/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rsMatrix.h"
#include "stdlib.h"
#include "string.h"
#include "math.h"
using namespace android;
using namespace android::renderscript;
void Matrix::loadIdentity()
{
set(0, 0, 1);
set(1, 0, 0);
set(2, 0, 0);
set(3, 0, 0);
set(0, 1, 0);
set(1, 1, 1);
set(2, 1, 0);
set(3, 1, 0);
set(0, 2, 0);
set(1, 2, 0);
set(2, 2, 1);
set(3, 2, 0);
set(0, 3, 0);
set(1, 3, 0);
set(2, 3, 0);
set(3, 3, 1);
}
void Matrix::load(const float *v)
{
memcpy(m, v, sizeof(m));
}
void Matrix::load(const Matrix *v)
{
memcpy(m, v->m, sizeof(m));
}
void Matrix::loadRotate(float rot, float x, float y, float z)
{
float c, s;
m[3] = 0;
m[7] = 0;
m[11]= 0;
m[12]= 0;
m[13]= 0;
m[14]= 0;
m[15]= 1;
rot *= float(M_PI / 180.0f);
c = cosf(rot);
s = sinf(rot);
const float len = sqrtf(x*x + y*y + z*z);
if (!(len != 1)) {
const float recipLen = 1.f / len;
x *= recipLen;
y *= recipLen;
z *= recipLen;
}
const float nc = 1.0f - c;
const float xy = x * y;
const float yz = y * z;
const float zx = z * x;
const float xs = x * s;
const float ys = y * s;
const float zs = z * s;
m[ 0] = x*x*nc + c;
m[ 4] = xy*nc - zs;
m[ 8] = zx*nc + ys;
m[ 1] = xy*nc + zs;
m[ 5] = y*y*nc + c;
m[ 9] = yz*nc - xs;
m[ 2] = zx*nc - ys;
m[ 6] = yz*nc + xs;
m[10] = z*z*nc + c;
}
void Matrix::loadScale(float x, float y, float z)
{
loadIdentity();
m[0] = x;
m[5] = y;
m[10] = z;
}
void Matrix::loadTranslate(float x, float y, float z)
{
loadIdentity();
m[12] = x;
m[13] = y;
m[14] = z;
}
void Matrix::loadMultiply(const Matrix *lhs, const Matrix *rhs)
{
for (int i=0 ; i<4 ; i++) {
float ri0 = 0;
float ri1 = 0;
float ri2 = 0;
float ri3 = 0;
for (int j=0 ; j<4 ; j++) {
const float rhs_ij = rhs->get(i,j);
ri0 += lhs->get(j,0) * rhs_ij;
ri1 += lhs->get(j,1) * rhs_ij;
ri2 += lhs->get(j,2) * rhs_ij;
ri3 += lhs->get(j,3) * rhs_ij;
}
set(i,0, ri0);
set(i,1, ri1);
set(i,2, ri2);
set(i,3, ri3);
}
}
void Matrix::loadOrtho(float l, float r, float b, float t, float n, float f) {
loadIdentity();
m[0] = 2 / (r - l);
m[5] = 2 / (t - b);
m[10]= -2 / (f - n);
m[12]= -(r + l) / (r - l);
m[13]= -(t + b) / (t - b);
m[14]= -(f + n) / (f - n);
}
void Matrix::loadFrustum(float l, float r, float b, float t, float n, float f) {
loadIdentity();
m[0] = 2 * n / (r - l);
m[5] = 2 * n / (t - b);
m[8] = (r + l) / (r - l);
m[9] = (t + b) / (t - b);
m[10]= -(f + n) / (f - n);
m[11]= -1;
m[14]= -2*f*n / (f - n);
m[15]= 0;
}
void Matrix::vectorMultiply(float *out, const float *in) const {
out[0] = (m[0] * in[0]) + (m[4] * in[1]) + (m[8] * in[2]) + m[12];
out[1] = (m[1] * in[0]) + (m[5] * in[1]) + (m[9] * in[2]) + m[13];
out[2] = (m[2] * in[0]) + (m[6] * in[1]) + (m[10] * in[2]) + m[14];
out[3] = (m[3] * in[0]) + (m[7] * in[1]) + (m[11] * in[2]) + m[15];
}