.ignoredResult()) {
oldValue = 0;
if (m_operator == OpPlusPlus)
generator.emitPreInc(value.get());
else
generator.emitPreDec(value.get());
} else {
oldValue = (m_operator == OpPlusPlus) ? generator.emitPostInc(generator.finalDestination(dst), value.get()) : generator.emitPostDec(generator.finalDestination(dst), value.get());
}
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
generator.emitPutByVal(base.get(), property.get(), value.get());
return oldValue;
}
// ------------------------------ PostfixDotNode ----------------------------------
RegisterID* PostfixDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> base = generator.emitNode(m_base);
generator.emitExpressionInfo(divot() - m_subexpressionDivotOffset, startOffset() - m_subexpressionDivotOffset, m_subexpressionEndOffset);
RefPtr<RegisterID> value = generator.emitGetById(generator.newTemporary(), base.get(), m_ident);
RegisterID* oldValue;
if (dst == generator.ignoredResult()) {
oldValue = 0;
if (m_operator == OpPlusPlus)
generator.emitPreInc(value.get());
else
generator.emitPreDec(value.get());
} else {
oldValue = (m_operator == OpPlusPlus) ? generator.emitPostInc(generator.finalDestination(dst), value.get()) : generator.emitPostDec(generator.finalDestination(dst), value.get());
}
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
generator.emitPutById(base.get(), m_ident, value.get());
return oldValue;
}
// ------------------------------ PostfixErrorNode -----------------------------------
RegisterID* PostfixErrorNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
return emitThrowError(generator, ReferenceError, m_operator == OpPlusPlus ? "Postfix ++ operator applied to value that is not a reference." : "Postfix -- operator applied to value that is not a reference.");
}
// ------------------------------ DeleteResolveNode -----------------------------------
RegisterID* DeleteResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (generator.registerFor(m_ident))
return generator.emitLoad(generator.finalDestination(dst), false);
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
RegisterID* base = generator.emitResolveBase(generator.tempDestination(dst), m_ident);
return generator.emitDeleteById(generator.finalDestination(dst, base), base, m_ident);
}
// ------------------------------ DeleteBracketNode -----------------------------------
RegisterID* DeleteBracketNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> r0 = generator.emitNode(m_base);
RegisterID* r1 = generator.emitNode(m_subscript);
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
return generator.emitDeleteByVal(generator.finalDestination(dst), r0.get(), r1);
}
// ------------------------------ DeleteDotNode -----------------------------------
RegisterID* DeleteDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RegisterID* r0 = generator.emitNode(m_base);
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
return generator.emitDeleteById(generator.finalDestination(dst), r0, m_ident);
}
// ------------------------------ DeleteValueNode -----------------------------------
RegisterID* DeleteValueNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitNode(generator.ignoredResult(), m_expr);
// delete on a non-location expression ignores the value and returns true
return generator.emitLoad(generator.finalDestination(dst), true);
}
// ------------------------------ VoidNode -------------------------------------
RegisterID* VoidNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (dst == generator.ignoredResult()) {
generator.emitNode(generator.ignoredResult(), m_expr);
return 0;
}
RefPtr<RegisterID> r0 = generator.emitNode(m_expr);
return generator.emitLoad(dst, jsUndefined());
}
// ------------------------------ TypeOfValueNode -----------------------------------
RegisterID* TypeOfResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (RegisterID* local = generator.registerFor(m_ident)) {
if (dst == generator.ignoredResult())
return 0;
return generator.emitTypeOf(generator.finalDestination(dst), local);
}
RefPtr<RegisterID> scratch = generator.emitResolveBase(generator.tempDestination(dst), m_ident);
generator.emitGetById(scratch.get(), scratch.get(), m_ident);
if (dst == generator.ignoredResult())
return 0;
return generator.emitTypeOf(generator.finalDestination(dst, scratch.get()), scratch.get());
}
// ------------------------------ TypeOfValueNode -----------------------------------
RegisterID* TypeOfValueNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (dst == generator.ignoredResult()) {
generator.emitNode(generator.ignoredResult(), m_expr);
return 0;
}
RefPtr<RegisterID> src = generator.emitNode(m_expr);
return generator.emitTypeOf(generator.finalDestination(dst), src.get());
}
// ------------------------------ PrefixResolveNode ----------------------------------
RegisterID* PrefixResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (RegisterID* local = generator.registerFor(m_ident)) {
if (generator.isLocalConstant(m_ident)) {
if (dst == generator.ignoredResult())
return 0;
RefPtr<RegisterID> r0 = generator.emitLoad(generator.finalDestination(dst), (m_operator == OpPlusPlus) ? 1.0 : -1.0);
return generator.emitBinaryOp(op_add, r0.get(), local, r0.get(), OperandTypes());
}
emitPreIncOrDec(generator, local, m_operator);
return generator.moveToDestinationIfNeeded(dst, local);
}
int index = 0;
size_t depth = 0;
JSObject* globalObject = 0;
if (generator.findScopedProperty(m_ident, index, depth, false, globalObject) && index != missingSymbolMarker()) {
RefPtr<RegisterID> propDst = generator.emitGetScopedVar(generator.tempDestination(dst), depth, index, globalObject);
emitPreIncOrDec(generator, propDst.get(), m_operator);
generator.emitPutScopedVar(depth, index, propDst.get(), globalObject);
return generator.moveToDestinationIfNeeded(dst, propDst.get());
}
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
RefPtr<RegisterID> propDst = generator.tempDestination(dst);
RefPtr<RegisterID> base = generator.emitResolveWithBase(generator.newTemporary(), propDst.get(), m_ident);
emitPreIncOrDec(generator, propDst.get(), m_operator);
generator.emitPutById(base.get(), m_ident, propDst.get());
return generator.moveToDestinationIfNeeded(dst, propDst.get());
}
// ------------------------------ PrefixBracketNode ----------------------------------
RegisterID* PrefixBracketNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> base = generator.emitNode(m_base);
RefPtr<RegisterID> property = generator.emitNode(m_subscript);
RefPtr<RegisterID> propDst = generator.tempDestination(dst);
generator.emitExpressionInfo(divot() + m_subexpressionDivotOffset, m_subexpressionStartOffset, endOffset() - m_subexpressionDivotOffset);
RegisterID* value = generator.emitGetByVal(propDst.get(), base.get(), property.get());
if (m_operator == OpPlusPlus)
generator.emitPreInc(value);
else
generator.emitPreDec(value);
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
generator.emitPutByVal(base.get(), property.get(), value);
return generator.moveToDestinationIfNeeded(dst, propDst.get());
}
// ------------------------------ PrefixDotNode ----------------------------------
RegisterID* PrefixDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> base = generator.emitNode(m_base);
RefPtr<RegisterID> propDst = generator.tempDestination(dst);
generator.emitExpressionInfo(divot() + m_subexpressionDivotOffset, m_subexpressionStartOffset, endOffset() - m_subexpressionDivotOffset);
RegisterID* value = generator.emitGetById(propDst.get(), base.get(), m_ident);
if (m_operator == OpPlusPlus)
generator.emitPreInc(value);
else
generator.emitPreDec(value);
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
generator.emitPutById(base.get(), m_ident, value);
return generator.moveToDestinationIfNeeded(dst, propDst.get());
}
// ------------------------------ PrefixErrorNode -----------------------------------
RegisterID* PrefixErrorNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
return emitThrowError(generator, ReferenceError, m_operator == OpPlusPlus ? "Prefix ++ operator applied to value that is not a reference." : "Prefix -- operator applied to value that is not a reference.");
}
// ------------------------------ Unary Operation Nodes -----------------------------------
RegisterID* UnaryOpNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RegisterID* src = generator.emitNode(m_expr);
return generator.emitUnaryOp(opcodeID(), generator.finalDestination(dst), src);
}
// ------------------------------ Binary Operation Nodes -----------------------------------
// BinaryOpNode::emitStrcat:
//
// This node generates an op_strcat operation. This opcode can handle concatenation of three or
// more values, where we can determine a set of separate op_add operations would be operating on
// string values.
//
// This function expects to be operating on a graph of AST nodes looking something like this:
//
// (a)... (b)
// \ /
// (+) (c)
// \ /
// [d] ((+))
// \ /
// [+=]
//
// The assignment operation is optional, if it exists the register holding the value on the
// lefthand side of the assignment should be passing as the optional 'lhs' argument.
//
// The method should be called on the node at the root of the tree of regular binary add
// operations (marked in the diagram with a double set of parentheses). This node must
// be performing a string concatenation (determined by statically detecting that at least
// one child must be a string).
//
// Since the minimum number of values being concatenated together is expected to be 3, if
// a lhs to a concatenating assignment is not provided then the root add should have at
// least one left child that is also an add that can be determined to be operating on strings.
//
RegisterID* BinaryOpNode::emitStrcat(BytecodeGenerator& generator, RegisterID* dst, RegisterID* lhs, ReadModifyResolveNode* emitExpressionInfoForMe)
{
ASSERT(isAdd());
ASSERT(resultDescriptor().definitelyIsString());
// Create a list of expressions for all the adds in the tree of nodes we can convert into
// a string concatenation. The rightmost node (c) is added first. The rightmost node is
// added first, and the leftmost child is never added, so the vector produced for the
// example above will be [ c, b ].
Vector<ExpressionNode*, 16> reverseExpressionList;
reverseExpressionList.append(m_expr2);
// Examine the left child of the add. So long as this is a string add, add its right-child
// to the list, and keep processing along the left fork.
ExpressionNode* leftMostAddChild = m_expr1;
while (leftMostAddChild->isAdd() && leftMostAddChild->resultDescriptor().definitelyIsString()) {
reverseExpressionList.append(static_cast<AddNode*>(leftMostAddChild)->m_expr2);
leftMostAddChild = static_cast<AddNode*>(leftMostAddChild)->m_expr1;
}
Vector<RefPtr<RegisterID>, 16> temporaryRegisters;
// If there is an assignment, allocate a temporary to hold the lhs after conversion.
// We could possibly avoid this (the lhs is converted last anyway, we could let the
// op_strcat node handle its conversion if required).
if (lhs)
temporaryRegisters.append(generator.newTemporary());
// Emit code for the leftmost node ((a) in the example).
temporaryRegisters.append(generator.newTemporary());
RegisterID* leftMostAddChildTempRegister = temporaryRegisters.last().get();
generator.emitNode(leftMostAddChildTempRegister, leftMostAddChild);
// Note on ordering of conversions:
//
// We maintain the same ordering of conversions as we would see if the concatenations
// was performed as a sequence of adds (otherwise this optimization could change
// behaviour should an object have been provided a valueOf or toString method).
//
// Considering the above example, the sequnce of execution is:
// * evaluate operand (a)
// * evaluate operand (b)
// * convert (a) to primitive <- (this would be triggered by the first add)
// * convert (b) to primitive <- (ditto)
// * evaluate operand (c)
// * convert (c) to primitive <- (this would be triggered by the second add)
// And optionally, if there is an assignment:
// * convert (d) to primitive <- (this would be triggered by the assigning addition)
//
// As such we do not plant an op to convert the leftmost child now. Instead, use
// 'leftMostAddChildTempRegister' as a flag to trigger generation of the conversion
// once the second node has been generated. However, if the leftmost child is an
// immediate we can trivially determine that no conversion will be required.
// If this is the case
if (leftMostAddChild->isString())
leftMostAddChildTempRegister = 0;
while (reverseExpressionList.size()) {
ExpressionNode* node = reverseExpressionList.last();
reverseExpressionList.removeLast();
// Emit the code for the current node.
temporaryRegisters.append(generator.newTemporary());
generator.emitNode(temporaryRegisters.last().get(), node);
// On the first iteration of this loop, when we first reach this point we have just
// generated the second node, which means it is time to convert the leftmost operand.
if (leftMostAddChildTempRegister) {
generator.emitToPrimitive(leftMostAddChildTempRegister, leftMostAddChildTempRegister);
leftMostAddChildTempRegister = 0; // Only do this once.
}
// Plant a conversion for this node, if necessary.
if (!node->isString())
generator.emitToPrimitive(temporaryRegisters.last().get(), temporaryRegisters.last().get());
}
ASSERT(temporaryRegisters.size() >= 3);
// Certain read-modify nodes require expression info to be emitted *after* m_right has been generated.
// If this is required the node is passed as 'emitExpressionInfoForMe'; do so now.
if (emitExpressionInfoForMe)
generator.emitExpressionInfo(emitExpressionInfoForMe->divot(), emitExpressionInfoForMe->startOffset(), emitExpressionInfoForMe->endOffset());
// If there is an assignment convert the lhs now. This will also copy lhs to
// the temporary register we allocated for it.
if (lhs)
generator.emitToPrimitive(temporaryRegisters[0].get(), lhs);
return generator.emitStrcat(generator.finalDestination(dst, temporaryRegisters[0].get()), temporaryRegisters[0].get(), temporaryRegisters.size());
}
RegisterID* BinaryOpNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
OpcodeID opcodeID = this->opcodeID();
if (opcodeID == op_add && m_expr1->isAdd() && m_expr1->resultDescriptor().definitelyIsString())
return emitStrcat(generator, dst);
if (opcodeID == op_neq) {
if (m_expr1->isNull() || m_expr2->isNull()) {
RefPtr<RegisterID> src = generator.tempDestination(dst);
generator.emitNode(src.get(), m_expr1->isNull() ? m_expr2 : m_expr1);
return generator.emitUnaryOp(op_neq_null, generator.finalDestination(dst, src.get()), src.get());
}
}
RefPtr<RegisterID> src1 = generator.emitNodeForLeftHandSide(m_expr1, m_rightHasAssignments, m_expr2->isPure(generator));
RegisterID* src2 = generator.emitNode(m_expr2);
return generator.emitBinaryOp(opcodeID, generator.finalDestination(dst, src1.get()), src1.get(), src2, OperandTypes(m_expr1->resultDescriptor(), m_expr2->resultDescriptor()));
}
RegisterID* EqualNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (m_expr1->isNull() || m_expr2->isNull()) {
RefPtr<RegisterID> src = generator.tempDestination(dst);
generator.emitNode(src.get(), m_expr1->isNull() ? m_expr2 : m_expr1);
return generator.emitUnaryOp(op_eq_null, generator.finalDestination(dst, src.get()), src.get());
}
RefPtr<RegisterID> src1 = generator.emitNodeForLeftHandSide(m_expr1, m_rightHasAssignments, m_expr2->isPure(generator));
RegisterID* src2 = generator.emitNode(m_expr2);
return generator.emitEqualityOp(op_eq, generator.finalDestination(dst, src1.get()), src1.get(), src2);
}
RegisterID* StrictEqualNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> src1 = generator.emitNodeForLeftHandSide(m_expr1, m_rightHasAssignments, m_expr2->isPure(generator));
RegisterID* src2 = generator.emitNode(m_expr2);
return generator.emitEqualityOp(op_stricteq, generator.finalDestination(dst, src1.get()), src1.get(), src2);
}
RegisterID* ReverseBinaryOpNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> src1 = generator.emitNodeForLeftHandSide(m_expr1, m_rightHasAssignments, m_expr2->isPure(generator));
RegisterID* src2 = generator.emitNode(m_expr2);
return generator.emitBinaryOp(opcodeID(), generator.finalDestination(dst, src1.get()), src2, src1.get(), OperandTypes(m_expr2->resultDescriptor(), m_expr1->resultDescriptor()));
}
RegisterID* ThrowableBinaryOpNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> src1 = generator.emitNodeForLeftHandSide(m_expr1, m_rightHasAssignments, m_expr2->isPure(generator));
RegisterID* src2 = generator.emitNode(m_expr2);
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
return generator.emitBinaryOp(opcodeID(), generator.finalDestination(dst, src1.get()), src1.get(), src2, OperandTypes(m_expr1->resultDescriptor(), m_expr2->resultDescriptor()));
}
RegisterID* InstanceOfNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> src1 = generator.emitNodeForLeftHandSide(m_expr1, m_rightHasAssignments, m_expr2->isPure(generator));
RefPtr<RegisterID> src2 = generator.emitNode(m_expr2);
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
generator.emitGetByIdExceptionInfo(op_instanceof);
RegisterID* src2Prototype = generator.emitGetById(generator.newTemporary(), src2.get(), generator.globalData()->propertyNames->prototype);
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
return generator.emitInstanceOf(generator.finalDestination(dst, src1.get()), src1.get(), src2.get(), src2Prototype);
}
// ------------------------------ LogicalOpNode ----------------------------
RegisterID* LogicalOpNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> temp = generator.tempDestination(dst);
RefPtr<Label> target = generator.newLabel();
generator.emitNode(temp.get(), m_expr1);
if (m_operator == OpLogicalAnd)
generator.emitJumpIfFalse(temp.get(), target.get());
else
generator.emitJumpIfTrue(temp.get(), target.get());
generator.emitNode(temp.get(), m_expr2);
generator.emitLabel(target.get());
return generator.moveToDestinationIfNeeded(dst, temp.get());
}
// ------------------------------ ConditionalNode ------------------------------
RegisterID* ConditionalNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> newDst = generator.finalDestination(dst);
RefPtr<Label> beforeElse = generator.newLabel();
RefPtr<Label> afterElse = generator.newLabel();
RegisterID* cond = generator.emitNode(m_logical);
generator.emitJumpIfFalse(cond, beforeElse.get());
generator.emitNode(newDst.get(), m_expr1);
generator.emitJump(afterElse.get());
generator.emitLabel(beforeElse.get());
generator.emitNode(newDst.get(), m_expr2);
generator.emitLabel(afterElse.get());
return newDst.get();
}
// ------------------------------ ReadModifyResolveNode -----------------------------------
// FIXME: should this be moved to be a method on BytecodeGenerator?
static ALWAYS_INLINE RegisterID* emitReadModifyAssignment(BytecodeGenerator& generator, RegisterID* dst, RegisterID* src1, ExpressionNode* m_right, Operator oper, OperandTypes types, ReadModifyResolveNode* emitExpressionInfoForMe = 0)
{
OpcodeID opcodeID;
switch (oper) {
case OpMultEq:
opcodeID = op_mul;
break;
case OpDivEq:
opcodeID = op_div;
break;
case OpPlusEq:
if (m_right->isAdd() && m_right->resultDescriptor().definitelyIsString())
return static_cast<AddNode*>(m_right)->emitStrcat(generator, dst, src1, emitExpressionInfoForMe);
opcodeID = op_add;
break;
case OpMinusEq:
opcodeID = op_sub;
break;
case OpLShift:
opcodeID = op_lshift;
break;
case OpRShift:
opcodeID = op_rshift;
break;
case OpURShift:
opcodeID = op_urshift;
break;
case OpAndEq:
opcodeID = op_bitand;
break;
case OpXOrEq:
opcodeID = op_bitxor;
break;
case OpOrEq:
opcodeID = op_bitor;
break;
case OpModEq:
opcodeID = op_mod;
break;
default:
ASSERT_NOT_REACHED();
return dst;
}
RegisterID* src2 = generator.emitNode(m_right);
// Certain read-modify nodes require expression info to be emitted *after* m_right has been generated.
// If this is required the node is passed as 'emitExpressionInfoForMe'; do so now.
if (emitExpressionInfoForMe)
generator.emitExpressionInfo(emitExpressionInfoForMe->divot(), emitExpressionInfoForMe->startOffset(), emitExpressionInfoForMe->endOffset());
return generator.emitBinaryOp(opcodeID, dst, src1, src2, types);
}
RegisterID* ReadModifyResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (RegisterID* local = generator.registerFor(m_ident)) {
if (generator.isLocalConstant(m_ident)) {
return emitReadModifyAssignment(generator, generator.finalDestination(dst), local, m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()));
}
if (generator.leftHandSideNeedsCopy(m_rightHasAssignments, m_right->isPure(generator))) {
RefPtr<RegisterID> result = generator.newTemporary();
generator.emitMove(result.get(), local);
emitReadModifyAssignment(generator, result.get(), result.get(), m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()));
generator.emitMove(local, result.get());
return generator.moveToDestinationIfNeeded(dst, result.get());
}
RegisterID* result = emitReadModifyAssignment(generator, local, local, m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()));
return generator.moveToDestinationIfNeeded(dst, result);
}
int index = 0;
size_t depth = 0;
JSObject* globalObject = 0;
if (generator.findScopedProperty(m_ident, index, depth, true, globalObject) && index != missingSymbolMarker()) {
RefPtr<RegisterID> src1 = generator.emitGetScopedVar(generator.tempDestination(dst), depth, index, globalObject);
RegisterID* result = emitReadModifyAssignment(generator, generator.finalDestination(dst, src1.get()), src1.get(), m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()));
generator.emitPutScopedVar(depth, index, result, globalObject);
return result;
}
RefPtr<RegisterID> src1 = generator.tempDestination(dst);
generator.emitExpressionInfo(divot() - startOffset() + m_ident.size(), m_ident.size(), 0);
RefPtr<RegisterID> base = generator.emitResolveWithBase(generator.newTemporary(), src1.get(), m_ident);
RegisterID* result = emitReadModifyAssignment(generator, generator.finalDestination(dst, src1.get()), src1.get(), m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()), this);
return generator.emitPutById(base.get(), m_ident, result);
}
// ------------------------------ AssignResolveNode -----------------------------------
RegisterID* AssignResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (RegisterID* local = generator.registerFor(m_ident)) {
if (generator.isLocalConstant(m_ident))
return generator.emitNode(dst, m_right);
RegisterID* result = generator.emitNode(local, m_right);
return generator.moveToDestinationIfNeeded(dst, result);
}
int index = 0;
size_t depth = 0;
JSObject* globalObject = 0;
if (generator.findScopedProperty(m_ident, index, depth, true, globalObject) && index != missingSymbolMarker()) {
if (dst == generator.ignoredResult())
dst = 0;
RegisterID* value = generator.emitNode(dst, m_right);
generator.emitPutScopedVar(depth, index, value, globalObject);
return value;
}
RefPtr<RegisterID> base = generator.emitResolveBase(generator.newTemporary(), m_ident);
if (dst == generator.ignoredResult())
dst = 0;
RegisterID* value = generator.emitNode(dst, m_right);
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
return generator.emitPutById(base.get(), m_ident, value);
}
// ------------------------------ AssignDotNode -----------------------------------
RegisterID* AssignDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> base = generator.emitNodeForLeftHandSide(m_base, m_rightHasAssignments, m_right->isPure(generator));
RefPtr<RegisterID> value = generator.destinationForAssignResult(dst);
RegisterID* result = generator.emitNode(value.get(), m_right);
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
generator.emitPutById(base.get(), m_ident, result);
return generator.moveToDestinationIfNeeded(dst, result);
}
// ------------------------------ ReadModifyDotNode -----------------------------------
RegisterID* ReadModifyDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> base = generator.emitNodeForLeftHandSide(m_base, m_rightHasAssignments, m_right->isPure(generator));
generator.emitExpressionInfo(divot() - m_subexpressionDivotOffset, startOffset() - m_subexpressionDivotOffset, m_subexpressionEndOffset);
RefPtr<RegisterID> value = generator.emitGetById(generator.tempDestination(dst), base.get(), m_ident);
RegisterID* updatedValue = emitReadModifyAssignment(generator, generator.finalDestination(dst, value.get()), value.get(), m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()));
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
return generator.emitPutById(base.get(), m_ident, updatedValue);
}
// ------------------------------ AssignErrorNode -----------------------------------
RegisterID* AssignErrorNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
return emitThrowError(generator, ReferenceError, "Left side of assignment is not a reference.");
}
// ------------------------------ AssignBracketNode -----------------------------------
RegisterID* AssignBracketNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> base = generator.emitNodeForLeftHandSide(m_base, m_subscriptHasAssignments || m_rightHasAssignments, m_subscript->isPure(generator) && m_right->isPure(generator));
RefPtr<RegisterID> property = generator.emitNodeForLeftHandSide(m_subscript, m_rightHasAssignments, m_right->isPure(generator));
RefPtr<RegisterID> value = generator.destinationForAssignResult(dst);
RegisterID* result = generator.emitNode(value.get(), m_right);
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
generator.emitPutByVal(base.get(), property.get(), result);
return generator.moveToDestinationIfNeeded(dst, result);
}
// ------------------------------ ReadModifyBracketNode -----------------------------------
RegisterID* ReadModifyBracketNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<RegisterID> base = generator.emitNodeForLeftHandSide(m_base, m_subscriptHasAssignments || m_rightHasAssignments, m_subscript->isPure(generator) && m_right->isPure(generator));
RefPtr<RegisterID> property = generator.emitNodeForLeftHandSide(m_subscript, m_rightHasAssignments, m_right->isPure(generator));
generator.emitExpressionInfo(divot() - m_subexpressionDivotOffset, startOffset() - m_subexpressionDivotOffset, m_subexpressionEndOffset);
RefPtr<RegisterID> value = generator.emitGetByVal(generator.tempDestination(dst), base.get(), property.get());
RegisterID* updatedValue = emitReadModifyAssignment(generator, generator.finalDestination(dst, value.get()), value.get(), m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()));
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
generator.emitPutByVal(base.get(), property.get(), updatedValue);
return updatedValue;
}
// ------------------------------ CommaNode ------------------------------------
RegisterID* CommaNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
ASSERT(m_expressions.size() > 1);
for (size_t i = 0; i < m_expressions.size() - 1; i++)
generator.emitNode(generator.ignoredResult(), m_expressions[i]);
return generator.emitNode(dst, m_expressions.last());
}
// ------------------------------ ConstDeclNode ------------------------------------
RegisterID* ConstDeclNode::emitCodeSingle(BytecodeGenerator& generator)
{
if (RegisterID* local = generator.constRegisterFor(m_ident)) {
if (!m_init)
return local;
return generator.emitNode(local, m_init);
}
// FIXME: While this code should only be hit in eval code, it will potentially
// assign to the wrong base if m_ident exists in an intervening dynamic scope.
RefPtr<RegisterID> base = generator.emitResolveBase(generator.newTemporary(), m_ident);
RegisterID* value = m_init ? generator.emitNode(m_init) : generator.emitLoad(0, jsUndefined());
return generator.emitPutById(base.get(), m_ident, value);
}
RegisterID* ConstDeclNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
RegisterID* result = 0;
for (ConstDeclNode* n = this; n; n = n->m_next)
result = n->emitCodeSingle(generator);
return result;
}
// ------------------------------ ConstStatementNode -----------------------------
RegisterID* ConstStatementNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
return generator.emitNode(m_next);
}
// ------------------------------ Helper functions for handling Vectors of StatementNode -------------------------------
static inline void statementListEmitCode(const StatementVector& statements, BytecodeGenerator& generator, RegisterID* dst)
{
size_t size = statements.size();
for (size_t i = 0; i < size; ++i)
generator.emitNode(dst, statements[i]);
}
// ------------------------------ BlockNode ------------------------------------
RegisterID* BlockNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
statementListEmitCode(m_children, generator, dst);
return 0;
}
// ------------------------------ EmptyStatementNode ---------------------------
RegisterID* EmptyStatementNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
return dst;
}
// ------------------------------ DebuggerStatementNode ---------------------------
RegisterID* DebuggerStatementNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitDebugHook(DidReachBreakpoint, firstLine(), lastLine());
return dst;
}
// ------------------------------ ExprStatementNode ----------------------------
RegisterID* ExprStatementNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
ASSERT(m_expr);
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
return generator.emitNode(dst, m_expr);
}
// ------------------------------ VarStatementNode ----------------------------
RegisterID* VarStatementNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
ASSERT(m_expr);
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
return generator.emitNode(m_expr);
}
// ------------------------------ IfNode ---------------------------------------
RegisterID* IfNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
RefPtr<Label> afterThen = generator.newLabel();
RegisterID* cond = generator.emitNode(m_condition);
generator.emitJumpIfFalse(cond, afterThen.get());
generator.emitNode(dst, m_ifBlock);
generator.emitLabel(afterThen.get());
// FIXME: This should return the last statement executed so that it can be returned as a Completion.
return 0;
}
// ------------------------------ IfElseNode ---------------------------------------
RegisterID* IfElseNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
RefPtr<Label> beforeElse = generator.newLabel();
RefPtr<Label> afterElse = generator.newLabel();
RegisterID* cond = generator.emitNode(m_condition);
generator.emitJumpIfFalse(cond, beforeElse.get());
generator.emitNode(dst, m_ifBlock);
generator.emitJump(afterElse.get());
generator.emitLabel(beforeElse.get());
generator.emitNode(dst, m_elseBlock);
generator.emitLabel(afterElse.get());
// FIXME: This should return the last statement executed so that it can be returned as a Completion.
return 0;
}
// ------------------------------ DoWhileNode ----------------------------------
RegisterID* DoWhileNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<LabelScope> scope = generator.newLabelScope(LabelScope::Loop);
RefPtr<Label> topOfLoop = generator.newLabel();
generator.emitLabel(topOfLoop.get());
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
RefPtr<RegisterID> result = generator.emitNode(dst, m_statement);
generator.emitLabel(scope->continueTarget());
generator.emitDebugHook(WillExecuteStatement, m_expr->lineNo(), m_expr->lineNo());
RegisterID* cond = generator.emitNode(m_expr);
generator.emitJumpIfTrue(cond, topOfLoop.get());
generator.emitLabel(scope->breakTarget());
return result.get();
}
// ------------------------------ WhileNode ------------------------------------
RegisterID* WhileNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<LabelScope> scope = generator.newLabelScope(LabelScope::Loop);
generator.emitJump(scope->continueTarget());
RefPtr<Label> topOfLoop = generator.newLabel();
generator.emitLabel(topOfLoop.get());
generator.emitNode(dst, m_statement);
generator.emitLabel(scope->continueTarget());
generator.emitDebugHook(WillExecuteStatement, m_expr->lineNo(), m_expr->lineNo());
RegisterID* cond = generator.emitNode(m_expr);
generator.emitJumpIfTrue(cond, topOfLoop.get());
generator.emitLabel(scope->breakTarget());
// FIXME: This should return the last statement executed so that it can be returned as a Completion
return 0;
}
// ------------------------------ ForNode --------------------------------------
RegisterID* ForNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<LabelScope> scope = generator.newLabelScope(LabelScope::Loop);
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
if (m_expr1)
generator.emitNode(generator.ignoredResult(), m_expr1);
RefPtr<Label> condition = generator.newLabel();
generator.emitJump(condition.get());
RefPtr<Label> topOfLoop = generator.newLabel();
generator.emitLabel(topOfLoop.get());
RefPtr<RegisterID> result = generator.emitNode(dst, m_statement);
generator.emitLabel(scope->continueTarget());
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
if (m_expr3)
generator.emitNode(generator.ignoredResult(), m_expr3);
generator.emitLabel(condition.get());
if (m_expr2) {
RegisterID* cond = generator.emitNode(m_expr2);
generator.emitJumpIfTrue(cond, topOfLoop.get());
} else
generator.emitJump(topOfLoop.get());
generator.emitLabel(scope->breakTarget());
return result.get();
}
// ------------------------------ ForInNode ------------------------------------
RegisterID* ForInNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
RefPtr<LabelScope> scope = generator.newLabelScope(LabelScope::Loop);
if (!m_lexpr->isLocation())
return emitThrowError(generator, ReferenceError, "Left side of for-in statement is not a reference.");
RefPtr<Label> continueTarget = generator.newLabel();
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
if (m_init)
generator.emitNode(generator.ignoredResult(), m_init);
RegisterID* forInBase = generator.emitNode(m_expr);
RefPtr<RegisterID> iter = generator.emitGetPropertyNames(generator.newTemporary(), forInBase);
generator.emitJump(scope->continueTarget());
RefPtr<Label> loopStart = generator.newLabel();
generator.emitLabel(loopStart.get());
RegisterID* propertyName;
if (m_lexpr->isResolveNode()) {
const Identifier& ident = static_cast<ResolveNode*>(m_lexpr)->identifier();
propertyName = generator.registerFor(ident);
if (!propertyName) {
propertyName = generator.newTemporary();
RefPtr<RegisterID> protect = propertyName;
RegisterID* base = generator.emitResolveBase(generator.newTemporary(), ident);
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
generator.emitPutById(base, ident, propertyName);
}
} else if (m_lexpr->isDotAccessorNode()) {
DotAccessorNode* assignNode = static_cast<DotAccessorNode*>(m_lexpr);
const Identifier& ident = assignNode->identifier();
propertyName = generator.newTemporary();
RefPtr<RegisterID> protect = propertyName;
RegisterID* base = generator.emitNode(assignNode->base());
generator.emitExpressionInfo(assignNode->divot(), assignNode->startOffset(), assignNode->endOffset());
generator.emitPutById(base, ident, propertyName);
} else {
ASSERT(m_lexpr->isBracketAccessorNode());
BracketAccessorNode* assignNode = static_cast<BracketAccessorNode*>(m_lexpr);
propertyName = generator.newTemporary();
RefPtr<RegisterID> protect = propertyName;
RefPtr<RegisterID> base = generator.emitNode(assignNode->base());
RegisterID* subscript = generator.emitNode(assignNode->subscript());
generator.emitExpressionInfo(assignNode->divot(), assignNode->startOffset(), assignNode->endOffset());
generator.emitPutByVal(base.get(), subscript, propertyName);
}
generator.emitNode(dst, m_statement);
generator.emitLabel(scope->continueTarget());
generator.emitNextPropertyName(propertyName, iter.get(), loopStart.get());
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
generator.emitLabel(scope->breakTarget());
return dst;
}
// ------------------------------ ContinueNode ---------------------------------
// ECMA 12.7
RegisterID* ContinueNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
LabelScope* scope = generator.continueTarget(m_ident);
if (!scope)
return m_ident.isEmpty()
? emitThrowError(generator, SyntaxError, "Invalid continue statement.")
: emitThrowError(generator, SyntaxError, "Undefined label: '%s'.", m_ident);
generator.emitJumpScopes(scope->continueTarget(), scope->scopeDepth());
return dst;
}
// ------------------------------ BreakNode ------------------------------------
// ECMA 12.8
RegisterID* BreakNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
LabelScope* scope = generator.breakTarget(m_ident);
if (!scope)
return m_ident.isEmpty()
? emitThrowError(generator, SyntaxError, "Invalid break statement.")
: emitThrowError(generator, SyntaxError, "Undefined label: '%s'.", m_ident);
generator.emitJumpScopes(scope->breakTarget(), scope->scopeDepth());
return dst;
}
// ------------------------------ ReturnNode -----------------------------------
RegisterID* ReturnNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
if (generator.codeType() != FunctionCode)
return emitThrowError(generator, SyntaxError, "Invalid return statement.");
if (dst == generator.ignoredResult())
dst = 0;
RegisterID* r0 = m_value ? generator.emitNode(dst, m_value) : generator.emitLoad(dst, jsUndefined());
RefPtr<RegisterID> returnRegister;
if (generator.scopeDepth()) {
RefPtr<Label> l0 = generator.newLabel();
if (generator.hasFinaliser() && !r0->isTemporary()) {
returnRegister = generator.emitMove(generator.newTemporary(), r0);
r0 = returnRegister.get();
}
generator.emitJumpScopes(l0.get(), 0);
generator.emitLabel(l0.get());
}
generator.emitDebugHook(WillLeaveCallFrame, firstLine(), lastLine());
return generator.emitReturn(r0);
}
// ------------------------------ WithNode -------------------------------------
RegisterID* WithNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
RefPtr<RegisterID> scope = generator.newTemporary();
generator.emitNode(scope.get(), m_expr); // scope must be protected until popped
generator.emitExpressionInfo(m_divot, m_expressionLength, 0);
generator.emitPushScope(scope.get());
RegisterID* result = generator.emitNode(dst, m_statement);
generator.emitPopScope();
return result;
}
// ------------------------------ CaseBlockNode --------------------------------
enum SwitchKind {
SwitchUnset = 0,
SwitchNumber = 1,
SwitchString = 2,
SwitchNeither = 3
};
static void processClauseList(ClauseListNode* list, Vector<ExpressionNode*, 8>& literalVector, SwitchKind& typeForTable, bool& singleCharacterSwitch, int32_t& min_num, int32_t& max_num)
{
for (; list; list = list->getNext()) {
ExpressionNode* clauseExpression = list->getClause()->expr();
literalVector.append(clauseExpression);
if (clauseExpression->isNumber()) {
double value = static_cast<NumberNode*>(clauseExpression)->value();
int32_t intVal = static_cast<int32_t>(value);
if ((typeForTable & ~SwitchNumber) || (intVal != value)) {
typeForTable = SwitchNeither;
break;
}
if (intVal < min_num)
min_num = intVal;
if (intVal > max_num)
max_num = intVal;
typeForTable = SwitchNumber;
continue;
}
if (clauseExpression->isString()) {
if (typeForTable & ~SwitchString) {
typeForTable = SwitchNeither;
break;
}
const UString& value = static_cast<StringNode*>(clauseExpression)->value().ustring();
if (singleCharacterSwitch &= value.size() == 1) {
int32_t intVal = value.rep()->data()[0];
if (intVal < min_num)
min_num = intVal;
if (intVal > max_num)
max_num = intVal;
}
typeForTable = SwitchString;
continue;
}
typeForTable = SwitchNeither;
break;
}
}
SwitchInfo::SwitchType CaseBlockNode::tryOptimizedSwitch(Vector<ExpressionNode*, 8>& literalVector, int32_t& min_num, int32_t& max_num)
{
SwitchKind typeForTable = SwitchUnset;
bool singleCharacterSwitch = true;
processClauseList(m_list1, literalVector, typeForTable, singleCharacterSwitch, min_num, max_num);
processClauseList(m_list2, literalVector, typeForTable, singleCharacterSwitch, min_num, max_num);
if (typeForTable == SwitchUnset || typeForTable == SwitchNeither)
return SwitchInfo::SwitchNone;
if (typeForTable == SwitchNumber) {
int32_t range = max_num - min_num;
if (min_num <= max_num && range <= 1000 && (range / literalVector.size()) < 10)
return SwitchInfo::SwitchImmediate;
return SwitchInfo::SwitchNone;
}
ASSERT(typeForTable == SwitchString);
if (singleCharacterSwitch) {
int32_t range = max_num - min_num;
if (min_num <= max_num && range <= 1000 && (range / literalVector.size()) < 10)
return SwitchInfo::SwitchCharacter;
}
return SwitchInfo::SwitchString;
}
RegisterID* CaseBlockNode::emitBytecodeForBlock(BytecodeGenerator& generator, RegisterID* switchExpression, RegisterID* dst)
{
RefPtr<Label> defaultLabel;
Vector<RefPtr<Label>, 8> labelVector;
Vector<ExpressionNode*, 8> literalVector;
int32_t min_num = std::numeric_limits<int32_t>::max();
int32_t max_num = std::numeric_limits<int32_t>::min();
SwitchInfo::SwitchType switchType = tryOptimizedSwitch(literalVector, min_num, max_num);
if (switchType != SwitchInfo::SwitchNone) {
// Prepare the various labels
for (uint32_t i = 0; i < literalVector.size(); i++)
labelVector.append(generator.newLabel());
defaultLabel = generator.newLabel();
generator.beginSwitch(switchExpression, switchType);
} else {
// Setup jumps
for (ClauseListNode* list = m_list1; list; list = list->getNext()) {
RefPtr<RegisterID> clauseVal = generator.newTemporary();
generator.emitNode(clauseVal.get(), list->getClause()->expr());
generator.emitBinaryOp(op_stricteq, clauseVal.get(), clauseVal.get(), switchExpression, OperandTypes());
labelVector.append(generator.newLabel());
generator.emitJumpIfTrue(clauseVal.get(), labelVector[labelVector.size() - 1].get());
}
for (ClauseListNode* list = m_list2; list; list = list->getNext()) {
RefPtr<RegisterID> clauseVal = generator.newTemporary();
generator.emitNode(clauseVal.get(), list->getClause()->expr());
generator.emitBinaryOp(op_stricteq, clauseVal.get(), clauseVal.get(), switchExpression, OperandTypes());
labelVector.append(generator.newLabel());
generator.emitJumpIfTrue(clauseVal.get(), labelVector[labelVector.size() - 1].get());
}
defaultLabel = generator.newLabel();
generator.emitJump(defaultLabel.get());
}
RegisterID* result = 0;
size_t i = 0;
for (ClauseListNode* list = m_list1; list; list = list->getNext()) {
generator.emitLabel(labelVector[i++].get());
statementListEmitCode(list->getClause()->children(), generator, dst);
}
if (m_defaultClause) {
generator.emitLabel(defaultLabel.get());
statementListEmitCode(m_defaultClause->children(), generator, dst);
}
for (ClauseListNode* list = m_list2; list; list = list->getNext()) {
generator.emitLabel(labelVector[i++].get());
statementListEmitCode(list->getClause()->children(), generator, dst);
}
if (!m_defaultClause)
generator.emitLabel(defaultLabel.get());
ASSERT(i == labelVector.size());
if (switchType != SwitchInfo::SwitchNone) {
ASSERT(labelVector.size() == literalVector.size());
generator.endSwitch(labelVector.size(), labelVector.data(), literalVector.data(), defaultLabel.get(), min_num, max_num);
}
return result;
}
// ------------------------------ SwitchNode -----------------------------------
RegisterID* SwitchNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
RefPtr<LabelScope> scope = generator.newLabelScope(LabelScope::Switch);
RefPtr<RegisterID> r0 = generator.emitNode(m_expr);
RegisterID* r1 = m_block->emitBytecodeForBlock(generator, r0.get(), dst);
generator.emitLabel(scope->breakTarget());
return r1;
}
// ------------------------------ LabelNode ------------------------------------
RegisterID* LabelNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
if (generator.breakTarget(m_name))
return emitThrowError(generator, SyntaxError, "Duplicate label: %s.", m_name);
RefPtr<LabelScope> scope = generator.newLabelScope(LabelScope::NamedLabel, &m_name);
RegisterID* r0 = generator.emitNode(dst, m_statement);
generator.emitLabel(scope->breakTarget());
return r0;
}
// ------------------------------ ThrowNode ------------------------------------
RegisterID* ThrowNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
if (dst == generator.ignoredResult())
dst = 0;
RefPtr<RegisterID> expr = generator.emitNode(m_expr);
generator.emitExpressionInfo(divot(), startOffset(), endOffset());
generator.emitThrow(expr.get());
return 0;
}
// ------------------------------ TryNode --------------------------------------
RegisterID* TryNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
// NOTE: The catch and finally blocks must be labeled explicitly, so the
// optimizer knows they may be jumped to from anywhere.
generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
RefPtr<Label> tryStartLabel = generator.newLabel();
RefPtr<Label> finallyStart;
RefPtr<RegisterID> finallyReturnAddr;
if (m_finallyBlock) {
finallyStart = generator.newLabel();
finallyReturnAddr = generator.newTemporary();
generator.pushFinallyContext(finallyStart.get(), finallyReturnAddr.get());
}
generator.emitLabel(tryStartLabel.get());
generator.emitNode(dst, m_tryBlock);
if (m_catchBlock) {
RefPtr<Label> catchEndLabel = generator.newLabel();
// Normal path: jump over the catch block.
generator.emitJump(catchEndLabel.get());
// Uncaught exception path: the catch block.
RefPtr<Label> here = generator.emitLabel(generator.newLabel().get());
RefPtr<RegisterID> exceptionRegister = generator.emitCatch(generator.newTemporary(), tryStartLabel.get(), here.get());
if (m_catchHasEval) {
RefPtr<RegisterID> dynamicScopeObject = generator.emitNewObject(generator.newTemporary());
generator.emitPutById(dynamicScopeObject.get(), m_exceptionIdent, exceptionRegister.get());
generator.emitMove(exceptionRegister.get(), dynamicScopeObject.get());
generator.emitPushScope(exceptionRegister.get());
} else
generator.emitPushNewScope(exceptionRegister.get(), m_exceptionIdent, exceptionRegister.get());
generator.emitNode(dst, m_catchBlock);
generator.emitPopScope();
generator.emitLabel(catchEndLabel.get());
}
if (m_finallyBlock) {
generator.popFinallyContext();
// there may be important registers live at the time we jump
// to a finally block (such as for a return or throw) so we
// ref the highest register ever used as a conservative
// approach to not clobbering anything important
RefPtr<RegisterID> highestUsedRegister = generator.highestUsedRegister();
RefPtr<Label> finallyEndLabel = generator.newLabel();
// Normal path: invoke the finally block, then jump over it.
generator.emitJumpSubroutine(finallyReturnAddr.get(), finallyStart.get());
generator.emitJump(finallyEndLabel.get());
// Uncaught exception path: invoke the finally block, then re-throw the exception.
RefPtr<Label> here = generator.emitLabel(generator.newLabel().get());
RefPtr<RegisterID> tempExceptionRegister = generator.emitCatch(generator.newTemporary(), tryStartLabel.get(), here.get());
generator.emitJumpSubroutine(finallyReturnAddr.get(), finallyStart.get());
generator.emitThrow(tempExceptionRegister.get());
// The finally block.
generator.emitLabel(finallyStart.get());
generator.emitNode(dst, m_finallyBlock);
generator.emitSubroutineReturn(finallyReturnAddr.get());
generator.emitLabel(finallyEndLabel.get());
}
return dst;
}
// -----------------------------ScopeNodeData ---------------------------
ScopeNodeData::ScopeNodeData(ParserArena& arena, SourceElements* children, VarStack* varStack, FunctionStack* funcStack, int numConstants)
: m_numConstants(numConstants)
{
m_arena.swap(arena);
if (varStack)
m_varStack.swap(*varStack);
if (funcStack)
m_functionStack.swap(*funcStack);
if (children)
children->releaseContentsIntoVector(m_children);
}
void ScopeNodeData::markAggregate(MarkStack& markStack)
{
FunctionStack::iterator end = m_functionStack.end();
for (FunctionStack::iterator ptr = m_functionStack.begin(); ptr != end; ++ptr) {
FunctionBodyNode* body = (*ptr)->body();
if (!body->isGenerated())
continue;
body->generatedBytecode().markAggregate(markStack);
}
}
// ------------------------------ ScopeNode -----------------------------
ScopeNode::ScopeNode(JSGlobalData* globalData)
: StatementNode(globalData)
, ParserArenaRefCounted(globalData)
, m_features(NoFeatures)
{
#if ENABLE(CODEBLOCK_SAMPLING)
if (SamplingTool* sampler = globalData->interpreter->sampler())
sampler->notifyOfScope(this);
#endif
}
ScopeNode::ScopeNode(JSGlobalData* globalData, const SourceCode& source, SourceElements* children, VarStack* varStack, FunctionStack* funcStack, CodeFeatures features, int numConstants)
: StatementNode(globalData)
, ParserArenaRefCounted(globalData)
, m_data(new ScopeNodeData(globalData->parser->arena(), children, varStack, funcStack, numConstants))
, m_features(features)
, m_source(source)
{
#if ENABLE(CODEBLOCK_SAMPLING)
if (SamplingTool* sampler = globalData->interpreter->sampler())
sampler->notifyOfScope(this);
#endif
}
// ------------------------------ ProgramNode -----------------------------
inline ProgramNode::ProgramNode(JSGlobalData* globalData, SourceElements* children, VarStack* varStack, FunctionStack* funcStack, const SourceCode& source, CodeFeatures features, int numConstants)
: ScopeNode(globalData, source, children, varStack, funcStack, features, numConstants)
{
}
PassRefPtr<ProgramNode> ProgramNode::create(JSGlobalData* globalData, SourceElements* children, VarStack* varStack, FunctionStack* funcStack, const SourceCode& source, CodeFeatures features, int numConstants)
{
RefPtr<ProgramNode> node = new ProgramNode(globalData, children, varStack, funcStack, source, features, numConstants);
ASSERT(node->data()->m_arena.last() == node);
node->data()->m_arena.removeLast();
ASSERT(!node->data()->m_arena.contains(node.get()));
return node.release();
}
RegisterID* ProgramNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
generator.emitDebugHook(WillExecuteProgram, firstLine(), lastLine());
RefPtr<RegisterID> dstRegister = generator.newTemporary();
generator.emitLoad(dstRegister.get(), jsUndefined());
statementListEmitCode(children(), generator, dstRegister.get());
generator.emitDebugHook(DidExecuteProgram, firstLine(), lastLine());
generator.emitEnd(dstRegister.get());
return 0;
}
void ProgramNode::generateBytecode(ScopeChainNode* scopeChainNode)
{
ScopeChain scopeChain(scopeChainNode);
JSGlobalObject* globalObject = scopeChain.globalObject();
m_code.set(new ProgramCodeBlock(this, GlobalCode, globalObject, source().provider()));
OwnPtr<BytecodeGenerator> generator(new BytecodeGenerator(this, globalObject->debugger(), scopeChain, &globalObject->symbolTable(), m_code.get()));
generator->generate();
destroyData();
}
#if ENABLE(JIT)
void ProgramNode::generateJITCode(ScopeChainNode* scopeChainNode)
{
bytecode(scopeChainNode);
ASSERT(m_code);
ASSERT(!m_jitCode);
JIT::compile(scopeChainNode->globalData, m_code.get());
ASSERT(m_jitCode);
}
#endif
// ------------------------------ EvalNode -----------------------------
inline EvalNode::EvalNode(JSGlobalData* globalData, SourceElements* children, VarStack* varStack, FunctionStack* funcStack, const SourceCode& source, CodeFeatures features, int numConstants)
: ScopeNode(globalData, source, children, varStack, funcStack, features, numConstants)
{
}
PassRefPtr<EvalNode> EvalNode::create(JSGlobalData* globalData, SourceElements* children, VarStack* varStack, FunctionStack* funcStack, const SourceCode& source, CodeFeatures features, int numConstants)
{
RefPtr<EvalNode> node = new EvalNode(globalData, children, varStack, funcStack, source, features, numConstants);
ASSERT(node->data()->m_arena.last() == node);
node->data()->m_arena.removeLast();
ASSERT(!node->data()->m_arena.contains(node.get()));
return node.release();
}
RegisterID* EvalNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
generator.emitDebugHook(WillExecuteProgram, firstLine(), lastLine());
RefPtr<RegisterID> dstRegister = generator.newTemporary();
generator.emitLoad(dstRegister.get(), jsUndefined());
statementListEmitCode(children(), generator, dstRegister.get());
generator.emitDebugHook(DidExecuteProgram, firstLine(), lastLine());
generator.emitEnd(dstRegister.get());
return 0;
}
void EvalNode::generateBytecode(ScopeChainNode* scopeChainNode)
{
ScopeChain scopeChain(scopeChainNode);
JSGlobalObject* globalObject = scopeChain.globalObject();
m_code.set(new EvalCodeBlock(this, globalObject, source().provider(), scopeChain.localDepth()));
OwnPtr<BytecodeGenerator> generator(new BytecodeGenerator(this, globalObject->debugger(), scopeChain, &m_code->symbolTable(), m_code.get()));
generator->generate();
// Eval code needs to hang on to its declaration stacks to keep declaration info alive until Interpreter::execute time,
// so the entire ScopeNodeData cannot be destoyed.
children().clear();
}
EvalCodeBlock& EvalNode::bytecodeForExceptionInfoReparse(ScopeChainNode* scopeChainNode, CodeBlock* codeBlockBeingRegeneratedFrom)
{
ASSERT(!m_code);
ScopeChain scopeChain(scopeChainNode);
JSGlobalObject* globalObject = scopeChain.globalObject();
m_code.set(new EvalCodeBlock(this, globalObject, source().provider(), scopeChain.localDepth()));
OwnPtr<BytecodeGenerator> generator(new BytecodeGenerator(this, globalObject->debugger(), scopeChain, &m_code->symbolTable(), m_code.get()));
generator->setRegeneratingForExceptionInfo(codeBlockBeingRegeneratedFrom);
generator->generate();
return *m_code;
}
void EvalNode::markAggregate(MarkStack& markStack)
{
// We don't need to mark our own CodeBlock as the JSGlobalObject takes care of that
data()->markAggregate(markStack);
}
#if ENABLE(JIT)
void EvalNode::generateJITCode(ScopeChainNode* scopeChainNode)
{
bytecode(scopeChainNode);
ASSERT(m_code);
ASSERT(!m_jitCode);
JIT::compile(scopeChainNode->globalData, m_code.get());
ASSERT(m_jitCode);
}
#endif
// ------------------------------ FunctionBodyNode -----------------------------
inline FunctionBodyNode::FunctionBodyNode(JSGlobalData* globalData)
: ScopeNode(globalData)
, m_parameters(0)
, m_parameterCount(0)
{
}
inline FunctionBodyNode::FunctionBodyNode(JSGlobalData* globalData, SourceElements* children, VarStack* varStack, FunctionStack* funcStack, const SourceCode& sourceCode, CodeFeatures features, int numConstants)
: ScopeNode(globalData, sourceCode, children, varStack, funcStack, features, numConstants)
, m_parameters(0)
, m_parameterCount(0)
{
}
FunctionBodyNode::~FunctionBodyNode()
{
for (size_t i = 0; i < m_parameterCount; ++i)
m_parameters[i].~Identifier();
fastFree(m_parameters);
}
void FunctionBodyNode::finishParsing(const SourceCode& source, ParameterNode* firstParameter)
{
Vector<Identifier> parameters;
for (ParameterNode* parameter = firstParameter; parameter; parameter = parameter->nextParam())
parameters.append(parameter->ident());
size_t count = parameters.size();
setSource(source);
finishParsing(parameters.releaseBuffer(), count);
}
void FunctionBodyNode::finishParsing(Identifier* parameters, size_t parameterCount)
{
ASSERT(!source().isNull());
m_parameters = parameters;
m_parameterCount = parameterCount;
}
void FunctionBodyNode::markAggregate(MarkStack& markStack)
{
if (m_code)
m_code->markAggregate(markStack);
}
#if ENABLE(JIT)
PassRefPtr<FunctionBodyNode> FunctionBodyNode::createNativeThunk(JSGlobalData* globalData)
{
RefPtr<FunctionBodyNode> body = new FunctionBodyNode(globalData);
globalData->parser->arena().reset();
body->m_code.set(new CodeBlock(body.get()));
body->m_jitCode = JITCode(JITCode::HostFunction(globalData->jitStubs.ctiNativeCallThunk()));
return body.release();
}
#endif
bool FunctionBodyNode::isHostFunction() const
{
return m_code && m_code->codeType() == NativeCode;
}
FunctionBodyNode* FunctionBodyNode::create(JSGlobalData* globalData)
{
return new FunctionBodyNode(globalData);
}
PassRefPtr<FunctionBodyNode> FunctionBodyNode::create(JSGlobalData* globalData, SourceElements* children, VarStack* varStack, FunctionStack* funcStack, const SourceCode& sourceCode, CodeFeatures features, int numConstants)
{
RefPtr<FunctionBodyNode> node = new FunctionBodyNode(globalData, children, varStack, funcStack, sourceCode, features, numConstants);
ASSERT(node->data()->m_arena.last() == node);
node->data()->m_arena.removeLast();
ASSERT(!node->data()->m_arena.contains(node.get()));
return node.release();
}
void FunctionBodyNode::generateBytecode(ScopeChainNode* scopeChainNode)
{
// This branch is only necessary since you can still create a non-stub FunctionBodyNode by
// calling Parser::parse<FunctionBodyNode>().
if (!data())
scopeChainNode->globalData->parser->reparseInPlace(scopeChainNode->globalData, this);
ASSERT(data());
ScopeChain scopeChain(scopeChainNode);
JSGlobalObject* globalObject = scopeChain.globalObject();
m_code.set(new CodeBlock(this, FunctionCode, source().provider(), source().startOffset()));
OwnPtr<BytecodeGenerator> generator(new BytecodeGenerator(this, globalObject->debugger(), scopeChain, &m_code->symbolTable(), m_code.get()));
generator->generate();
destroyData();
}
#if ENABLE(JIT)
void FunctionBodyNode::generateJITCode(ScopeChainNode* scopeChainNode)
{
bytecode(scopeChainNode);
ASSERT(m_code);
ASSERT(!m_jitCode);
JIT::compile(scopeChainNode->globalData, m_code.get());
ASSERT(m_jitCode);
}
#endif
CodeBlock& FunctionBodyNode::bytecodeForExceptionInfoReparse(ScopeChainNode* scopeChainNode, CodeBlock* codeBlockBeingRegeneratedFrom)
{
ASSERT(!m_code);
ScopeChain scopeChain(scopeChainNode);
JSGlobalObject* globalObject = scopeChain.globalObject();
m_code.set(new CodeBlock(this, FunctionCode, source().provider(), source().startOffset()));
OwnPtr<BytecodeGenerator> generator(new BytecodeGenerator(this, globalObject->debugger(), scopeChain, &m_code->symbolTable(), m_code.get()));
generator->setRegeneratingForExceptionInfo(codeBlockBeingRegeneratedFrom);
generator->generate();
return *m_code;
}
RegisterID* FunctionBodyNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
generator.emitDebugHook(DidEnterCallFrame, firstLine(), lastLine());
statementListEmitCode(children(), generator, generator.ignoredResult());
if (children().size() && children().last()->isBlock()) {
BlockNode* blockNode = static_cast<BlockNode*>(children().last());
if (blockNode->children().size() && blockNode->children().last()->isReturnNode())
return 0;
}
RegisterID* r0 = generator.emitLoad(0, jsUndefined());
generator.emitDebugHook(WillLeaveCallFrame, firstLine(), lastLine());
generator.emitReturn(r0);
return 0;
}
UString FunctionBodyNode::paramString() const
{
UString s("");
for (size_t pos = 0; pos < m_parameterCount; ++pos) {
if (!s.isEmpty())
s += ", ";
s += parameters()[pos].ustring();
}
return s;
}
Identifier* FunctionBodyNode::copyParameters()
{
Identifier* parameters = static_cast<Identifier*>(fastMalloc(m_parameterCount * sizeof(Identifier)));
VectorCopier<false, Identifier>::uninitializedCopy(m_parameters, m_parameters + m_parameterCount, parameters);
return parameters;
}
// ------------------------------ FuncDeclNode ---------------------------------
JSFunction* FuncDeclNode::makeFunction(ExecState* exec, ScopeChainNode* scopeChain)
{
return new (exec) JSFunction(exec, m_ident, m_body.get(), scopeChain);
}
RegisterID* FuncDeclNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
if (dst == generator.ignoredResult())
dst = 0;
return dst;
}
// ------------------------------ FuncExprNode ---------------------------------
RegisterID* FuncExprNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
return generator.emitNewFunctionExpression(generator.finalDestination(dst), this);
}
JSFunction* FuncExprNode::makeFunction(ExecState* exec, ScopeChainNode* scopeChain)
{
JSFunction* func = new (exec) JSFunction(exec, m_ident, m_body.get(), scopeChain);
/*
The Identifier in a FunctionExpression can be referenced from inside
the FunctionExpression's FunctionBody to allow the function to call
itself recursively. However, unlike in a FunctionDeclaration, the
Identifier in a FunctionExpression cannot be referenced from and
does not affect the scope enclosing the FunctionExpression.
*/
if (!m_ident.isNull()) {
JSStaticScopeObject* functionScopeObject = new (exec) JSStaticScopeObject(exec, m_ident, func, ReadOnly | DontDelete);
func->scope().push(functionScopeObject);
}
return func;
}
} // namespace JSC