/* * This file was generated automatically by gen-mterp.py for 'x86-atom'. * * --> DO NOT EDIT <-- */ /* File: c/header.c */ /* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* common includes */ #include "Dalvik.h" #include "interp/InterpDefs.h" #include "mterp/Mterp.h" #include <math.h> // needed for fmod, fmodf #include "mterp/common/FindInterface.h" /* * Configuration defines. These affect the C implementations, i.e. the * portable interpreter(s) and C stubs. * * Some defines are controlled by the Makefile, e.g.: * WITH_PROFILER * WITH_DEBUGGER * WITH_INSTR_CHECKS * WITH_TRACKREF_CHECKS * EASY_GDB * NDEBUG * * If THREADED_INTERP is not defined, we use a classic "while true / switch" * interpreter. If it is defined, then the tail end of each instruction * handler fetches the next instruction and jumps directly to the handler. * This increases the size of the "Std" interpreter by about 10%, but * provides a speedup of about the same magnitude. * * There's a "hybrid" approach that uses a goto table instead of a switch * statement, avoiding the "is the opcode in range" tests required for switch. * The performance is close to the threaded version, and without the 10% * size increase, but the benchmark results are off enough that it's not * worth adding as a third option. */ #define THREADED_INTERP /* threaded vs. while-loop interpreter */ #ifdef WITH_INSTR_CHECKS /* instruction-level paranoia (slow!) */ # define CHECK_BRANCH_OFFSETS # define CHECK_REGISTER_INDICES #endif /* * ARM EABI requires 64-bit alignment for access to 64-bit data types. We * can't just use pointers to copy 64-bit values out of our interpreted * register set, because gcc will generate ldrd/strd. * * The __UNION version copies data in and out of a union. The __MEMCPY * version uses a memcpy() call to do the transfer; gcc is smart enough to * not actually call memcpy(). The __UNION version is very bad on ARM; * it only uses one more instruction than __MEMCPY, but for some reason * gcc thinks it needs separate storage for every instance of the union. * On top of that, it feels the need to zero them out at the start of the * method. Net result is we zero out ~700 bytes of stack space at the top * of the interpreter using ARM STM instructions. */ #if defined(__ARM_EABI__) //# define NO_UNALIGN_64__UNION # define NO_UNALIGN_64__MEMCPY #endif //#define LOG_INSTR /* verbose debugging */ /* set and adjust ANDROID_LOG_TAGS='*:i jdwp:i dalvikvm:i dalvikvmi:i' */ /* * Keep a tally of accesses to fields. Currently only works if full DEX * optimization is disabled. */ #ifdef PROFILE_FIELD_ACCESS # define UPDATE_FIELD_GET(_field) { (_field)->gets++; } # define UPDATE_FIELD_PUT(_field) { (_field)->puts++; } #else # define UPDATE_FIELD_GET(_field) ((void)0) # define UPDATE_FIELD_PUT(_field) ((void)0) #endif /* * Export another copy of the PC on every instruction; this is largely * redundant with EXPORT_PC and the debugger code. This value can be * compared against what we have stored on the stack with EXPORT_PC to * help ensure that we aren't missing any export calls. */ #if WITH_EXTRA_GC_CHECKS > 1 # define EXPORT_EXTRA_PC() (self->currentPc2 = pc) #else # define EXPORT_EXTRA_PC() #endif /* * Adjust the program counter. "_offset" is a signed int, in 16-bit units. * * Assumes the existence of "const u2* pc" and "const u2* curMethod->insns". * * We don't advance the program counter until we finish an instruction or * branch, because we do want to have to unroll the PC if there's an * exception. */ #ifdef CHECK_BRANCH_OFFSETS # define ADJUST_PC(_offset) do { \ int myoff = _offset; /* deref only once */ \ if (pc + myoff < curMethod->insns || \ pc + myoff >= curMethod->insns + dvmGetMethodInsnsSize(curMethod)) \ { \ char* desc; \ desc = dexProtoCopyMethodDescriptor(&curMethod->prototype); \ LOGE("Invalid branch %d at 0x%04x in %s.%s %s\n", \ myoff, (int) (pc - curMethod->insns), \ curMethod->clazz->descriptor, curMethod->name, desc); \ free(desc); \ dvmAbort(); \ } \ pc += myoff; \ EXPORT_EXTRA_PC(); \ } while (false) #else # define ADJUST_PC(_offset) do { \ pc += _offset; \ EXPORT_EXTRA_PC(); \ } while (false) #endif /* * If enabled, log instructions as we execute them. */ #ifdef LOG_INSTR # define ILOGD(...) ILOG(LOG_DEBUG, __VA_ARGS__) # define ILOGV(...) ILOG(LOG_VERBOSE, __VA_ARGS__) # define ILOG(_level, ...) do { \ char debugStrBuf[128]; \ snprintf(debugStrBuf, sizeof(debugStrBuf), __VA_ARGS__); \ if (curMethod != NULL) \ LOG(_level, LOG_TAG"i", "%-2d|%04x%s\n", \ self->threadId, (int)(pc - curMethod->insns), debugStrBuf); \ else \ LOG(_level, LOG_TAG"i", "%-2d|####%s\n", \ self->threadId, debugStrBuf); \ } while(false) void dvmDumpRegs(const Method* method, const u4* framePtr, bool inOnly); # define DUMP_REGS(_meth, _frame, _inOnly) dvmDumpRegs(_meth, _frame, _inOnly) static const char kSpacing[] = " "; #else # define ILOGD(...) ((void)0) # define ILOGV(...) ((void)0) # define DUMP_REGS(_meth, _frame, _inOnly) ((void)0) #endif /* get a long from an array of u4 */ static inline s8 getLongFromArray(const u4* ptr, int idx) { #if defined(NO_UNALIGN_64__UNION) union { s8 ll; u4 parts[2]; } conv; ptr += idx; conv.parts[0] = ptr[0]; conv.parts[1] = ptr[1]; return conv.ll; #elif defined(NO_UNALIGN_64__MEMCPY) s8 val; memcpy(&val, &ptr[idx], 8); return val; #else return *((s8*) &ptr[idx]); #endif } /* store a long into an array of u4 */ static inline void putLongToArray(u4* ptr, int idx, s8 val) { #if defined(NO_UNALIGN_64__UNION) union { s8 ll; u4 parts[2]; } conv; ptr += idx; conv.ll = val; ptr[0] = conv.parts[0]; ptr[1] = conv.parts[1]; #elif defined(NO_UNALIGN_64__MEMCPY) memcpy(&ptr[idx], &val, 8); #else *((s8*) &ptr[idx]) = val; #endif } /* get a double from an array of u4 */ static inline double getDoubleFromArray(const u4* ptr, int idx) { #if defined(NO_UNALIGN_64__UNION) union { double d; u4 parts[2]; } conv; ptr += idx; conv.parts[0] = ptr[0]; conv.parts[1] = ptr[1]; return conv.d; #elif defined(NO_UNALIGN_64__MEMCPY) double dval; memcpy(&dval, &ptr[idx], 8); return dval; #else return *((double*) &ptr[idx]); #endif } /* store a double into an array of u4 */ static inline void putDoubleToArray(u4* ptr, int idx, double dval) { #if defined(NO_UNALIGN_64__UNION) union { double d; u4 parts[2]; } conv; ptr += idx; conv.d = dval; ptr[0] = conv.parts[0]; ptr[1] = conv.parts[1]; #elif defined(NO_UNALIGN_64__MEMCPY) memcpy(&ptr[idx], &dval, 8); #else *((double*) &ptr[idx]) = dval; #endif } /* * If enabled, validate the register number on every access. Otherwise, * just do an array access. * * Assumes the existence of "u4* fp". * * "_idx" may be referenced more than once. */ #ifdef CHECK_REGISTER_INDICES # define GET_REGISTER(_idx) \ ( (_idx) < curMethod->registersSize ? \ (fp[(_idx)]) : (assert(!"bad reg"),1969) ) # define SET_REGISTER(_idx, _val) \ ( (_idx) < curMethod->registersSize ? \ (fp[(_idx)] = (u4)(_val)) : (assert(!"bad reg"),1969) ) # define GET_REGISTER_AS_OBJECT(_idx) ((Object *)GET_REGISTER(_idx)) # define SET_REGISTER_AS_OBJECT(_idx, _val) SET_REGISTER(_idx, (s4)_val) # define GET_REGISTER_INT(_idx) ((s4) GET_REGISTER(_idx)) # define SET_REGISTER_INT(_idx, _val) SET_REGISTER(_idx, (s4)_val) # define GET_REGISTER_WIDE(_idx) \ ( (_idx) < curMethod->registersSize-1 ? \ getLongFromArray(fp, (_idx)) : (assert(!"bad reg"),1969) ) # define SET_REGISTER_WIDE(_idx, _val) \ ( (_idx) < curMethod->registersSize-1 ? \ putLongToArray(fp, (_idx), (_val)) : (assert(!"bad reg"),1969) ) # define GET_REGISTER_FLOAT(_idx) \ ( (_idx) < curMethod->registersSize ? \ (*((float*) &fp[(_idx)])) : (assert(!"bad reg"),1969.0f) ) # define SET_REGISTER_FLOAT(_idx, _val) \ ( (_idx) < curMethod->registersSize ? \ (*((float*) &fp[(_idx)]) = (_val)) : (assert(!"bad reg"),1969.0f) ) # define GET_REGISTER_DOUBLE(_idx) \ ( (_idx) < curMethod->registersSize-1 ? \ getDoubleFromArray(fp, (_idx)) : (assert(!"bad reg"),1969.0) ) # define SET_REGISTER_DOUBLE(_idx, _val) \ ( (_idx) < curMethod->registersSize-1 ? \ putDoubleToArray(fp, (_idx), (_val)) : (assert(!"bad reg"),1969.0) ) #else # define GET_REGISTER(_idx) (fp[(_idx)]) # define SET_REGISTER(_idx, _val) (fp[(_idx)] = (_val)) # define GET_REGISTER_AS_OBJECT(_idx) ((Object*) fp[(_idx)]) # define SET_REGISTER_AS_OBJECT(_idx, _val) (fp[(_idx)] = (u4)(_val)) # define GET_REGISTER_INT(_idx) ((s4)GET_REGISTER(_idx)) # define SET_REGISTER_INT(_idx, _val) SET_REGISTER(_idx, (s4)_val) # define GET_REGISTER_WIDE(_idx) getLongFromArray(fp, (_idx)) # define SET_REGISTER_WIDE(_idx, _val) putLongToArray(fp, (_idx), (_val)) # define GET_REGISTER_FLOAT(_idx) (*((float*) &fp[(_idx)])) # define SET_REGISTER_FLOAT(_idx, _val) (*((float*) &fp[(_idx)]) = (_val)) # define GET_REGISTER_DOUBLE(_idx) getDoubleFromArray(fp, (_idx)) # define SET_REGISTER_DOUBLE(_idx, _val) putDoubleToArray(fp, (_idx), (_val)) #endif /* * Get 16 bits from the specified offset of the program counter. We always * want to load 16 bits at a time from the instruction stream -- it's more * efficient than 8 and won't have the alignment problems that 32 might. * * Assumes existence of "const u2* pc". */ #define FETCH(_offset) (pc[(_offset)]) /* * Extract instruction byte from 16-bit fetch (_inst is a u2). */ #define INST_INST(_inst) ((_inst) & 0xff) /* * Replace the opcode (used when handling breakpoints). _opcode is a u1. */ #define INST_REPLACE_OP(_inst, _opcode) (((_inst) & 0xff00) | _opcode) /* * Extract the "vA, vB" 4-bit registers from the instruction word (_inst is u2). */ #define INST_A(_inst) (((_inst) >> 8) & 0x0f) #define INST_B(_inst) ((_inst) >> 12) /* * Get the 8-bit "vAA" 8-bit register index from the instruction word. * (_inst is u2) */ #define INST_AA(_inst) ((_inst) >> 8) /* * The current PC must be available to Throwable constructors, e.g. * those created by dvmThrowException(), so that the exception stack * trace can be generated correctly. If we don't do this, the offset * within the current method won't be shown correctly. See the notes * in Exception.c. * * This is also used to determine the address for precise GC. * * Assumes existence of "u4* fp" and "const u2* pc". */ #define EXPORT_PC() (SAVEAREA_FROM_FP(fp)->xtra.currentPc = pc) /* * Determine if we need to switch to a different interpreter. "_current" * is either INTERP_STD or INTERP_DBG. It should be fixed for a given * interpreter generation file, which should remove the outer conditional * from the following. * * If we're building without debug and profiling support, we never switch. */ #if defined(WITH_PROFILER) || defined(WITH_DEBUGGER) #if defined(WITH_JIT) # define NEED_INTERP_SWITCH(_current) ( \ (_current == INTERP_STD) ? \ dvmJitDebuggerOrProfilerActive() : !dvmJitDebuggerOrProfilerActive() ) #else # define NEED_INTERP_SWITCH(_current) ( \ (_current == INTERP_STD) ? \ dvmDebuggerOrProfilerActive() : !dvmDebuggerOrProfilerActive() ) #endif #else # define NEED_INTERP_SWITCH(_current) (false) #endif /* * Check to see if "obj" is NULL. If so, throw an exception. Assumes the * pc has already been exported to the stack. * * Perform additional checks on debug builds. * * Use this to check for NULL when the instruction handler calls into * something that could throw an exception (so we have already called * EXPORT_PC at the top). */ static inline bool checkForNull(Object* obj) { if (obj == NULL) { dvmThrowException("Ljava/lang/NullPointerException;", NULL); return false; } #ifdef WITH_EXTRA_OBJECT_VALIDATION if (!dvmIsValidObject(obj)) { LOGE("Invalid object %p\n", obj); dvmAbort(); } #endif #ifndef NDEBUG if (obj->clazz == NULL || ((u4) obj->clazz) <= 65536) { /* probable heap corruption */ LOGE("Invalid object class %p (in %p)\n", obj->clazz, obj); dvmAbort(); } #endif return true; } /* * Check to see if "obj" is NULL. If so, export the PC into the stack * frame and throw an exception. * * Perform additional checks on debug builds. * * Use this to check for NULL when the instruction handler doesn't do * anything else that can throw an exception. */ static inline bool checkForNullExportPC(Object* obj, u4* fp, const u2* pc) { if (obj == NULL) { EXPORT_PC(); dvmThrowException("Ljava/lang/NullPointerException;", NULL); return false; } #ifdef WITH_EXTRA_OBJECT_VALIDATION if (!dvmIsValidObject(obj)) { LOGE("Invalid object %p\n", obj); dvmAbort(); } #endif #ifndef NDEBUG if (obj->clazz == NULL || ((u4) obj->clazz) <= 65536) { /* probable heap corruption */ LOGE("Invalid object class %p (in %p)\n", obj->clazz, obj); dvmAbort(); } #endif return true; } /* File: cstubs/stubdefs.c */ /* this is a standard (no debug support) interpreter */ #define INTERP_TYPE INTERP_STD #define CHECK_DEBUG_AND_PROF() ((void)0) # define CHECK_TRACKED_REFS() ((void)0) #if defined(WITH_JIT) #define CHECK_JIT() (0) #define ABORT_JIT_TSELECT() ((void)0) #endif /* * In the C mterp stubs, "goto" is a function call followed immediately * by a return. */ #define GOTO_TARGET_DECL(_target, ...) \ void dvmMterp_##_target(MterpGlue* glue, ## __VA_ARGS__); #define GOTO_TARGET(_target, ...) \ void dvmMterp_##_target(MterpGlue* glue, ## __VA_ARGS__) { \ u2 ref, vsrc1, vsrc2, vdst; \ u2 inst = FETCH(0); \ const Method* methodToCall; \ StackSaveArea* debugSaveArea; #define GOTO_TARGET_END } /* * Redefine what used to be local variable accesses into MterpGlue struct * references. (These are undefined down in "footer.c".) */ #define retval glue->retval #define pc glue->pc #define fp glue->fp #define curMethod glue->method #define methodClassDex glue->methodClassDex #define self glue->self #define debugTrackedRefStart glue->debugTrackedRefStart /* ugh */ #define STUB_HACK(x) x /* * Opcode handler framing macros. Here, each opcode is a separate function * that takes a "glue" argument and returns void. We can't declare * these "static" because they may be called from an assembly stub. */ #define HANDLE_OPCODE(_op) \ void dvmMterp_##_op(MterpGlue* glue) { \ u2 ref, vsrc1, vsrc2, vdst; \ u2 inst = FETCH(0); #define OP_END } /* * Like the "portable" FINISH, but don't reload "inst", and return to caller * when done. */ #define FINISH(_offset) { \ ADJUST_PC(_offset); \ CHECK_DEBUG_AND_PROF(); \ CHECK_TRACKED_REFS(); \ return; \ } /* * The "goto label" statements turn into function calls followed by * return statements. Some of the functions take arguments, which in the * portable interpreter are handled by assigning values to globals. */ #define GOTO_exceptionThrown() \ do { \ dvmMterp_exceptionThrown(glue); \ return; \ } while(false) #define GOTO_returnFromMethod() \ do { \ dvmMterp_returnFromMethod(glue); \ return; \ } while(false) #define GOTO_invoke(_target, _methodCallRange) \ do { \ dvmMterp_##_target(glue, _methodCallRange); \ return; \ } while(false) #define GOTO_invokeMethod(_methodCallRange, _methodToCall, _vsrc1, _vdst) \ do { \ dvmMterp_invokeMethod(glue, _methodCallRange, _methodToCall, \ _vsrc1, _vdst); \ return; \ } while(false) /* * As a special case, "goto bail" turns into a longjmp. Use "bail_switch" * if we need to switch to the other interpreter upon our return. */ #define GOTO_bail() \ dvmMterpStdBail(glue, false); #define GOTO_bail_switch() \ dvmMterpStdBail(glue, true); /* * Periodically check for thread suspension. * * While we're at it, see if a debugger has attached or the profiler has * started. If so, switch to a different "goto" table. */ #define PERIODIC_CHECKS(_entryPoint, _pcadj) { \ if (dvmCheckSuspendQuick(self)) { \ EXPORT_PC(); /* need for precise GC */ \ dvmCheckSuspendPending(self); \ } \ if (NEED_INTERP_SWITCH(INTERP_TYPE)) { \ ADJUST_PC(_pcadj); \ glue->entryPoint = _entryPoint; \ LOGVV("threadid=%d: switch to STD ep=%d adj=%d\n", \ self->threadId, (_entryPoint), (_pcadj)); \ GOTO_bail_switch(); \ } \ } /* File: c/opcommon.c */ /* forward declarations of goto targets */ GOTO_TARGET_DECL(filledNewArray, bool methodCallRange); GOTO_TARGET_DECL(invokeVirtual, bool methodCallRange); GOTO_TARGET_DECL(invokeSuper, bool methodCallRange); GOTO_TARGET_DECL(invokeInterface, bool methodCallRange); GOTO_TARGET_DECL(invokeDirect, bool methodCallRange); GOTO_TARGET_DECL(invokeStatic, bool methodCallRange); GOTO_TARGET_DECL(invokeVirtualQuick, bool methodCallRange); GOTO_TARGET_DECL(invokeSuperQuick, bool methodCallRange); GOTO_TARGET_DECL(invokeMethod, bool methodCallRange, const Method* methodToCall, u2 count, u2 regs); GOTO_TARGET_DECL(returnFromMethod); GOTO_TARGET_DECL(exceptionThrown); /* * =========================================================================== * * What follows are opcode definitions shared between multiple opcodes with * minor substitutions handled by the C pre-processor. These should probably * use the mterp substitution mechanism instead, with the code here moved * into common fragment files (like the asm "binop.S"), although it's hard * to give up the C preprocessor in favor of the much simpler text subst. * * =========================================================================== */ #define HANDLE_NUMCONV(_opcode, _opname, _fromtype, _totype) \ HANDLE_OPCODE(_opcode /*vA, vB*/) \ vdst = INST_A(inst); \ vsrc1 = INST_B(inst); \ ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \ SET_REGISTER##_totype(vdst, \ GET_REGISTER##_fromtype(vsrc1)); \ FINISH(1); #define HANDLE_FLOAT_TO_INT(_opcode, _opname, _fromvtype, _fromrtype, \ _tovtype, _tortype) \ HANDLE_OPCODE(_opcode /*vA, vB*/) \ { \ /* spec defines specific handling for +/- inf and NaN values */ \ _fromvtype val; \ _tovtype intMin, intMax, result; \ vdst = INST_A(inst); \ vsrc1 = INST_B(inst); \ ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \ val = GET_REGISTER##_fromrtype(vsrc1); \ intMin = (_tovtype) 1 << (sizeof(_tovtype) * 8 -1); \ intMax = ~intMin; \ result = (_tovtype) val; \ if (val >= intMax) /* +inf */ \ result = intMax; \ else if (val <= intMin) /* -inf */ \ result = intMin; \ else if (val != val) /* NaN */ \ result = 0; \ else \ result = (_tovtype) val; \ SET_REGISTER##_tortype(vdst, result); \ } \ FINISH(1); #define HANDLE_INT_TO_SMALL(_opcode, _opname, _type) \ HANDLE_OPCODE(_opcode /*vA, vB*/) \ vdst = INST_A(inst); \ vsrc1 = INST_B(inst); \ ILOGV("|int-to-%s v%d,v%d", (_opname), vdst, vsrc1); \ SET_REGISTER(vdst, (_type) GET_REGISTER(vsrc1)); \ FINISH(1); /* NOTE: the comparison result is always a signed 4-byte integer */ #define HANDLE_OP_CMPX(_opcode, _opname, _varType, _type, _nanVal) \ HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ { \ int result; \ u2 regs; \ _varType val1, val2; \ vdst = INST_AA(inst); \ regs = FETCH(1); \ vsrc1 = regs & 0xff; \ vsrc2 = regs >> 8; \ ILOGV("|cmp%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ val1 = GET_REGISTER##_type(vsrc1); \ val2 = GET_REGISTER##_type(vsrc2); \ if (val1 == val2) \ result = 0; \ else if (val1 < val2) \ result = -1; \ else if (val1 > val2) \ result = 1; \ else \ result = (_nanVal); \ ILOGV("+ result=%d\n", result); \ SET_REGISTER(vdst, result); \ } \ FINISH(2); #define HANDLE_OP_IF_XX(_opcode, _opname, _cmp) \ HANDLE_OPCODE(_opcode /*vA, vB, +CCCC*/) \ vsrc1 = INST_A(inst); \ vsrc2 = INST_B(inst); \ if ((s4) GET_REGISTER(vsrc1) _cmp (s4) GET_REGISTER(vsrc2)) { \ int branchOffset = (s2)FETCH(1); /* sign-extended */ \ ILOGV("|if-%s v%d,v%d,+0x%04x", (_opname), vsrc1, vsrc2, \ branchOffset); \ ILOGV("> branch taken"); \ if (branchOffset < 0) \ PERIODIC_CHECKS(kInterpEntryInstr, branchOffset); \ FINISH(branchOffset); \ } else { \ ILOGV("|if-%s v%d,v%d,-", (_opname), vsrc1, vsrc2); \ FINISH(2); \ } #define HANDLE_OP_IF_XXZ(_opcode, _opname, _cmp) \ HANDLE_OPCODE(_opcode /*vAA, +BBBB*/) \ vsrc1 = INST_AA(inst); \ if ((s4) GET_REGISTER(vsrc1) _cmp 0) { \ int branchOffset = (s2)FETCH(1); /* sign-extended */ \ ILOGV("|if-%s v%d,+0x%04x", (_opname), vsrc1, branchOffset); \ ILOGV("> branch taken"); \ if (branchOffset < 0) \ PERIODIC_CHECKS(kInterpEntryInstr, branchOffset); \ FINISH(branchOffset); \ } else { \ ILOGV("|if-%s v%d,-", (_opname), vsrc1); \ FINISH(2); \ } #define HANDLE_UNOP(_opcode, _opname, _pfx, _sfx, _type) \ HANDLE_OPCODE(_opcode /*vA, vB*/) \ vdst = INST_A(inst); \ vsrc1 = INST_B(inst); \ ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \ SET_REGISTER##_type(vdst, _pfx GET_REGISTER##_type(vsrc1) _sfx); \ FINISH(1); #define HANDLE_OP_X_INT(_opcode, _opname, _op, _chkdiv) \ HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ { \ u2 srcRegs; \ vdst = INST_AA(inst); \ srcRegs = FETCH(1); \ vsrc1 = srcRegs & 0xff; \ vsrc2 = srcRegs >> 8; \ ILOGV("|%s-int v%d,v%d", (_opname), vdst, vsrc1); \ if (_chkdiv != 0) { \ s4 firstVal, secondVal, result; \ firstVal = GET_REGISTER(vsrc1); \ secondVal = GET_REGISTER(vsrc2); \ if (secondVal == 0) { \ EXPORT_PC(); \ dvmThrowException("Ljava/lang/ArithmeticException;", \ "divide by zero"); \ GOTO_exceptionThrown(); \ } \ if ((u4)firstVal == 0x80000000 && secondVal == -1) { \ if (_chkdiv == 1) \ result = firstVal; /* division */ \ else \ result = 0; /* remainder */ \ } else { \ result = firstVal _op secondVal; \ } \ SET_REGISTER(vdst, result); \ } else { \ /* non-div/rem case */ \ SET_REGISTER(vdst, \ (s4) GET_REGISTER(vsrc1) _op (s4) GET_REGISTER(vsrc2)); \ } \ } \ FINISH(2); #define HANDLE_OP_SHX_INT(_opcode, _opname, _cast, _op) \ HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ { \ u2 srcRegs; \ vdst = INST_AA(inst); \ srcRegs = FETCH(1); \ vsrc1 = srcRegs & 0xff; \ vsrc2 = srcRegs >> 8; \ ILOGV("|%s-int v%d,v%d", (_opname), vdst, vsrc1); \ SET_REGISTER(vdst, \ _cast GET_REGISTER(vsrc1) _op (GET_REGISTER(vsrc2) & 0x1f)); \ } \ FINISH(2); #define HANDLE_OP_X_INT_LIT16(_opcode, _opname, _op, _chkdiv) \ HANDLE_OPCODE(_opcode /*vA, vB, #+CCCC*/) \ vdst = INST_A(inst); \ vsrc1 = INST_B(inst); \ vsrc2 = FETCH(1); \ ILOGV("|%s-int/lit16 v%d,v%d,#+0x%04x", \ (_opname), vdst, vsrc1, vsrc2); \ if (_chkdiv != 0) { \ s4 firstVal, result; \ firstVal = GET_REGISTER(vsrc1); \ if ((s2) vsrc2 == 0) { \ EXPORT_PC(); \ dvmThrowException("Ljava/lang/ArithmeticException;", \ "divide by zero"); \ GOTO_exceptionThrown(); \ } \ if ((u4)firstVal == 0x80000000 && ((s2) vsrc2) == -1) { \ /* won't generate /lit16 instr for this; check anyway */ \ if (_chkdiv == 1) \ result = firstVal; /* division */ \ else \ result = 0; /* remainder */ \ } else { \ result = firstVal _op (s2) vsrc2; \ } \ SET_REGISTER(vdst, result); \ } else { \ /* non-div/rem case */ \ SET_REGISTER(vdst, GET_REGISTER(vsrc1) _op (s2) vsrc2); \ } \ FINISH(2); #define HANDLE_OP_X_INT_LIT8(_opcode, _opname, _op, _chkdiv) \ HANDLE_OPCODE(_opcode /*vAA, vBB, #+CC*/) \ { \ u2 litInfo; \ vdst = INST_AA(inst); \ litInfo = FETCH(1); \ vsrc1 = litInfo & 0xff; \ vsrc2 = litInfo >> 8; /* constant */ \ ILOGV("|%s-int/lit8 v%d,v%d,#+0x%02x", \ (_opname), vdst, vsrc1, vsrc2); \ if (_chkdiv != 0) { \ s4 firstVal, result; \ firstVal = GET_REGISTER(vsrc1); \ if ((s1) vsrc2 == 0) { \ EXPORT_PC(); \ dvmThrowException("Ljava/lang/ArithmeticException;", \ "divide by zero"); \ GOTO_exceptionThrown(); \ } \ if ((u4)firstVal == 0x80000000 && ((s1) vsrc2) == -1) { \ if (_chkdiv == 1) \ result = firstVal; /* division */ \ else \ result = 0; /* remainder */ \ } else { \ result = firstVal _op ((s1) vsrc2); \ } \ SET_REGISTER(vdst, result); \ } else { \ SET_REGISTER(vdst, \ (s4) GET_REGISTER(vsrc1) _op (s1) vsrc2); \ } \ } \ FINISH(2); #define HANDLE_OP_SHX_INT_LIT8(_opcode, _opname, _cast, _op) \ HANDLE_OPCODE(_opcode /*vAA, vBB, #+CC*/) \ { \ u2 litInfo; \ vdst = INST_AA(inst); \ litInfo = FETCH(1); \ vsrc1 = litInfo & 0xff; \ vsrc2 = litInfo >> 8; /* constant */ \ ILOGV("|%s-int/lit8 v%d,v%d,#+0x%02x", \ (_opname), vdst, vsrc1, vsrc2); \ SET_REGISTER(vdst, \ _cast GET_REGISTER(vsrc1) _op (vsrc2 & 0x1f)); \ } \ FINISH(2); #define HANDLE_OP_X_INT_2ADDR(_opcode, _opname, _op, _chkdiv) \ HANDLE_OPCODE(_opcode /*vA, vB*/) \ vdst = INST_A(inst); \ vsrc1 = INST_B(inst); \ ILOGV("|%s-int-2addr v%d,v%d", (_opname), vdst, vsrc1); \ if (_chkdiv != 0) { \ s4 firstVal, secondVal, result; \ firstVal = GET_REGISTER(vdst); \ secondVal = GET_REGISTER(vsrc1); \ if (secondVal == 0) { \ EXPORT_PC(); \ dvmThrowException("Ljava/lang/ArithmeticException;", \ "divide by zero"); \ GOTO_exceptionThrown(); \ } \ if ((u4)firstVal == 0x80000000 && secondVal == -1) { \ if (_chkdiv == 1) \ result = firstVal; /* division */ \ else \ result = 0; /* remainder */ \ } else { \ result = firstVal _op secondVal; \ } \ SET_REGISTER(vdst, result); \ } else { \ SET_REGISTER(vdst, \ (s4) GET_REGISTER(vdst) _op (s4) GET_REGISTER(vsrc1)); \ } \ FINISH(1); #define HANDLE_OP_SHX_INT_2ADDR(_opcode, _opname, _cast, _op) \ HANDLE_OPCODE(_opcode /*vA, vB*/) \ vdst = INST_A(inst); \ vsrc1 = INST_B(inst); \ ILOGV("|%s-int-2addr v%d,v%d", (_opname), vdst, vsrc1); \ SET_REGISTER(vdst, \ _cast GET_REGISTER(vdst) _op (GET_REGISTER(vsrc1) & 0x1f)); \ FINISH(1); #define HANDLE_OP_X_LONG(_opcode, _opname, _op, _chkdiv) \ HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ { \ u2 srcRegs; \ vdst = INST_AA(inst); \ srcRegs = FETCH(1); \ vsrc1 = srcRegs & 0xff; \ vsrc2 = srcRegs >> 8; \ ILOGV("|%s-long v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ if (_chkdiv != 0) { \ s8 firstVal, secondVal, result; \ firstVal = GET_REGISTER_WIDE(vsrc1); \ secondVal = GET_REGISTER_WIDE(vsrc2); \ if (secondVal == 0LL) { \ EXPORT_PC(); \ dvmThrowException("Ljava/lang/ArithmeticException;", \ "divide by zero"); \ GOTO_exceptionThrown(); \ } \ if ((u8)firstVal == 0x8000000000000000ULL && \ secondVal == -1LL) \ { \ if (_chkdiv == 1) \ result = firstVal; /* division */ \ else \ result = 0; /* remainder */ \ } else { \ result = firstVal _op secondVal; \ } \ SET_REGISTER_WIDE(vdst, result); \ } else { \ SET_REGISTER_WIDE(vdst, \ (s8) GET_REGISTER_WIDE(vsrc1) _op (s8) GET_REGISTER_WIDE(vsrc2)); \ } \ } \ FINISH(2); #define HANDLE_OP_SHX_LONG(_opcode, _opname, _cast, _op) \ HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ { \ u2 srcRegs; \ vdst = INST_AA(inst); \ srcRegs = FETCH(1); \ vsrc1 = srcRegs & 0xff; \ vsrc2 = srcRegs >> 8; \ ILOGV("|%s-long v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ SET_REGISTER_WIDE(vdst, \ _cast GET_REGISTER_WIDE(vsrc1) _op (GET_REGISTER(vsrc2) & 0x3f)); \ } \ FINISH(2); #define HANDLE_OP_X_LONG_2ADDR(_opcode, _opname, _op, _chkdiv) \ HANDLE_OPCODE(_opcode /*vA, vB*/) \ vdst = INST_A(inst); \ vsrc1 = INST_B(inst); \ ILOGV("|%s-long-2addr v%d,v%d", (_opname), vdst, vsrc1); \ if (_chkdiv != 0) { \ s8 firstVal, secondVal, result; \ firstVal = GET_REGISTER_WIDE(vdst); \ secondVal = GET_REGISTER_WIDE(vsrc1); \ if (secondVal == 0LL) { \ EXPORT_PC(); \ dvmThrowException("Ljava/lang/ArithmeticException;", \ "divide by zero"); \ GOTO_exceptionThrown(); \ } \ if ((u8)firstVal == 0x8000000000000000ULL && \ secondVal == -1LL) \ { \ if (_chkdiv == 1) \ result = firstVal; /* division */ \ else \ result = 0; /* remainder */ \ } else { \ result = firstVal _op secondVal; \ } \ SET_REGISTER_WIDE(vdst, result); \ } else { \ SET_REGISTER_WIDE(vdst, \ (s8) GET_REGISTER_WIDE(vdst) _op (s8)GET_REGISTER_WIDE(vsrc1));\ } \ FINISH(1); #define HANDLE_OP_SHX_LONG_2ADDR(_opcode, _opname, _cast, _op) \ HANDLE_OPCODE(_opcode /*vA, vB*/) \ vdst = INST_A(inst); \ vsrc1 = INST_B(inst); \ ILOGV("|%s-long-2addr v%d,v%d", (_opname), vdst, vsrc1); \ SET_REGISTER_WIDE(vdst, \ _cast GET_REGISTER_WIDE(vdst) _op (GET_REGISTER(vsrc1) & 0x3f)); \ FINISH(1); #define HANDLE_OP_X_FLOAT(_opcode, _opname, _op) \ HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ { \ u2 srcRegs; \ vdst = INST_AA(inst); \ srcRegs = FETCH(1); \ vsrc1 = srcRegs & 0xff; \ vsrc2 = srcRegs >> 8; \ ILOGV("|%s-float v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ SET_REGISTER_FLOAT(vdst, \ GET_REGISTER_FLOAT(vsrc1) _op GET_REGISTER_FLOAT(vsrc2)); \ } \ FINISH(2); #define HANDLE_OP_X_DOUBLE(_opcode, _opname, _op) \ HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ { \ u2 srcRegs; \ vdst = INST_AA(inst); \ srcRegs = FETCH(1); \ vsrc1 = srcRegs & 0xff; \ vsrc2 = srcRegs >> 8; \ ILOGV("|%s-double v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ SET_REGISTER_DOUBLE(vdst, \ GET_REGISTER_DOUBLE(vsrc1) _op GET_REGISTER_DOUBLE(vsrc2)); \ } \ FINISH(2); #define HANDLE_OP_X_FLOAT_2ADDR(_opcode, _opname, _op) \ HANDLE_OPCODE(_opcode /*vA, vB*/) \ vdst = INST_A(inst); \ vsrc1 = INST_B(inst); \ ILOGV("|%s-float-2addr v%d,v%d", (_opname), vdst, vsrc1); \ SET_REGISTER_FLOAT(vdst, \ GET_REGISTER_FLOAT(vdst) _op GET_REGISTER_FLOAT(vsrc1)); \ FINISH(1); #define HANDLE_OP_X_DOUBLE_2ADDR(_opcode, _opname, _op) \ HANDLE_OPCODE(_opcode /*vA, vB*/) \ vdst = INST_A(inst); \ vsrc1 = INST_B(inst); \ ILOGV("|%s-double-2addr v%d,v%d", (_opname), vdst, vsrc1); \ SET_REGISTER_DOUBLE(vdst, \ GET_REGISTER_DOUBLE(vdst) _op GET_REGISTER_DOUBLE(vsrc1)); \ FINISH(1); #define HANDLE_OP_AGET(_opcode, _opname, _type, _regsize) \ HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ { \ ArrayObject* arrayObj; \ u2 arrayInfo; \ EXPORT_PC(); \ vdst = INST_AA(inst); \ arrayInfo = FETCH(1); \ vsrc1 = arrayInfo & 0xff; /* array ptr */ \ vsrc2 = arrayInfo >> 8; /* index */ \ ILOGV("|aget%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ arrayObj = (ArrayObject*) GET_REGISTER(vsrc1); \ if (!checkForNull((Object*) arrayObj)) \ GOTO_exceptionThrown(); \ if (GET_REGISTER(vsrc2) >= arrayObj->length) { \ LOGV("Invalid array access: %p %d (len=%d)\n", \ arrayObj, vsrc2, arrayObj->length); \ dvmThrowException("Ljava/lang/ArrayIndexOutOfBoundsException;", \ NULL); \ GOTO_exceptionThrown(); \ } \ SET_REGISTER##_regsize(vdst, \ ((_type*) arrayObj->contents)[GET_REGISTER(vsrc2)]); \ ILOGV("+ AGET[%d]=0x%x", GET_REGISTER(vsrc2), GET_REGISTER(vdst)); \ } \ FINISH(2); #define HANDLE_OP_APUT(_opcode, _opname, _type, _regsize) \ HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ { \ ArrayObject* arrayObj; \ u2 arrayInfo; \ EXPORT_PC(); \ vdst = INST_AA(inst); /* AA: source value */ \ arrayInfo = FETCH(1); \ vsrc1 = arrayInfo & 0xff; /* BB: array ptr */ \ vsrc2 = arrayInfo >> 8; /* CC: index */ \ ILOGV("|aput%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ arrayObj = (ArrayObject*) GET_REGISTER(vsrc1); \ if (!checkForNull((Object*) arrayObj)) \ GOTO_exceptionThrown(); \ if (GET_REGISTER(vsrc2) >= arrayObj->length) { \ dvmThrowException("Ljava/lang/ArrayIndexOutOfBoundsException;", \ NULL); \ GOTO_exceptionThrown(); \ } \ ILOGV("+ APUT[%d]=0x%08x", GET_REGISTER(vsrc2), GET_REGISTER(vdst));\ ((_type*) arrayObj->contents)[GET_REGISTER(vsrc2)] = \ GET_REGISTER##_regsize(vdst); \ } \ FINISH(2); /* * It's possible to get a bad value out of a field with sub-32-bit stores * because the -quick versions always operate on 32 bits. Consider: * short foo = -1 (sets a 32-bit register to 0xffffffff) * iput-quick foo (writes all 32 bits to the field) * short bar = 1 (sets a 32-bit register to 0x00000001) * iput-short (writes the low 16 bits to the field) * iget-quick foo (reads all 32 bits from the field, yielding 0xffff0001) * This can only happen when optimized and non-optimized code has interleaved * access to the same field. This is unlikely but possible. * * The easiest way to fix this is to always read/write 32 bits at a time. On * a device with a 16-bit data bus this is sub-optimal. (The alternative * approach is to have sub-int versions of iget-quick, but now we're wasting * Dalvik instruction space and making it less likely that handler code will * already be in the CPU i-cache.) */ #define HANDLE_IGET_X(_opcode, _opname, _ftype, _regsize) \ HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \ { \ InstField* ifield; \ Object* obj; \ EXPORT_PC(); \ vdst = INST_A(inst); \ vsrc1 = INST_B(inst); /* object ptr */ \ ref = FETCH(1); /* field ref */ \ ILOGV("|iget%s v%d,v%d,field@0x%04x", (_opname), vdst, vsrc1, ref); \ obj = (Object*) GET_REGISTER(vsrc1); \ if (!checkForNull(obj)) \ GOTO_exceptionThrown(); \ ifield = (InstField*) dvmDexGetResolvedField(methodClassDex, ref); \ if (ifield == NULL) { \ ifield = dvmResolveInstField(curMethod->clazz, ref); \ if (ifield == NULL) \ GOTO_exceptionThrown(); \ } \ SET_REGISTER##_regsize(vdst, \ dvmGetField##_ftype(obj, ifield->byteOffset)); \ ILOGV("+ IGET '%s'=0x%08llx", ifield->field.name, \ (u8) GET_REGISTER##_regsize(vdst)); \ UPDATE_FIELD_GET(&ifield->field); \ } \ FINISH(2); #define HANDLE_IGET_X_QUICK(_opcode, _opname, _ftype, _regsize) \ HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \ { \ Object* obj; \ vdst = INST_A(inst); \ vsrc1 = INST_B(inst); /* object ptr */ \ ref = FETCH(1); /* field offset */ \ ILOGV("|iget%s-quick v%d,v%d,field@+%u", \ (_opname), vdst, vsrc1, ref); \ obj = (Object*) GET_REGISTER(vsrc1); \ if (!checkForNullExportPC(obj, fp, pc)) \ GOTO_exceptionThrown(); \ SET_REGISTER##_regsize(vdst, dvmGetField##_ftype(obj, ref)); \ ILOGV("+ IGETQ %d=0x%08llx", ref, \ (u8) GET_REGISTER##_regsize(vdst)); \ } \ FINISH(2); #define HANDLE_IPUT_X(_opcode, _opname, _ftype, _regsize) \ HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \ { \ InstField* ifield; \ Object* obj; \ EXPORT_PC(); \ vdst = INST_A(inst); \ vsrc1 = INST_B(inst); /* object ptr */ \ ref = FETCH(1); /* field ref */ \ ILOGV("|iput%s v%d,v%d,field@0x%04x", (_opname), vdst, vsrc1, ref); \ obj = (Object*) GET_REGISTER(vsrc1); \ if (!checkForNull(obj)) \ GOTO_exceptionThrown(); \ ifield = (InstField*) dvmDexGetResolvedField(methodClassDex, ref); \ if (ifield == NULL) { \ ifield = dvmResolveInstField(curMethod->clazz, ref); \ if (ifield == NULL) \ GOTO_exceptionThrown(); \ } \ dvmSetField##_ftype(obj, ifield->byteOffset, \ GET_REGISTER##_regsize(vdst)); \ ILOGV("+ IPUT '%s'=0x%08llx", ifield->field.name, \ (u8) GET_REGISTER##_regsize(vdst)); \ UPDATE_FIELD_PUT(&ifield->field); \ } \ FINISH(2); #define HANDLE_IPUT_X_QUICK(_opcode, _opname, _ftype, _regsize) \ HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \ { \ Object* obj; \ vdst = INST_A(inst); \ vsrc1 = INST_B(inst); /* object ptr */ \ ref = FETCH(1); /* field offset */ \ ILOGV("|iput%s-quick v%d,v%d,field@0x%04x", \ (_opname), vdst, vsrc1, ref); \ obj = (Object*) GET_REGISTER(vsrc1); \ if (!checkForNullExportPC(obj, fp, pc)) \ GOTO_exceptionThrown(); \ dvmSetField##_ftype(obj, ref, GET_REGISTER##_regsize(vdst)); \ ILOGV("+ IPUTQ %d=0x%08llx", ref, \ (u8) GET_REGISTER##_regsize(vdst)); \ } \ FINISH(2); #define HANDLE_SGET_X(_opcode, _opname, _ftype, _regsize) \ HANDLE_OPCODE(_opcode /*vAA, field@BBBB*/) \ { \ StaticField* sfield; \ vdst = INST_AA(inst); \ ref = FETCH(1); /* field ref */ \ ILOGV("|sget%s v%d,sfield@0x%04x", (_opname), vdst, ref); \ sfield = (StaticField*)dvmDexGetResolvedField(methodClassDex, ref); \ if (sfield == NULL) { \ EXPORT_PC(); \ sfield = dvmResolveStaticField(curMethod->clazz, ref); \ if (sfield == NULL) \ GOTO_exceptionThrown(); \ } \ SET_REGISTER##_regsize(vdst, dvmGetStaticField##_ftype(sfield)); \ ILOGV("+ SGET '%s'=0x%08llx", \ sfield->field.name, (u8)GET_REGISTER##_regsize(vdst)); \ UPDATE_FIELD_GET(&sfield->field); \ } \ FINISH(2); #define HANDLE_SPUT_X(_opcode, _opname, _ftype, _regsize) \ HANDLE_OPCODE(_opcode /*vAA, field@BBBB*/) \ { \ StaticField* sfield; \ vdst = INST_AA(inst); \ ref = FETCH(1); /* field ref */ \ ILOGV("|sput%s v%d,sfield@0x%04x", (_opname), vdst, ref); \ sfield = (StaticField*)dvmDexGetResolvedField(methodClassDex, ref); \ if (sfield == NULL) { \ EXPORT_PC(); \ sfield = dvmResolveStaticField(curMethod->clazz, ref); \ if (sfield == NULL) \ GOTO_exceptionThrown(); \ } \ dvmSetStaticField##_ftype(sfield, GET_REGISTER##_regsize(vdst)); \ ILOGV("+ SPUT '%s'=0x%08llx", \ sfield->field.name, (u8)GET_REGISTER##_regsize(vdst)); \ UPDATE_FIELD_PUT(&sfield->field); \ } \ FINISH(2); /* File: c/OP_BREAKPOINT.c */ HANDLE_OPCODE(OP_BREAKPOINT) #if (INTERP_TYPE == INTERP_DBG) && defined(WITH_DEBUGGER) { /* * Restart this instruction with the original opcode. We do * this by simply jumping to the handler. * * It's probably not necessary to update "inst", but we do it * for the sake of anything that needs to do disambiguation in a * common handler with INST_INST. * * The breakpoint itself is handled over in updateDebugger(), * because we need to detect other events (method entry, single * step) and report them in the same event packet, and we're not * yet handling those through breakpoint instructions. By the * time we get here, the breakpoint has already been handled and * the thread resumed. */ u1 originalOpCode = dvmGetOriginalOpCode(pc); LOGV("+++ break 0x%02x (0x%04x -> 0x%04x)\n", originalOpCode, inst, INST_REPLACE_OP(inst, originalOpCode)); inst = INST_REPLACE_OP(inst, originalOpCode); FINISH_BKPT(originalOpCode); } #else LOGE("Breakpoint hit in non-debug interpreter\n"); dvmAbort(); #endif OP_END /* File: c/OP_EXECUTE_INLINE_RANGE.c */ HANDLE_OPCODE(OP_EXECUTE_INLINE_RANGE /*{vCCCC..v(CCCC+AA-1)}, inline@BBBB*/) { u4 arg0, arg1, arg2, arg3; arg0 = arg1 = arg2 = arg3 = 0; /* placate gcc */ EXPORT_PC(); vsrc1 = INST_AA(inst); /* #of args */ ref = FETCH(1); /* inline call "ref" */ vdst = FETCH(2); /* range base */ ILOGV("|execute-inline-range args=%d @%d {regs=v%d-v%d}", vsrc1, ref, vdst, vdst+vsrc1-1); assert((vdst >> 16) == 0); // 16-bit type -or- high 16 bits clear assert(vsrc1 <= 4); switch (vsrc1) { case 4: arg3 = GET_REGISTER(vdst+3); /* fall through */ case 3: arg2 = GET_REGISTER(vdst+2); /* fall through */ case 2: arg1 = GET_REGISTER(vdst+1); /* fall through */ case 1: arg0 = GET_REGISTER(vdst+0); /* fall through */ default: // case 0 ; } #if INTERP_TYPE == INTERP_DBG if (!dvmPerformInlineOp4Dbg(arg0, arg1, arg2, arg3, &retval, ref)) GOTO_exceptionThrown(); #else if (!dvmPerformInlineOp4Std(arg0, arg1, arg2, arg3, &retval, ref)) GOTO_exceptionThrown(); #endif } FINISH(3); OP_END /* File: c/gotoTargets.c */ /* * C footer. This has some common code shared by the various targets. */ /* * Everything from here on is a "goto target". In the basic interpreter * we jump into these targets and then jump directly to the handler for * next instruction. Here, these are subroutines that return to the caller. */ GOTO_TARGET(filledNewArray, bool methodCallRange) { ClassObject* arrayClass; ArrayObject* newArray; u4* contents; char typeCh; int i; u4 arg5; EXPORT_PC(); ref = FETCH(1); /* class ref */ vdst = FETCH(2); /* first 4 regs -or- range base */ if (methodCallRange) { vsrc1 = INST_AA(inst); /* #of elements */ arg5 = -1; /* silence compiler warning */ ILOGV("|filled-new-array-range args=%d @0x%04x {regs=v%d-v%d}", vsrc1, ref, vdst, vdst+vsrc1-1); } else { arg5 = INST_A(inst); vsrc1 = INST_B(inst); /* #of elements */ ILOGV("|filled-new-array args=%d @0x%04x {regs=0x%04x %x}", vsrc1, ref, vdst, arg5); } /* * Resolve the array class. */ arrayClass = dvmDexGetResolvedClass(methodClassDex, ref); if (arrayClass == NULL) { arrayClass = dvmResolveClass(curMethod->clazz, ref, false); if (arrayClass == NULL) GOTO_exceptionThrown(); } /* if (!dvmIsArrayClass(arrayClass)) { dvmThrowException("Ljava/lang/RuntimeError;", "filled-new-array needs array class"); GOTO_exceptionThrown(); } */ /* verifier guarantees this is an array class */ assert(dvmIsArrayClass(arrayClass)); assert(dvmIsClassInitialized(arrayClass)); /* * Create an array of the specified type. */ LOGVV("+++ filled-new-array type is '%s'\n", arrayClass->descriptor); typeCh = arrayClass->descriptor[1]; if (typeCh == 'D' || typeCh == 'J') { /* category 2 primitives not allowed */ dvmThrowException("Ljava/lang/RuntimeError;", "bad filled array req"); GOTO_exceptionThrown(); } else if (typeCh != 'L' && typeCh != '[' && typeCh != 'I') { /* TODO: requires multiple "fill in" loops with different widths */ LOGE("non-int primitives not implemented\n"); dvmThrowException("Ljava/lang/InternalError;", "filled-new-array not implemented for anything but 'int'"); GOTO_exceptionThrown(); } newArray = dvmAllocArrayByClass(arrayClass, vsrc1, ALLOC_DONT_TRACK); if (newArray == NULL) GOTO_exceptionThrown(); /* * Fill in the elements. It's legal for vsrc1 to be zero. */ contents = (u4*) newArray->contents; if (methodCallRange) { for (i = 0; i < vsrc1; i++) contents[i] = GET_REGISTER(vdst+i); } else { assert(vsrc1 <= 5); if (vsrc1 == 5) { contents[4] = GET_REGISTER(arg5); vsrc1--; } for (i = 0; i < vsrc1; i++) { contents[i] = GET_REGISTER(vdst & 0x0f); vdst >>= 4; } } retval.l = newArray; } FINISH(3); GOTO_TARGET_END GOTO_TARGET(invokeVirtual, bool methodCallRange) { Method* baseMethod; Object* thisPtr; EXPORT_PC(); vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ ref = FETCH(1); /* method ref */ vdst = FETCH(2); /* 4 regs -or- first reg */ /* * The object against which we are executing a method is always * in the first argument. */ if (methodCallRange) { assert(vsrc1 > 0); ILOGV("|invoke-virtual-range args=%d @0x%04x {regs=v%d-v%d}", vsrc1, ref, vdst, vdst+vsrc1-1); thisPtr = (Object*) GET_REGISTER(vdst); } else { assert((vsrc1>>4) > 0); ILOGV("|invoke-virtual args=%d @0x%04x {regs=0x%04x %x}", vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); thisPtr = (Object*) GET_REGISTER(vdst & 0x0f); } if (!checkForNull(thisPtr)) GOTO_exceptionThrown(); /* * Resolve the method. This is the correct method for the static * type of the object. We also verify access permissions here. */ baseMethod = dvmDexGetResolvedMethod(methodClassDex, ref); if (baseMethod == NULL) { baseMethod = dvmResolveMethod(curMethod->clazz, ref,METHOD_VIRTUAL); if (baseMethod == NULL) { ILOGV("+ unknown method or access denied\n"); GOTO_exceptionThrown(); } } /* * Combine the object we found with the vtable offset in the * method. */ assert(baseMethod->methodIndex < thisPtr->clazz->vtableCount); methodToCall = thisPtr->clazz->vtable[baseMethod->methodIndex]; #if 0 if (dvmIsAbstractMethod(methodToCall)) { /* * This can happen if you create two classes, Base and Sub, where * Sub is a sub-class of Base. Declare a protected abstract * method foo() in Base, and invoke foo() from a method in Base. * Base is an "abstract base class" and is never instantiated * directly. Now, Override foo() in Sub, and use Sub. This * Works fine unless Sub stops providing an implementation of * the method. */ dvmThrowException("Ljava/lang/AbstractMethodError;", "abstract method not implemented"); GOTO_exceptionThrown(); } #else assert(!dvmIsAbstractMethod(methodToCall) || methodToCall->nativeFunc != NULL); #endif LOGVV("+++ base=%s.%s virtual[%d]=%s.%s\n", baseMethod->clazz->descriptor, baseMethod->name, (u4) baseMethod->methodIndex, methodToCall->clazz->descriptor, methodToCall->name); assert(methodToCall != NULL); #if 0 if (vsrc1 != methodToCall->insSize) { LOGW("WRONG METHOD: base=%s.%s virtual[%d]=%s.%s\n", baseMethod->clazz->descriptor, baseMethod->name, (u4) baseMethod->methodIndex, methodToCall->clazz->descriptor, methodToCall->name); //dvmDumpClass(baseMethod->clazz); //dvmDumpClass(methodToCall->clazz); dvmDumpAllClasses(0); } #endif GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); } GOTO_TARGET_END GOTO_TARGET(invokeSuper, bool methodCallRange) { Method* baseMethod; u2 thisReg; EXPORT_PC(); vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ ref = FETCH(1); /* method ref */ vdst = FETCH(2); /* 4 regs -or- first reg */ if (methodCallRange) { ILOGV("|invoke-super-range args=%d @0x%04x {regs=v%d-v%d}", vsrc1, ref, vdst, vdst+vsrc1-1); thisReg = vdst; } else { ILOGV("|invoke-super args=%d @0x%04x {regs=0x%04x %x}", vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); thisReg = vdst & 0x0f; } /* impossible in well-formed code, but we must check nevertheless */ if (!checkForNull((Object*) GET_REGISTER(thisReg))) GOTO_exceptionThrown(); /* * Resolve the method. This is the correct method for the static * type of the object. We also verify access permissions here. * The first arg to dvmResolveMethod() is just the referring class * (used for class loaders and such), so we don't want to pass * the superclass into the resolution call. */ baseMethod = dvmDexGetResolvedMethod(methodClassDex, ref); if (baseMethod == NULL) { baseMethod = dvmResolveMethod(curMethod->clazz, ref,METHOD_VIRTUAL); if (baseMethod == NULL) { ILOGV("+ unknown method or access denied\n"); GOTO_exceptionThrown(); } } /* * Combine the object we found with the vtable offset in the * method's class. * * We're using the current method's class' superclass, not the * superclass of "this". This is because we might be executing * in a method inherited from a superclass, and we want to run * in that class' superclass. */ if (baseMethod->methodIndex >= curMethod->clazz->super->vtableCount) { /* * Method does not exist in the superclass. Could happen if * superclass gets updated. */ dvmThrowException("Ljava/lang/NoSuchMethodError;", baseMethod->name); GOTO_exceptionThrown(); } methodToCall = curMethod->clazz->super->vtable[baseMethod->methodIndex]; #if 0 if (dvmIsAbstractMethod(methodToCall)) { dvmThrowException("Ljava/lang/AbstractMethodError;", "abstract method not implemented"); GOTO_exceptionThrown(); } #else assert(!dvmIsAbstractMethod(methodToCall) || methodToCall->nativeFunc != NULL); #endif LOGVV("+++ base=%s.%s super-virtual=%s.%s\n", baseMethod->clazz->descriptor, baseMethod->name, methodToCall->clazz->descriptor, methodToCall->name); assert(methodToCall != NULL); GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); } GOTO_TARGET_END GOTO_TARGET(invokeInterface, bool methodCallRange) { Object* thisPtr; ClassObject* thisClass; EXPORT_PC(); vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ ref = FETCH(1); /* method ref */ vdst = FETCH(2); /* 4 regs -or- first reg */ /* * The object against which we are executing a method is always * in the first argument. */ if (methodCallRange) { assert(vsrc1 > 0); ILOGV("|invoke-interface-range args=%d @0x%04x {regs=v%d-v%d}", vsrc1, ref, vdst, vdst+vsrc1-1); thisPtr = (Object*) GET_REGISTER(vdst); } else { assert((vsrc1>>4) > 0); ILOGV("|invoke-interface args=%d @0x%04x {regs=0x%04x %x}", vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); thisPtr = (Object*) GET_REGISTER(vdst & 0x0f); } if (!checkForNull(thisPtr)) GOTO_exceptionThrown(); thisClass = thisPtr->clazz; /* * Given a class and a method index, find the Method* with the * actual code we want to execute. */ methodToCall = dvmFindInterfaceMethodInCache(thisClass, ref, curMethod, methodClassDex); if (methodToCall == NULL) { assert(dvmCheckException(self)); GOTO_exceptionThrown(); } GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); } GOTO_TARGET_END GOTO_TARGET(invokeDirect, bool methodCallRange) { u2 thisReg; vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ ref = FETCH(1); /* method ref */ vdst = FETCH(2); /* 4 regs -or- first reg */ EXPORT_PC(); if (methodCallRange) { ILOGV("|invoke-direct-range args=%d @0x%04x {regs=v%d-v%d}", vsrc1, ref, vdst, vdst+vsrc1-1); thisReg = vdst; } else { ILOGV("|invoke-direct args=%d @0x%04x {regs=0x%04x %x}", vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); thisReg = vdst & 0x0f; } if (!checkForNull((Object*) GET_REGISTER(thisReg))) GOTO_exceptionThrown(); methodToCall = dvmDexGetResolvedMethod(methodClassDex, ref); if (methodToCall == NULL) { methodToCall = dvmResolveMethod(curMethod->clazz, ref, METHOD_DIRECT); if (methodToCall == NULL) { ILOGV("+ unknown direct method\n"); // should be impossible GOTO_exceptionThrown(); } } GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); } GOTO_TARGET_END GOTO_TARGET(invokeStatic, bool methodCallRange) vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ ref = FETCH(1); /* method ref */ vdst = FETCH(2); /* 4 regs -or- first reg */ EXPORT_PC(); if (methodCallRange) ILOGV("|invoke-static-range args=%d @0x%04x {regs=v%d-v%d}", vsrc1, ref, vdst, vdst+vsrc1-1); else ILOGV("|invoke-static args=%d @0x%04x {regs=0x%04x %x}", vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); methodToCall = dvmDexGetResolvedMethod(methodClassDex, ref); if (methodToCall == NULL) { methodToCall = dvmResolveMethod(curMethod->clazz, ref, METHOD_STATIC); if (methodToCall == NULL) { ILOGV("+ unknown method\n"); GOTO_exceptionThrown(); } } GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); GOTO_TARGET_END GOTO_TARGET(invokeVirtualQuick, bool methodCallRange) { Object* thisPtr; EXPORT_PC(); vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ ref = FETCH(1); /* vtable index */ vdst = FETCH(2); /* 4 regs -or- first reg */ /* * The object against which we are executing a method is always * in the first argument. */ if (methodCallRange) { assert(vsrc1 > 0); ILOGV("|invoke-virtual-quick-range args=%d @0x%04x {regs=v%d-v%d}", vsrc1, ref, vdst, vdst+vsrc1-1); thisPtr = (Object*) GET_REGISTER(vdst); } else { assert((vsrc1>>4) > 0); ILOGV("|invoke-virtual-quick args=%d @0x%04x {regs=0x%04x %x}", vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); thisPtr = (Object*) GET_REGISTER(vdst & 0x0f); } if (!checkForNull(thisPtr)) GOTO_exceptionThrown(); /* * Combine the object we found with the vtable offset in the * method. */ assert(ref < thisPtr->clazz->vtableCount); methodToCall = thisPtr->clazz->vtable[ref]; #if 0 if (dvmIsAbstractMethod(methodToCall)) { dvmThrowException("Ljava/lang/AbstractMethodError;", "abstract method not implemented"); GOTO_exceptionThrown(); } #else assert(!dvmIsAbstractMethod(methodToCall) || methodToCall->nativeFunc != NULL); #endif LOGVV("+++ virtual[%d]=%s.%s\n", ref, methodToCall->clazz->descriptor, methodToCall->name); assert(methodToCall != NULL); GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); } GOTO_TARGET_END GOTO_TARGET(invokeSuperQuick, bool methodCallRange) { u2 thisReg; EXPORT_PC(); vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ ref = FETCH(1); /* vtable index */ vdst = FETCH(2); /* 4 regs -or- first reg */ if (methodCallRange) { ILOGV("|invoke-super-quick-range args=%d @0x%04x {regs=v%d-v%d}", vsrc1, ref, vdst, vdst+vsrc1-1); thisReg = vdst; } else { ILOGV("|invoke-super-quick args=%d @0x%04x {regs=0x%04x %x}", vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); thisReg = vdst & 0x0f; } /* impossible in well-formed code, but we must check nevertheless */ if (!checkForNull((Object*) GET_REGISTER(thisReg))) GOTO_exceptionThrown(); #if 0 /* impossible in optimized + verified code */ if (ref >= curMethod->clazz->super->vtableCount) { dvmThrowException("Ljava/lang/NoSuchMethodError;", NULL); GOTO_exceptionThrown(); } #else assert(ref < curMethod->clazz->super->vtableCount); #endif /* * Combine the object we found with the vtable offset in the * method's class. * * We're using the current method's class' superclass, not the * superclass of "this". This is because we might be executing * in a method inherited from a superclass, and we want to run * in the method's class' superclass. */ methodToCall = curMethod->clazz->super->vtable[ref]; #if 0 if (dvmIsAbstractMethod(methodToCall)) { dvmThrowException("Ljava/lang/AbstractMethodError;", "abstract method not implemented"); GOTO_exceptionThrown(); } #else assert(!dvmIsAbstractMethod(methodToCall) || methodToCall->nativeFunc != NULL); #endif LOGVV("+++ super-virtual[%d]=%s.%s\n", ref, methodToCall->clazz->descriptor, methodToCall->name); assert(methodToCall != NULL); GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); } GOTO_TARGET_END /* * General handling for return-void, return, and return-wide. Put the * return value in "retval" before jumping here. */ GOTO_TARGET(returnFromMethod) { StackSaveArea* saveArea; /* * We must do this BEFORE we pop the previous stack frame off, so * that the GC can see the return value (if any) in the local vars. * * Since this is now an interpreter switch point, we must do it before * we do anything at all. */ PERIODIC_CHECKS(kInterpEntryReturn, 0); ILOGV("> retval=0x%llx (leaving %s.%s %s)", retval.j, curMethod->clazz->descriptor, curMethod->name, curMethod->shorty); //DUMP_REGS(curMethod, fp); saveArea = SAVEAREA_FROM_FP(fp); #ifdef EASY_GDB debugSaveArea = saveArea; #endif #if (INTERP_TYPE == INTERP_DBG) && defined(WITH_PROFILER) TRACE_METHOD_EXIT(self, curMethod); #endif /* back up to previous frame and see if we hit a break */ fp = saveArea->prevFrame; assert(fp != NULL); if (dvmIsBreakFrame(fp)) { /* bail without popping the method frame from stack */ LOGVV("+++ returned into break frame\n"); #if defined(WITH_JIT) /* Let the Jit know the return is terminating normally */ CHECK_JIT(); #endif GOTO_bail(); } /* update thread FP, and reset local variables */ self->curFrame = fp; curMethod = SAVEAREA_FROM_FP(fp)->method; //methodClass = curMethod->clazz; methodClassDex = curMethod->clazz->pDvmDex; pc = saveArea->savedPc; ILOGD("> (return to %s.%s %s)", curMethod->clazz->descriptor, curMethod->name, curMethod->shorty); /* use FINISH on the caller's invoke instruction */ //u2 invokeInstr = INST_INST(FETCH(0)); if (true /*invokeInstr >= OP_INVOKE_VIRTUAL && invokeInstr <= OP_INVOKE_INTERFACE*/) { FINISH(3); } else { //LOGE("Unknown invoke instr %02x at %d\n", // invokeInstr, (int) (pc - curMethod->insns)); assert(false); } } GOTO_TARGET_END /* * Jump here when the code throws an exception. * * By the time we get here, the Throwable has been created and the stack * trace has been saved off. */ GOTO_TARGET(exceptionThrown) { Object* exception; int catchRelPc; /* * Since this is now an interpreter switch point, we must do it before * we do anything at all. */ PERIODIC_CHECKS(kInterpEntryThrow, 0); #if defined(WITH_JIT) // Something threw during trace selection - abort the current trace ABORT_JIT_TSELECT(); #endif /* * We save off the exception and clear the exception status. While * processing the exception we might need to load some Throwable * classes, and we don't want class loader exceptions to get * confused with this one. */ assert(dvmCheckException(self)); exception = dvmGetException(self); dvmAddTrackedAlloc(exception, self); dvmClearException(self); LOGV("Handling exception %s at %s:%d\n", exception->clazz->descriptor, curMethod->name, dvmLineNumFromPC(curMethod, pc - curMethod->insns)); #if (INTERP_TYPE == INTERP_DBG) && defined(WITH_DEBUGGER) /* * Tell the debugger about it. * * TODO: if the exception was thrown by interpreted code, control * fell through native, and then back to us, we will report the * exception at the point of the throw and again here. We can avoid * this by not reporting exceptions when we jump here directly from * the native call code above, but then we won't report exceptions * that were thrown *from* the JNI code (as opposed to *through* it). * * The correct solution is probably to ignore from-native exceptions * here, and have the JNI exception code do the reporting to the * debugger. */ if (gDvm.debuggerActive) { void* catchFrame; catchRelPc = dvmFindCatchBlock(self, pc - curMethod->insns, exception, true, &catchFrame); dvmDbgPostException(fp, pc - curMethod->insns, catchFrame, catchRelPc, exception); } #endif /* * We need to unroll to the catch block or the nearest "break" * frame. * * A break frame could indicate that we have reached an intermediate * native call, or have gone off the top of the stack and the thread * needs to exit. Either way, we return from here, leaving the * exception raised. * * If we do find a catch block, we want to transfer execution to * that point. * * Note this can cause an exception while resolving classes in * the "catch" blocks. */ catchRelPc = dvmFindCatchBlock(self, pc - curMethod->insns, exception, false, (void*)&fp); /* * Restore the stack bounds after an overflow. This isn't going to * be correct in all circumstances, e.g. if JNI code devours the * exception this won't happen until some other exception gets * thrown. If the code keeps pushing the stack bounds we'll end * up aborting the VM. * * Note we want to do this *after* the call to dvmFindCatchBlock, * because that may need extra stack space to resolve exception * classes (e.g. through a class loader). * * It's possible for the stack overflow handling to cause an * exception (specifically, class resolution in a "catch" block * during the call above), so we could see the thread's overflow * flag raised but actually be running in a "nested" interpreter * frame. We don't allow doubled-up StackOverflowErrors, so * we can check for this by just looking at the exception type * in the cleanup function. Also, we won't unroll past the SOE * point because the more-recent exception will hit a break frame * as it unrolls to here. */ if (self->stackOverflowed) dvmCleanupStackOverflow(self, exception); if (catchRelPc < 0) { /* falling through to JNI code or off the bottom of the stack */ #if DVM_SHOW_EXCEPTION >= 2 LOGD("Exception %s from %s:%d not caught locally\n", exception->clazz->descriptor, dvmGetMethodSourceFile(curMethod), dvmLineNumFromPC(curMethod, pc - curMethod->insns)); #endif dvmSetException(self, exception); dvmReleaseTrackedAlloc(exception, self); GOTO_bail(); } #if DVM_SHOW_EXCEPTION >= 3 { const Method* catchMethod = SAVEAREA_FROM_FP(fp)->method; LOGD("Exception %s thrown from %s:%d to %s:%d\n", exception->clazz->descriptor, dvmGetMethodSourceFile(curMethod), dvmLineNumFromPC(curMethod, pc - curMethod->insns), dvmGetMethodSourceFile(catchMethod), dvmLineNumFromPC(catchMethod, catchRelPc)); } #endif /* * Adjust local variables to match self->curFrame and the * updated PC. */ //fp = (u4*) self->curFrame; curMethod = SAVEAREA_FROM_FP(fp)->method; //methodClass = curMethod->clazz; methodClassDex = curMethod->clazz->pDvmDex; pc = curMethod->insns + catchRelPc; ILOGV("> pc <-- %s.%s %s", curMethod->clazz->descriptor, curMethod->name, curMethod->shorty); DUMP_REGS(curMethod, fp, false); // show all regs /* * Restore the exception if the handler wants it. * * The Dalvik spec mandates that, if an exception handler wants to * do something with the exception, the first instruction executed * must be "move-exception". We can pass the exception along * through the thread struct, and let the move-exception instruction * clear it for us. * * If the handler doesn't call move-exception, we don't want to * finish here with an exception still pending. */ if (INST_INST(FETCH(0)) == OP_MOVE_EXCEPTION) dvmSetException(self, exception); dvmReleaseTrackedAlloc(exception, self); FINISH(0); } GOTO_TARGET_END /* * General handling for invoke-{virtual,super,direct,static,interface}, * including "quick" variants. * * Set "methodToCall" to the Method we're calling, and "methodCallRange" * depending on whether this is a "/range" instruction. * * For a range call: * "vsrc1" holds the argument count (8 bits) * "vdst" holds the first argument in the range * For a non-range call: * "vsrc1" holds the argument count (4 bits) and the 5th argument index * "vdst" holds four 4-bit register indices * * The caller must EXPORT_PC before jumping here, because any method * call can throw a stack overflow exception. */ GOTO_TARGET(invokeMethod, bool methodCallRange, const Method* _methodToCall, u2 count, u2 regs) { STUB_HACK(vsrc1 = count; vdst = regs; methodToCall = _methodToCall;); //printf("range=%d call=%p count=%d regs=0x%04x\n", // methodCallRange, methodToCall, count, regs); //printf(" --> %s.%s %s\n", methodToCall->clazz->descriptor, // methodToCall->name, methodToCall->shorty); u4* outs; int i; /* * Copy args. This may corrupt vsrc1/vdst. */ if (methodCallRange) { // could use memcpy or a "Duff's device"; most functions have // so few args it won't matter much assert(vsrc1 <= curMethod->outsSize); assert(vsrc1 == methodToCall->insSize); outs = OUTS_FROM_FP(fp, vsrc1); for (i = 0; i < vsrc1; i++) outs[i] = GET_REGISTER(vdst+i); } else { u4 count = vsrc1 >> 4; assert(count <= curMethod->outsSize); assert(count == methodToCall->insSize); assert(count <= 5); outs = OUTS_FROM_FP(fp, count); #if 0 if (count == 5) { outs[4] = GET_REGISTER(vsrc1 & 0x0f); count--; } for (i = 0; i < (int) count; i++) { outs[i] = GET_REGISTER(vdst & 0x0f); vdst >>= 4; } #else // This version executes fewer instructions but is larger // overall. Seems to be a teensy bit faster. assert((vdst >> 16) == 0); // 16 bits -or- high 16 bits clear switch (count) { case 5: outs[4] = GET_REGISTER(vsrc1 & 0x0f); case 4: outs[3] = GET_REGISTER(vdst >> 12); case 3: outs[2] = GET_REGISTER((vdst & 0x0f00) >> 8); case 2: outs[1] = GET_REGISTER((vdst & 0x00f0) >> 4); case 1: outs[0] = GET_REGISTER(vdst & 0x0f); default: ; } #endif } } /* * (This was originally a "goto" target; I've kept it separate from the * stuff above in case we want to refactor things again.) * * At this point, we have the arguments stored in the "outs" area of * the current method's stack frame, and the method to call in * "methodToCall". Push a new stack frame. */ { StackSaveArea* newSaveArea; u4* newFp; ILOGV("> %s%s.%s %s", dvmIsNativeMethod(methodToCall) ? "(NATIVE) " : "", methodToCall->clazz->descriptor, methodToCall->name, methodToCall->shorty); newFp = (u4*) SAVEAREA_FROM_FP(fp) - methodToCall->registersSize; newSaveArea = SAVEAREA_FROM_FP(newFp); /* verify that we have enough space */ if (true) { u1* bottom; bottom = (u1*) newSaveArea - methodToCall->outsSize * sizeof(u4); if (bottom < self->interpStackEnd) { /* stack overflow */ LOGV("Stack overflow on method call (start=%p end=%p newBot=%p(%d) size=%d '%s')\n", self->interpStackStart, self->interpStackEnd, bottom, (u1*) fp - bottom, self->interpStackSize, methodToCall->name); dvmHandleStackOverflow(self, methodToCall); assert(dvmCheckException(self)); GOTO_exceptionThrown(); } //LOGD("+++ fp=%p newFp=%p newSave=%p bottom=%p\n", // fp, newFp, newSaveArea, bottom); } #ifdef LOG_INSTR if (methodToCall->registersSize > methodToCall->insSize) { /* * This makes valgrind quiet when we print registers that * haven't been initialized. Turn it off when the debug * messages are disabled -- we want valgrind to report any * used-before-initialized issues. */ memset(newFp, 0xcc, (methodToCall->registersSize - methodToCall->insSize) * 4); } #endif #ifdef EASY_GDB newSaveArea->prevSave = SAVEAREA_FROM_FP(fp); #endif newSaveArea->prevFrame = fp; newSaveArea->savedPc = pc; #if defined(WITH_JIT) newSaveArea->returnAddr = 0; #endif newSaveArea->method = methodToCall; if (!dvmIsNativeMethod(methodToCall)) { /* * "Call" interpreted code. Reposition the PC, update the * frame pointer and other local state, and continue. */ curMethod = methodToCall; methodClassDex = curMethod->clazz->pDvmDex; pc = methodToCall->insns; fp = self->curFrame = newFp; #ifdef EASY_GDB debugSaveArea = SAVEAREA_FROM_FP(newFp); #endif #if INTERP_TYPE == INTERP_DBG debugIsMethodEntry = true; // profiling, debugging #endif ILOGD("> pc <-- %s.%s %s", curMethod->clazz->descriptor, curMethod->name, curMethod->shorty); DUMP_REGS(curMethod, fp, true); // show input args FINISH(0); // jump to method start } else { /* set this up for JNI locals, even if not a JNI native */ #ifdef USE_INDIRECT_REF newSaveArea->xtra.localRefCookie = self->jniLocalRefTable.segmentState.all; #else newSaveArea->xtra.localRefCookie = self->jniLocalRefTable.nextEntry; #endif self->curFrame = newFp; DUMP_REGS(methodToCall, newFp, true); // show input args #if (INTERP_TYPE == INTERP_DBG) && defined(WITH_DEBUGGER) if (gDvm.debuggerActive) { dvmDbgPostLocationEvent(methodToCall, -1, dvmGetThisPtr(curMethod, fp), DBG_METHOD_ENTRY); } #endif #if (INTERP_TYPE == INTERP_DBG) && defined(WITH_PROFILER) TRACE_METHOD_ENTER(self, methodToCall); #endif ILOGD("> native <-- %s.%s %s", methodToCall->clazz->descriptor, methodToCall->name, methodToCall->shorty); #if defined(WITH_JIT) /* Allow the Jit to end any pending trace building */ CHECK_JIT(); #endif /* * Jump through native call bridge. Because we leave no * space for locals on native calls, "newFp" points directly * to the method arguments. */ (*methodToCall->nativeFunc)(newFp, &retval, methodToCall, self); #if (INTERP_TYPE == INTERP_DBG) && defined(WITH_DEBUGGER) if (gDvm.debuggerActive) { dvmDbgPostLocationEvent(methodToCall, -1, dvmGetThisPtr(curMethod, fp), DBG_METHOD_EXIT); } #endif #if (INTERP_TYPE == INTERP_DBG) && defined(WITH_PROFILER) TRACE_METHOD_EXIT(self, methodToCall); #endif /* pop frame off */ dvmPopJniLocals(self, newSaveArea); self->curFrame = fp; /* * If the native code threw an exception, or interpreted code * invoked by the native call threw one and nobody has cleared * it, jump to our local exception handling. */ if (dvmCheckException(self)) { LOGV("Exception thrown by/below native code\n"); GOTO_exceptionThrown(); } ILOGD("> retval=0x%llx (leaving native)", retval.j); ILOGD("> (return from native %s.%s to %s.%s %s)", methodToCall->clazz->descriptor, methodToCall->name, curMethod->clazz->descriptor, curMethod->name, curMethod->shorty); //u2 invokeInstr = INST_INST(FETCH(0)); if (true /*invokeInstr >= OP_INVOKE_VIRTUAL && invokeInstr <= OP_INVOKE_INTERFACE*/) { FINISH(3); } else { //LOGE("Unknown invoke instr %02x at %d\n", // invokeInstr, (int) (pc - curMethod->insns)); assert(false); } } } assert(false); // should not get here GOTO_TARGET_END /* File: cstubs/enddefs.c */ /* undefine "magic" name remapping */ #undef retval #undef pc #undef fp #undef curMethod #undef methodClassDex #undef self #undef debugTrackedRefStart