/* Native implementation of soft float functions. Only a single status context is supported */ #include "softfloat.h" #include <math.h> #if defined(HOST_SOLARIS) #include <fenv.h> #endif void set_float_rounding_mode(int val STATUS_PARAM) { STATUS(float_rounding_mode) = val; #if defined(HOST_BSD) && !defined(__APPLE__) || \ (defined(HOST_SOLARIS) && HOST_SOLARIS < 10) fpsetround(val); #elif defined(__arm__) /* nothing to do */ #else fesetround(val); #endif } #ifdef FLOATX80 void set_floatx80_rounding_precision(int val STATUS_PARAM) { STATUS(floatx80_rounding_precision) = val; } #endif #if defined(HOST_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10) #define lrint(d) ((int32_t)rint(d)) #define llrint(d) ((int64_t)rint(d)) #define lrintf(f) ((int32_t)rint(f)) #define llrintf(f) ((int64_t)rint(f)) #define sqrtf(f) ((float)sqrt(f)) #define remainderf(fa, fb) ((float)remainder(fa, fb)) #define rintf(f) ((float)rint(f)) #if !defined(__sparc__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10 extern long double rintl(long double); extern long double scalbnl(long double, int); long long llrintl(long double x) { return ((long long) rintl(x)); } long lrintl(long double x) { return ((long) rintl(x)); } long double ldexpl(long double x, int n) { return (scalbnl(x, n)); } #endif #endif #if defined(_ARCH_PPC) /* correct (but slow) PowerPC rint() (glibc version is incorrect) */ static double qemu_rint(double x) { double y = 4503599627370496.0; if (fabs(x) >= y) return x; if (x < 0) y = -y; y = (x + y) - y; if (y == 0.0) y = copysign(y, x); return y; } #define rint qemu_rint #endif /*---------------------------------------------------------------------------- | Software IEC/IEEE integer-to-floating-point conversion routines. *----------------------------------------------------------------------------*/ float32 int32_to_float32(int v STATUS_PARAM) { return (float32)v; } float32 uint32_to_float32(unsigned int v STATUS_PARAM) { return (float32)v; } float64 int32_to_float64(int v STATUS_PARAM) { return (float64)v; } float64 uint32_to_float64(unsigned int v STATUS_PARAM) { return (float64)v; } #ifdef FLOATX80 floatx80 int32_to_floatx80(int v STATUS_PARAM) { return (floatx80)v; } #endif float32 int64_to_float32( int64_t v STATUS_PARAM) { return (float32)v; } float32 uint64_to_float32( uint64_t v STATUS_PARAM) { return (float32)v; } float64 int64_to_float64( int64_t v STATUS_PARAM) { return (float64)v; } float64 uint64_to_float64( uint64_t v STATUS_PARAM) { return (float64)v; } #ifdef FLOATX80 floatx80 int64_to_floatx80( int64_t v STATUS_PARAM) { return (floatx80)v; } #endif /* XXX: this code implements the x86 behaviour, not the IEEE one. */ #if HOST_LONG_BITS == 32 static inline int long_to_int32(long a) { return a; } #else static inline int long_to_int32(long a) { if (a != (int32_t)a) a = 0x80000000; return a; } #endif /*---------------------------------------------------------------------------- | Software IEC/IEEE single-precision conversion routines. *----------------------------------------------------------------------------*/ int float32_to_int32( float32 a STATUS_PARAM) { return long_to_int32(lrintf(a)); } int float32_to_int32_round_to_zero( float32 a STATUS_PARAM) { return (int)a; } int64_t float32_to_int64( float32 a STATUS_PARAM) { return llrintf(a); } int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM) { return (int64_t)a; } float64 float32_to_float64( float32 a STATUS_PARAM) { return a; } #ifdef FLOATX80 floatx80 float32_to_floatx80( float32 a STATUS_PARAM) { return a; } #endif unsigned int float32_to_uint32( float32 a STATUS_PARAM) { int64_t v; unsigned int res; v = llrintf(a); if (v < 0) { res = 0; } else if (v > 0xffffffff) { res = 0xffffffff; } else { res = v; } return res; } unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM) { int64_t v; unsigned int res; v = (int64_t)a; if (v < 0) { res = 0; } else if (v > 0xffffffff) { res = 0xffffffff; } else { res = v; } return res; } /*---------------------------------------------------------------------------- | Software IEC/IEEE single-precision operations. *----------------------------------------------------------------------------*/ float32 float32_round_to_int( float32 a STATUS_PARAM) { return rintf(a); } float32 float32_rem( float32 a, float32 b STATUS_PARAM) { return remainderf(a, b); } float32 float32_sqrt( float32 a STATUS_PARAM) { return sqrtf(a); } int float32_compare( float32 a, float32 b STATUS_PARAM ) { if (a < b) { return float_relation_less; } else if (a == b) { return float_relation_equal; } else if (a > b) { return float_relation_greater; } else { return float_relation_unordered; } } int float32_compare_quiet( float32 a, float32 b STATUS_PARAM ) { if (isless(a, b)) { return float_relation_less; } else if (a == b) { return float_relation_equal; } else if (isgreater(a, b)) { return float_relation_greater; } else { return float_relation_unordered; } } int float32_is_signaling_nan( float32 a1) { float32u u; uint32_t a; u.f = a1; a = u.i; return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); } int float32_is_nan( float32 a1 ) { float32u u; uint64_t a; u.f = a1; a = u.i; return ( 0xFF800000 < ( a<<1 ) ); } /*---------------------------------------------------------------------------- | Software IEC/IEEE double-precision conversion routines. *----------------------------------------------------------------------------*/ int float64_to_int32( float64 a STATUS_PARAM) { return long_to_int32(lrint(a)); } int float64_to_int32_round_to_zero( float64 a STATUS_PARAM) { return (int)a; } int64_t float64_to_int64( float64 a STATUS_PARAM) { return llrint(a); } int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM) { return (int64_t)a; } float32 float64_to_float32( float64 a STATUS_PARAM) { return a; } #ifdef FLOATX80 floatx80 float64_to_floatx80( float64 a STATUS_PARAM) { return a; } #endif #ifdef FLOAT128 float128 float64_to_float128( float64 a STATUS_PARAM) { return a; } #endif unsigned int float64_to_uint32( float64 a STATUS_PARAM) { int64_t v; unsigned int res; v = llrint(a); if (v < 0) { res = 0; } else if (v > 0xffffffff) { res = 0xffffffff; } else { res = v; } return res; } unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM) { int64_t v; unsigned int res; v = (int64_t)a; if (v < 0) { res = 0; } else if (v > 0xffffffff) { res = 0xffffffff; } else { res = v; } return res; } uint64_t float64_to_uint64 (float64 a STATUS_PARAM) { int64_t v; v = llrint(a + (float64)INT64_MIN); return v - INT64_MIN; } uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM) { int64_t v; v = (int64_t)(a + (float64)INT64_MIN); return v - INT64_MIN; } /*---------------------------------------------------------------------------- | Software IEC/IEEE double-precision operations. *----------------------------------------------------------------------------*/ #if defined(__sun__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10 static inline float64 trunc(float64 x) { return x < 0 ? -floor(-x) : floor(x); } #endif float64 float64_trunc_to_int( float64 a STATUS_PARAM ) { return trunc(a); } float64 float64_round_to_int( float64 a STATUS_PARAM ) { #if defined(__arm__) switch(STATUS(float_rounding_mode)) { default: case float_round_nearest_even: asm("rndd %0, %1" : "=f" (a) : "f"(a)); break; case float_round_down: asm("rnddm %0, %1" : "=f" (a) : "f"(a)); break; case float_round_up: asm("rnddp %0, %1" : "=f" (a) : "f"(a)); break; case float_round_to_zero: asm("rnddz %0, %1" : "=f" (a) : "f"(a)); break; } #else return rint(a); #endif } float64 float64_rem( float64 a, float64 b STATUS_PARAM) { return remainder(a, b); } float64 float64_sqrt( float64 a STATUS_PARAM) { return sqrt(a); } int float64_compare( float64 a, float64 b STATUS_PARAM ) { if (a < b) { return float_relation_less; } else if (a == b) { return float_relation_equal; } else if (a > b) { return float_relation_greater; } else { return float_relation_unordered; } } int float64_compare_quiet( float64 a, float64 b STATUS_PARAM ) { if (isless(a, b)) { return float_relation_less; } else if (a == b) { return float_relation_equal; } else if (isgreater(a, b)) { return float_relation_greater; } else { return float_relation_unordered; } } int float64_is_signaling_nan( float64 a1) { float64u u; uint64_t a; u.f = a1; a = u.i; return ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); } int float64_is_nan( float64 a1 ) { float64u u; uint64_t a; u.f = a1; a = u.i; return ( LIT64( 0xFFF0000000000000 ) < (bits64) ( a<<1 ) ); } #ifdef FLOATX80 /*---------------------------------------------------------------------------- | Software IEC/IEEE extended double-precision conversion routines. *----------------------------------------------------------------------------*/ int floatx80_to_int32( floatx80 a STATUS_PARAM) { return long_to_int32(lrintl(a)); } int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM) { return (int)a; } int64_t floatx80_to_int64( floatx80 a STATUS_PARAM) { return llrintl(a); } int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM) { return (int64_t)a; } float32 floatx80_to_float32( floatx80 a STATUS_PARAM) { return a; } float64 floatx80_to_float64( floatx80 a STATUS_PARAM) { return a; } /*---------------------------------------------------------------------------- | Software IEC/IEEE extended double-precision operations. *----------------------------------------------------------------------------*/ floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM) { return rintl(a); } floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM) { return remainderl(a, b); } floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM) { return sqrtl(a); } int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM ) { if (a < b) { return float_relation_less; } else if (a == b) { return float_relation_equal; } else if (a > b) { return float_relation_greater; } else { return float_relation_unordered; } } int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM ) { if (isless(a, b)) { return float_relation_less; } else if (a == b) { return float_relation_equal; } else if (isgreater(a, b)) { return float_relation_greater; } else { return float_relation_unordered; } } int floatx80_is_signaling_nan( floatx80 a1) { floatx80u u; uint64_t aLow; u.f = a1; aLow = u.i.low & ~ LIT64( 0x4000000000000000 ); return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( aLow<<1 ) && ( u.i.low == aLow ); } int floatx80_is_nan( floatx80 a1 ) { floatx80u u; u.f = a1; return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 ); } #endif