#!/usr/bin/env perl # ==================================================================== # [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # "[Re]written" was achieved in two major overhauls. In 2004 BODY_* # functions were re-implemented to address P4 performance issue [see # commentary below], and in 2006 the rest was rewritten in order to # gain freedom to liberate licensing terms. # It was noted that Intel IA-32 C compiler generates code which # performs ~30% *faster* on P4 CPU than original *hand-coded* # SHA1 assembler implementation. To address this problem (and # prove that humans are still better than machines:-), the # original code was overhauled, which resulted in following # performance changes: # # compared with original compared with Intel cc # assembler impl. generated code # Pentium -16% +48% # PIII/AMD +8% +16% # P4 +85%(!) +45% # # As you can see Pentium came out as looser:-( Yet I reckoned that # improvement on P4 outweights the loss and incorporate this # re-tuned code to 0.9.7 and later. # ---------------------------------------------------------------- # <appro@fy.chalmers.se> $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; &asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386"); $A="eax"; $B="ebx"; $C="ecx"; $D="edx"; $E="edi"; $T="esi"; $tmp1="ebp"; @V=($A,$B,$C,$D,$E,$T); sub BODY_00_15 { local($n,$a,$b,$c,$d,$e,$f)=@_; &comment("00_15 $n"); &mov($f,$c); # f to hold F_00_19(b,c,d) if ($n==0) { &mov($tmp1,$a); } else { &mov($a,$tmp1); } &rotl($tmp1,5); # tmp1=ROTATE(a,5) &xor($f,$d); &add($tmp1,$e); # tmp1+=e; &and($f,$b); &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded # with xi, also note that e becomes # f in next round... &xor($f,$d); # f holds F_00_19(b,c,d) &rotr($b,2); # b=ROTATE(b,30) &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi if ($n==15) { &add($f,$tmp1); } # f+=tmp1 else { &add($tmp1,$f); } # f becomes a in next round } sub BODY_16_19 { local($n,$a,$b,$c,$d,$e,$f)=@_; &comment("16_19 $n"); &mov($f,&swtmp($n%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d) &xor($f,&swtmp(($n+2)%16)); &xor($tmp1,$d); &xor($f,&swtmp(($n+8)%16)); &and($tmp1,$b); # tmp1 holds F_00_19(b,c,d) &rotr($b,2); # b=ROTATE(b,30) &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd &rotl($f,1); # f=ROTATE(f,1) &xor($tmp1,$d); # tmp1=F_00_19(b,c,d) &mov(&swtmp($n%16),$f); # xi=f &lea($f,&DWP(0x5a827999,$f,$e));# f+=K_00_19+e &mov($e,$a); # e becomes volatile &rotl($e,5); # e=ROTATE(a,5) &add($f,$tmp1); # f+=F_00_19(b,c,d) &add($f,$e); # f+=ROTATE(a,5) } sub BODY_20_39 { local($n,$a,$b,$c,$d,$e,$f)=@_; local $K=($n<40)?0x6ed9eba1:0xca62c1d6; &comment("20_39 $n"); &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d) &mov($f,&swtmp($n%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) &rotr($b,2); # b=ROTATE(b,30) &xor($f,&swtmp(($n+2)%16)); &xor($tmp1,$c); &xor($f,&swtmp(($n+8)%16)); &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d) &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd &rotl($f,1); # f=ROTATE(f,1) &add($tmp1,$e); &mov(&swtmp($n%16),$f); # xi=f &mov($e,$a); # e becomes volatile &rotl($e,5); # e=ROTATE(a,5) &lea($f,&DWP($K,$f,$tmp1)); # f+=K_20_39+e &add($f,$e); # f+=ROTATE(a,5) } sub BODY_40_59 { local($n,$a,$b,$c,$d,$e,$f)=@_; &comment("40_59 $n"); &mov($f,&swtmp($n%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) &mov($tmp1,&swtmp(($n+2)%16)); &xor($f,$tmp1); &mov($tmp1,&swtmp(($n+8)%16)); &xor($f,$tmp1); &mov($tmp1,&swtmp(($n+13)%16)); &xor($f,$tmp1); # f holds xa^xb^xc^xd &mov($tmp1,$b); # tmp1 to hold F_40_59(b,c,d) &rotl($f,1); # f=ROTATE(f,1) &or($tmp1,$c); &mov(&swtmp($n%16),$f); # xi=f &and($tmp1,$d); &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e &mov($e,$b); # e becomes volatile and is used # to calculate F_40_59(b,c,d) &rotr($b,2); # b=ROTATE(b,30) &and($e,$c); &or($tmp1,$e); # tmp1 holds F_40_59(b,c,d) &mov($e,$a); &rotl($e,5); # e=ROTATE(a,5) &add($f,$tmp1); # f+=tmp1; &add($f,$e); # f+=ROTATE(a,5) } &function_begin("sha1_block_data_order"); &mov($tmp1,&wparam(0)); # SHA_CTX *c &mov($T,&wparam(1)); # const void *input &mov($A,&wparam(2)); # size_t num &stack_push(16); # allocate X[16] &shl($A,6); &add($A,$T); &mov(&wparam(2),$A); # pointer beyond the end of input &mov($E,&DWP(16,$tmp1));# pre-load E &set_label("loop",16); # copy input chunk to X, but reversing byte order! for ($i=0; $i<16; $i+=4) { &mov($A,&DWP(4*($i+0),$T)); &mov($B,&DWP(4*($i+1),$T)); &mov($C,&DWP(4*($i+2),$T)); &mov($D,&DWP(4*($i+3),$T)); &bswap($A); &bswap($B); &bswap($C); &bswap($D); &mov(&swtmp($i+0),$A); &mov(&swtmp($i+1),$B); &mov(&swtmp($i+2),$C); &mov(&swtmp($i+3),$D); } &mov(&wparam(1),$T); # redundant in 1st spin &mov($A,&DWP(0,$tmp1)); # load SHA_CTX &mov($B,&DWP(4,$tmp1)); &mov($C,&DWP(8,$tmp1)); &mov($D,&DWP(12,$tmp1)); # E is pre-loaded for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); } for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); } for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check &mov($tmp1,&wparam(0)); # re-load SHA_CTX* &mov($D,&wparam(1)); # D is last "T" and is discarded &add($E,&DWP(0,$tmp1)); # E is last "A"... &add($T,&DWP(4,$tmp1)); &add($A,&DWP(8,$tmp1)); &add($B,&DWP(12,$tmp1)); &add($C,&DWP(16,$tmp1)); &mov(&DWP(0,$tmp1),$E); # update SHA_CTX &add($D,64); # advance input pointer &mov(&DWP(4,$tmp1),$T); &cmp($D,&wparam(2)); # have we reached the end yet? &mov(&DWP(8,$tmp1),$A); &mov($E,$C); # C is last "E" which needs to be "pre-loaded" &mov(&DWP(12,$tmp1),$B); &mov($T,$D); # input pointer &mov(&DWP(16,$tmp1),$C); &jb(&label("loop")); &stack_pop(16); &function_end("sha1_block_data_order"); &asm_finish();