/* -*- c++ -*- */
/*
 * Copyright (C) 2009 The Android Open Source Project
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#ifndef ANDROID_ASTL_VECTOR__
#define ANDROID_ASTL_VECTOR__

#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <iterator>
#include <memory>
#include <type_traits.h>

namespace std {

#ifdef _T
#error "_T is a macro."
#endif

// Simple vector implementation. Its purpose is to be able to compile code that
// uses the STL and requires std::vector.
//
// IMPORTANT:
// . This class it is not fully STL compliant. Some constructors/methods maybe
// missing, they will be added on demand.
// . A standard container which offers fixed time access to individual
// elements in any order.
//
// TODO: Use the stack for the default constructor. When the capacity
// grows beyond that move the data to the heap.

template<typename _T>
class vector
{
    typedef vector<_T> vector_type;

  public:
    typedef _T         value_type;
    typedef _T*        pointer;
    typedef const _T*  const_pointer;
    typedef _T&        reference;
    typedef const _T&  const_reference;

    typedef __wrapper_iterator<pointer,vector_type>  iterator;
    typedef __wrapper_iterator<const_pointer,vector_type> const_iterator;

    typedef size_t    size_type;
    typedef ptrdiff_t difference_type;

    vector();

    // Create a vector with bitwise copies of an exemplar element.
    // @param num The number of elements to create.
    // @param init_value The element to copy.
    explicit vector(const size_type num, const value_type& init_value = value_type());

    // Create a vector by copying the elements from [first, last).
    //
    // If the iterators are random-access, the constructor will be
    // able to reserve the memory in a single call before copying the
    // elements. If the elements are POD, the constructor uses memmove.
    template<typename _Iterator>
    vector(_Iterator first, _Iterator last) {
        // Because of template matching, vector<int>(int n, int val)
        // will now match this constructor (int != size_type) instead
        // of the repeat one above. In this case, the _Iterator
        // template parameter is an integral type and not an iterator,
        // we use that to call the correct initialize impl.
        typedef typename is_integral<_Iterator>::type integral;
        initialize(first, last, integral());
    }

    ~vector() { clear(); }

    // @return true if the vector is empty, false otherwise.
    bool empty() const { return mLength == 0; }
    size_type size() const { return mLength; }

    // @return the maximum size for a vector.
    size_type max_size() const { return (~size_type(0)) / sizeof(value_type); }

    // Change the capacity to new_size. 0 means shrink to fit. The
    // extra memory is not initialized when the capacity is grown.
    // @param new_size number of element to be allocated.
    // @return true if successful. The STL version returns nothing.
    bool reserve(size_type new_size = 0);

    // @return The total number of elements that the vector can hold
    // before more memory gets allocated.
    size_type capacity() const { return mCapacity; }

    reference front() { return *mBegin; }
    const_reference front() const { return *mBegin; }

    reference back() { return mLength ? *(mBegin + mLength - 1) : front(); }
    const_reference back() const { return mLength ? *(mBegin + mLength - 1) : front(); }

    // Subscript access to the vector's elements. Don't do boundary
    // check. Use at() for checked access.
    // @param index Of the element (0-based).
    // @return A const reference to the element.
    const_reference operator[](size_type index) const { return *(mBegin + index); }

    // @param index Of the element (0-based).
    // @return A reference to the element.
    reference operator[](size_type index) { return *(mBegin + index); }

    // 'at' is similar to operator[] except that it does check bounds.
    const_reference at(const size_type index) const
    { return index < mLength ? *( mBegin + index) : sDummy; }

    reference at(const size_type index)
    { return index < mLength ? *( mBegin + index) : sDummy; }

    iterator begin() { return iterator(mBegin); }
    iterator end() { return iterator(mBegin + mLength); }

    const_iterator begin() const { return const_iterator(mBegin); }
    const_iterator end() const { return const_iterator(mBegin + mLength); }

    // Add data at the end of the vector. Constant in time if the
    // memory has been preallocated (e.g using reserve).
    // @param elt To be added.
    void push_back(const value_type& elt);

    // Remove the last element. However, no memory is reclaimed from
    // the internal buffer: you need to call reserve() to recover it.
    void pop_back();

    // Remove the element pointed by the iterator.
    // Expensive since the remaining elts must be shifted around.
    // @param pos Iterator pointing to the elt to be removed.
    // @return An iterator pointing to the next elt or end().
    iterator erase(iterator pos);

    // Remove a range of elements [first, last)
    // @param first Iterator pointing to the first element to be removed.
    // @param last Iterator pointing to one past the last element to be removed.
    // @return An iterator pointing to the elt next to 'last' or end().
    iterator erase(iterator first, iterator last);

    // Empty the vector on return. Release the internal buffer. Length
    // and capacity are both 0 on return. If you want to keep the
    // internal buffer around for reuse, call 'resize'/'erase' instead.
    void clear();

    // Resize the vector to contain 'size' element. If 'size' is
    // smaller than the current size, the extra elements are dropped
    // but the reserved memory is not changed (use 'swap' to recover
    // memory.) If 'size' is greater, the vector is expanded by
    // inserting at the end as many copy of 'init_value' (this may
    // lead to some realloc) as necessary. See 'reserve'.
    void resize(size_type size, value_type init_value = value_type());

    void swap(vector& other);
  private:
    // See the 2 'initialize' methods first. They desambiguate between
    // repeat and range initialize. For range initialize, there is
    // another desambiguation based on the nature of the iterators.

    // Repeat constructor implementation.
    void repeat_initialize(const size_type num,
                           const value_type& init_value);

    // Initialize from a random access iterator.
    template<typename _Iterator>
    void range_initialize(_Iterator first, _Iterator last,
                          random_access_iterator_tag);

    // Initialize from an input iterator.
    template<typename _InputIterator>
    void range_initialize(_InputIterator first, _InputIterator last,
                          input_iterator_tag);

    // Repeat constructor that matched the templatized constructor for iterator.
    // The last parameter true_type is used by the caller to target this method.
    template<typename _Integral>
    void initialize(_Integral num, _Integral init_value, true_type) {
        repeat_initialize((size_type)num, init_value);
    }

    // Not a repeat constructor (last param type is false_type). first
    // and last are really iterators. Dispatch the call depending on
    // the iterators' category.
    template<typename _InputIterator>
    void initialize(_InputIterator first, _InputIterator last, false_type) {
        range_initialize(first, last, android::iterator_category(first));
    }

    // @return New internal buffer size when it is adjusted automatically.
    size_type grow() const;

    // Calls the class' deallocator explicitely on each instance in
    // the vector.
    void deallocate();

    pointer mBegin;
    size_type mCapacity;
    size_type mLength;
    static value_type sDummy;  // at() doen't throw exception and returns mDummy.
    static const size_type kExponentialFactor = 2;
    static const size_type kExponentialLimit = 256;
    static const size_type kLinearIncrement = 256;
};


// The implementation uses malloc instead of new because Posix states that:
// The pointer returned if the allocation succeeds shall be suitably
// aligned so that it may be assigned to a pointer to any type of
// object and then used to access such an object in the space
// allocated
// So as long as we malloc() more than 4 bytes, the returned block
// must be able to contain a pointer, and thus will be 32-bit
// aligned. I believe the bionic implementation uses a minimum of 8 or 16.
//
// Invariant: mLength <= mCapacity <= max_size()


template<typename _T>
vector<_T>::vector()
        :mBegin(NULL), mCapacity(0), mLength(0) { }

template<typename _T>
vector<_T>::vector(const size_type num, const value_type& init_value)
{
    repeat_initialize(num, init_value);
}

template<typename _T>
void vector<_T>::repeat_initialize(const size_type num,
                                   const value_type& init_value)
{
    if (num < max_size())
    {
        mBegin = static_cast<pointer>(malloc(num * sizeof(value_type)));
        if (mBegin)
        {
            mLength = mCapacity =  num;
            std::uninitialized_fill(mBegin, mBegin + mLength, init_value);
            return;
        }
    }
    mBegin = NULL;
    mLength = mCapacity =  0;
}

template<typename _T>
bool vector<_T>::reserve(size_type new_size)
{
    if (0 == new_size)
    {
        if (0 == mLength)  // Free whatever has been reserved.
        {
            clear();
            return true;
        }
        new_size = mLength;  // Shrink to fit.
    }
    else if (new_size < mLength || new_size > max_size())
    {
        return false;
    }

    if (is_pod<value_type>::value)
    {
        pointer oldBegin = mBegin;
        mBegin = static_cast<pointer>(
            realloc(mBegin, new_size * sizeof(value_type)));
        if (!mBegin)
        {
            mBegin = oldBegin;
            return false;
        }
    }
    else
    {
        pointer newBegin =  static_cast<pointer>(
            malloc(new_size * sizeof(value_type)));
        if (!newBegin) return false;

        if (mBegin != NULL) {
            std::uninitialized_copy(mBegin, mBegin + mLength, newBegin);
            deallocate();
        }
        mBegin = newBegin;
    }
    mCapacity = new_size;
    return true;
}

template<typename _T>
void vector<_T>::push_back(const value_type& elt)
{
    if (max_size() == mLength) return;
    if (mCapacity == mLength)
    {
        const size_type new_capacity = grow();
        if (0 == new_capacity || !reserve(new_capacity)) return;
    }
    // mLength < mCapacity
    if (is_pod<value_type>::value) {
        *(mBegin + mLength) = elt;
    } else {
        // The memory where the new element is added is uninitialized,
        // we cannot use assigment (lhs is not valid).
        new((void *)(mBegin + mLength)) _T(elt);
    }
    ++mLength;
}

template<typename _T>
void vector<_T>::pop_back()
{
    if (mLength > 0)
    {
        --mLength;
        if (!is_pod<value_type>::value)
        {
            (mBegin + mLength)->~_T();
        }
    }
}

template<typename _T>
typename vector<_T>::iterator
vector<_T>::erase(iterator pos) {
    if (mLength) {
        std::copy(pos + 1, end(), pos);
        --mLength;
        if (!is_pod<value_type>::value) {
            end()->~_T();
        }
    }
    return pos;
}

template<typename _T>
typename vector<_T>::iterator
vector<_T>::erase(iterator first, iterator last) {
    difference_type len = std::distance(first, last);
    if (len > 0) {
        last = std::copy(last, end(), first);

        if (!is_pod<value_type>::value) {
            while (last != end()) {
                last->~_T();
                ++last;
            }
        }
        mLength -= len;
    }
    return first;
}

template<typename _T>
void vector<_T>::clear()
{
    if(mBegin)
    {
        if (is_pod<value_type>::value)
        {
            free(mBegin);
        }
        else
        {
            deallocate();
        }
    }
    mBegin = NULL;
    mCapacity = 0;
    mLength = 0;
}

template<typename _T>
void vector<_T>::resize(size_type new_size, value_type init_value)
{
    if (mLength == new_size || new_size > max_size()) {
        return;
    } else if (new_size < mLength) {
        if (!is_pod<value_type>::value) {
            const pointer end = mBegin + mLength;
            for (pointer begin = mBegin + new_size;
                 begin < end; ++begin) {
                begin->~_T();
            }
        }
        mLength = new_size;
        return;
    }

    if (new_size > mCapacity && !reserve(new_size)) {
        return;
    }
    std::uninitialized_fill(mBegin + mLength, mBegin + new_size, init_value);
    mLength = new_size;
}

template<typename _T>
void vector<_T>::swap(vector& other)
{
    std::swap(mBegin, other.mBegin);
    std::swap(mCapacity, other.mCapacity);
    std::swap(mLength, other.mLength);
}

template<typename _T>
template<typename _InputIterator>
void vector<_T>::range_initialize(_InputIterator first, _InputIterator last,
                                  input_iterator_tag) {
    // There is no way to know how many elements we are going to
    // insert, call push_back which will alloc/realloc as needed.
    mBegin = NULL;
    mLength = mCapacity =  0;
    for (; first != last; ++first) {
        push_back(*first);
    }
}

template<typename _T>
template<typename _Iterator>
void vector<_T>::range_initialize(_Iterator first, _Iterator last,
                                  random_access_iterator_tag) {
    typedef typename iterator_traits<_Iterator>::difference_type difference_type;
    const difference_type num = std::distance(first, last);

    if (0 <= num && static_cast<size_type>(num) < max_size()) {
        mBegin = static_cast<pointer>(malloc(num * sizeof(value_type)));
        if (mBegin) {
            mLength = mCapacity =  num;
            std::uninitialized_copy(first, last, iterator(mBegin));
            return;
        }
    }
    mBegin = NULL;
    mLength = mCapacity =  0;
}


// Grow the capacity. Use exponential until kExponentialLimit then
// linear until it reaches max_size().
template<typename _T>
typename vector<_T>::size_type vector<_T>::grow() const
{
    size_type new_capacity;
    if (mCapacity > kExponentialLimit)
    {
        new_capacity = mCapacity + kLinearIncrement;
    }
    else
    {
        new_capacity = mCapacity == 0 ? kExponentialFactor : mCapacity * kExponentialFactor;
    }
    if (mCapacity > new_capacity || new_capacity > max_size())
    { // Overflow: cap at max_size() if not there already.
        new_capacity = mCapacity == max_size() ? 0 : max_size();
    }
    return  new_capacity;
}


// mBegin should not be NULL.
template<typename _T>
void vector<_T>::deallocate()
{
    pointer begin = mBegin;
    pointer end = mBegin + mLength;

    for (; begin != end; ++begin)
    {
        begin->~_T();
    }
    free(mBegin);
}

// Dummy element returned when at() is out of bound.
template<typename _T> _T vector<_T>::sDummy;

}  // namespace std

#endif  // ANDROID_ASTL_VECTOR__