/* ******************************************************************************* * * Copyright (C) 2003, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: uarrsort.c * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2003aug04 * created by: Markus W. Scherer * * Internal function for sorting arrays. */ #include "unicode/utypes.h" #include "cmemory.h" #include "uarrsort.h" enum { MIN_QSORT=9, /* from Knuth */ STACK_ITEM_SIZE=200 }; /* UComparator convenience implementations ---------------------------------- */ U_CAPI int32_t U_EXPORT2 uprv_uint16Comparator(const void *context, const void *left, const void *right) { return (int32_t)*(const uint16_t *)left - (int32_t)*(const uint16_t *)right; } U_CAPI int32_t U_EXPORT2 uprv_int32Comparator(const void *context, const void *left, const void *right) { return *(const int32_t *)left - *(const int32_t *)right; } U_CAPI int32_t U_EXPORT2 uprv_uint32Comparator(const void *context, const void *left, const void *right) { uint32_t l=*(const uint32_t *)left, r=*(const uint32_t *)right; /* compare directly because (l-r) would overflow the int32_t result */ if(l<r) { return -1; } else if(l==r) { return 0; } else /* l>r */ { return 1; } } /* Straight insertion sort from Knuth vol. III, pg. 81 ---------------------- */ static void doInsertionSort(char *array, int32_t start, int32_t limit, int32_t itemSize, UComparator *cmp, const void *context, void *pv) { int32_t i, j; for(j=start+1; j<limit; ++j) { /* v=array[j] */ uprv_memcpy(pv, array+j*itemSize, itemSize); for(i=j; i>start; --i) { if(/* v>=array[i-1] */ cmp(context, pv, array+(i-1)*itemSize)>=0) { break; } /* array[i]=array[i-1]; */ uprv_memcpy(array+i*itemSize, array+(i-1)*itemSize, itemSize); } if(i!=j) { /* array[i]=v; */ uprv_memcpy(array+i*itemSize, pv, itemSize); } } } static void insertionSort(char *array, int32_t length, int32_t itemSize, UComparator *cmp, const void *context, UErrorCode *pErrorCode) { UAlignedMemory v[STACK_ITEM_SIZE/sizeof(UAlignedMemory)+1]; void *pv; /* allocate an intermediate item variable (v) */ if(itemSize<=STACK_ITEM_SIZE) { pv=v; } else { pv=uprv_malloc(itemSize); if(pv==NULL) { *pErrorCode=U_MEMORY_ALLOCATION_ERROR; return; } } doInsertionSort(array, 0, length, itemSize, cmp, context, pv); if(pv!=v) { uprv_free(pv); } } /* QuickSort ---------------------------------------------------------------- */ /* * This implementation is semi-recursive: * It recurses for the smaller sub-array to shorten the recursion depth, * and loops for the larger sub-array. * * Loosely after QuickSort algorithms in * Niklaus Wirth * Algorithmen und Datenstrukturen mit Modula-2 * B.G. Teubner Stuttgart * 4. Auflage 1986 * ISBN 3-519-02260-5 */ static void subQuickSort(char *array, int32_t start, int32_t limit, int32_t itemSize, UComparator *cmp, const void *context, void *px, void *pw) { int32_t left, right; /* start and left are inclusive, limit and right are exclusive */ do { if((start+MIN_QSORT)>=limit) { doInsertionSort(array, start, limit, itemSize, cmp, context, px); break; } left=start; right=limit; /* x=array[middle] */ uprv_memcpy(px, array+((start+limit)/2)*itemSize, itemSize); do { while(/* array[left]<x */ cmp(context, array+left*itemSize, px)<0 ) { ++left; } while(/* x<array[right-1] */ cmp(context, px, array+(right-1)*itemSize)<0 ) { --right; } /* swap array[left] and array[right-1] via w; ++left; --right */ if(left<right) { --right; if(left<right) { uprv_memcpy(pw, array+left*itemSize, itemSize); uprv_memcpy(array+left*itemSize, array+right*itemSize, itemSize); uprv_memcpy(array+right*itemSize, pw, itemSize); } ++left; } } while(left<right); /* sort sub-arrays */ if((right-start)<(limit-left)) { /* sort [start..right[ */ if(start<(right-1)) { subQuickSort(array, start, right, itemSize, cmp, context, px, pw); } /* sort [left..limit[ */ start=left; } else { /* sort [left..limit[ */ if(left<(limit-1)) { subQuickSort(array, left, limit, itemSize, cmp, context, px, pw); } /* sort [start..right[ */ limit=right; } } while(start<(limit-1)); } static void quickSort(char *array, int32_t length, int32_t itemSize, UComparator *cmp, const void *context, UErrorCode *pErrorCode) { UAlignedMemory xw[(2*STACK_ITEM_SIZE)/sizeof(UAlignedMemory)+1]; void *p; /* allocate two intermediate item variables (x and w) */ if(itemSize<=STACK_ITEM_SIZE) { p=xw; } else { p=uprv_malloc(2*itemSize); if(p==NULL) { *pErrorCode=U_MEMORY_ALLOCATION_ERROR; return; } } subQuickSort(array, 0, length, itemSize, cmp, context, p, (char *)p+itemSize); if(p!=xw) { uprv_free(p); } } /* uprv_sortArray() API ----------------------------------------------------- */ /* * Check arguments, select an appropriate implementation, * cast the array to char * so that array+i*itemSize works. */ U_CAPI void U_EXPORT2 uprv_sortArray(void *array, int32_t length, int32_t itemSize, UComparator *cmp, const void *context, UBool sortStable, UErrorCode *pErrorCode) { if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return; } if((length>0 && array==NULL) || length<0 || itemSize<=0 || cmp==NULL) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return; } if(length<=1) { return; } else if(length<MIN_QSORT || sortStable) { insertionSort((char *)array, length, itemSize, cmp, context, pErrorCode); /* could add heapSort or similar for stable sorting of longer arrays */ } else { quickSort((char *)array, length, itemSize, cmp, context, pErrorCode); } }