// Copyright 2008-2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "unicode.h" #include "log.h" #include "ast.h" #include "regexp-stack.h" #include "macro-assembler.h" #include "regexp-macro-assembler.h" #include "ia32/macro-assembler-ia32.h" #include "ia32/regexp-macro-assembler-ia32.h" namespace v8 { namespace internal { #ifdef V8_NATIVE_REGEXP /* * This assembler uses the following register assignment convention * - edx : current character. Must be loaded using LoadCurrentCharacter * before using any of the dispatch methods. * - edi : current position in input, as negative offset from end of string. * Please notice that this is the byte offset, not the character offset! * - esi : end of input (points to byte after last character in input). * - ebp : frame pointer. Used to access arguments, local variables and * RegExp registers. * - esp : points to tip of C stack. * - ecx : points to tip of backtrack stack * * The registers eax, ebx and ecx are free to use for computations. * * Each call to a public method should retain this convention. * The stack will have the following structure: * - direct_call (if 1, direct call from JavaScript code, if 0 * call through the runtime system) * - stack_area_base (High end of the memory area to use as * backtracking stack) * - int* capture_array (int[num_saved_registers_], for output). * - end of input (Address of end of string) * - start of input (Address of first character in string) * - start index (character index of start) * - String* input_string (location of a handle containing the string) * --- frame alignment (if applicable) --- * - return address * ebp-> - old ebp * - backup of caller esi * - backup of caller edi * - backup of caller ebx * - Offset of location before start of input (effectively character * position -1). Used to initialize capture registers to a non-position. * - Boolean at start (if 1, we are starting at the start of the string, * otherwise 0) * - register 0 ebp[-4] (Only positions must be stored in the first * - register 1 ebp[-8] num_saved_registers_ registers) * - ... * * The first num_saved_registers_ registers are initialized to point to * "character -1" in the string (i.e., char_size() bytes before the first * character of the string). The remaining registers starts out as garbage. * * The data up to the return address must be placed there by the calling * code, by calling the code entry as cast to a function with the signature: * int (*match)(String* input_string, * int start_index, * Address start, * Address end, * int* capture_output_array, * bool at_start, * byte* stack_area_base, * bool direct_call) */ #define __ ACCESS_MASM(masm_) RegExpMacroAssemblerIA32::RegExpMacroAssemblerIA32( Mode mode, int registers_to_save) : masm_(new MacroAssembler(NULL, kRegExpCodeSize)), mode_(mode), num_registers_(registers_to_save), num_saved_registers_(registers_to_save), entry_label_(), start_label_(), success_label_(), backtrack_label_(), exit_label_() { ASSERT_EQ(0, registers_to_save % 2); __ jmp(&entry_label_); // We'll write the entry code later. __ bind(&start_label_); // And then continue from here. } RegExpMacroAssemblerIA32::~RegExpMacroAssemblerIA32() { delete masm_; // Unuse labels in case we throw away the assembler without calling GetCode. entry_label_.Unuse(); start_label_.Unuse(); success_label_.Unuse(); backtrack_label_.Unuse(); exit_label_.Unuse(); check_preempt_label_.Unuse(); stack_overflow_label_.Unuse(); } int RegExpMacroAssemblerIA32::stack_limit_slack() { return RegExpStack::kStackLimitSlack; } void RegExpMacroAssemblerIA32::AdvanceCurrentPosition(int by) { if (by != 0) { Label inside_string; __ add(Operand(edi), Immediate(by * char_size())); } } void RegExpMacroAssemblerIA32::AdvanceRegister(int reg, int by) { ASSERT(reg >= 0); ASSERT(reg < num_registers_); if (by != 0) { __ add(register_location(reg), Immediate(by)); } } void RegExpMacroAssemblerIA32::Backtrack() { CheckPreemption(); // Pop Code* offset from backtrack stack, add Code* and jump to location. Pop(ebx); __ add(Operand(ebx), Immediate(masm_->CodeObject())); __ jmp(Operand(ebx)); } void RegExpMacroAssemblerIA32::Bind(Label* label) { __ bind(label); } void RegExpMacroAssemblerIA32::CheckCharacter(uint32_t c, Label* on_equal) { __ cmp(current_character(), c); BranchOrBacktrack(equal, on_equal); } void RegExpMacroAssemblerIA32::CheckCharacterGT(uc16 limit, Label* on_greater) { __ cmp(current_character(), limit); BranchOrBacktrack(greater, on_greater); } void RegExpMacroAssemblerIA32::CheckAtStart(Label* on_at_start) { Label not_at_start; // Did we start the match at the start of the string at all? __ cmp(Operand(ebp, kAtStart), Immediate(0)); BranchOrBacktrack(equal, ¬_at_start); // If we did, are we still at the start of the input? __ lea(eax, Operand(esi, edi, times_1, 0)); __ cmp(eax, Operand(ebp, kInputStart)); BranchOrBacktrack(equal, on_at_start); __ bind(¬_at_start); } void RegExpMacroAssemblerIA32::CheckNotAtStart(Label* on_not_at_start) { // Did we start the match at the start of the string at all? __ cmp(Operand(ebp, kAtStart), Immediate(0)); BranchOrBacktrack(equal, on_not_at_start); // If we did, are we still at the start of the input? __ lea(eax, Operand(esi, edi, times_1, 0)); __ cmp(eax, Operand(ebp, kInputStart)); BranchOrBacktrack(not_equal, on_not_at_start); } void RegExpMacroAssemblerIA32::CheckCharacterLT(uc16 limit, Label* on_less) { __ cmp(current_character(), limit); BranchOrBacktrack(less, on_less); } void RegExpMacroAssemblerIA32::CheckCharacters(Vector<const uc16> str, int cp_offset, Label* on_failure, bool check_end_of_string) { int byte_length = str.length() * char_size(); int byte_offset = cp_offset * char_size(); if (check_end_of_string) { // Check that there are at least str.length() characters left in the input. __ cmp(Operand(edi), Immediate(-(byte_offset + byte_length))); BranchOrBacktrack(greater, on_failure); } if (on_failure == NULL) { // Instead of inlining a backtrack, (re)use the global backtrack target. on_failure = &backtrack_label_; } for (int i = 0; i < str.length(); i++) { if (mode_ == ASCII) { __ cmpb(Operand(esi, edi, times_1, byte_offset + i), static_cast<int8_t>(str[i])); } else { ASSERT(mode_ == UC16); __ cmpw(Operand(esi, edi, times_1, byte_offset + i * sizeof(uc16)), Immediate(str[i])); } BranchOrBacktrack(not_equal, on_failure); } } void RegExpMacroAssemblerIA32::CheckGreedyLoop(Label* on_equal) { Label fallthrough; __ cmp(edi, Operand(backtrack_stackpointer(), 0)); __ j(not_equal, &fallthrough); __ add(Operand(backtrack_stackpointer()), Immediate(kPointerSize)); // Pop. BranchOrBacktrack(no_condition, on_equal); __ bind(&fallthrough); } void RegExpMacroAssemblerIA32::CheckNotBackReferenceIgnoreCase( int start_reg, Label* on_no_match) { Label fallthrough; __ mov(edx, register_location(start_reg)); // Index of start of capture __ mov(ebx, register_location(start_reg + 1)); // Index of end of capture __ sub(ebx, Operand(edx)); // Length of capture. // The length of a capture should not be negative. This can only happen // if the end of the capture is unrecorded, or at a point earlier than // the start of the capture. BranchOrBacktrack(less, on_no_match, not_taken); // If length is zero, either the capture is empty or it is completely // uncaptured. In either case succeed immediately. __ j(equal, &fallthrough); if (mode_ == ASCII) { Label success; Label fail; Label loop_increment; // Save register contents to make the registers available below. __ push(edi); __ push(backtrack_stackpointer()); // After this, the eax, ecx, and edi registers are available. __ add(edx, Operand(esi)); // Start of capture __ add(edi, Operand(esi)); // Start of text to match against capture. __ add(ebx, Operand(edi)); // End of text to match against capture. Label loop; __ bind(&loop); __ movzx_b(eax, Operand(edi, 0)); __ cmpb_al(Operand(edx, 0)); __ j(equal, &loop_increment); // Mismatch, try case-insensitive match (converting letters to lower-case). __ or_(eax, 0x20); // Convert match character to lower-case. __ lea(ecx, Operand(eax, -'a')); __ cmp(ecx, static_cast<int32_t>('z' - 'a')); // Is eax a lowercase letter? __ j(above, &fail); // Also convert capture character. __ movzx_b(ecx, Operand(edx, 0)); __ or_(ecx, 0x20); __ cmp(eax, Operand(ecx)); __ j(not_equal, &fail); __ bind(&loop_increment); // Increment pointers into match and capture strings. __ add(Operand(edx), Immediate(1)); __ add(Operand(edi), Immediate(1)); // Compare to end of match, and loop if not done. __ cmp(edi, Operand(ebx)); __ j(below, &loop, taken); __ jmp(&success); __ bind(&fail); // Restore original values before failing. __ pop(backtrack_stackpointer()); __ pop(edi); BranchOrBacktrack(no_condition, on_no_match); __ bind(&success); // Restore original value before continuing. __ pop(backtrack_stackpointer()); // Drop original value of character position. __ add(Operand(esp), Immediate(kPointerSize)); // Compute new value of character position after the matched part. __ sub(edi, Operand(esi)); } else { ASSERT(mode_ == UC16); // Save registers before calling C function. __ push(esi); __ push(edi); __ push(backtrack_stackpointer()); __ push(ebx); const int argument_count = 3; FrameAlign(argument_count, ecx); // Put arguments into allocated stack area, last argument highest on stack. // Parameters are // Address byte_offset1 - Address captured substring's start. // Address byte_offset2 - Address of current character position. // size_t byte_length - length of capture in bytes(!) // Set byte_length. __ mov(Operand(esp, 2 * kPointerSize), ebx); // Set byte_offset2. // Found by adding negative string-end offset of current position (edi) // to end of string. __ add(edi, Operand(esi)); __ mov(Operand(esp, 1 * kPointerSize), edi); // Set byte_offset1. // Start of capture, where edx already holds string-end negative offset. __ add(edx, Operand(esi)); __ mov(Operand(esp, 0 * kPointerSize), edx); ExternalReference compare = ExternalReference::re_case_insensitive_compare_uc16(); CallCFunction(compare, argument_count); // Pop original values before reacting on result value. __ pop(ebx); __ pop(backtrack_stackpointer()); __ pop(edi); __ pop(esi); // Check if function returned non-zero for success or zero for failure. __ or_(eax, Operand(eax)); BranchOrBacktrack(zero, on_no_match); // On success, increment position by length of capture. __ add(edi, Operand(ebx)); } __ bind(&fallthrough); } void RegExpMacroAssemblerIA32::CheckNotBackReference( int start_reg, Label* on_no_match) { Label fallthrough; Label success; Label fail; // Find length of back-referenced capture. __ mov(edx, register_location(start_reg)); __ mov(eax, register_location(start_reg + 1)); __ sub(eax, Operand(edx)); // Length to check. // Fail on partial or illegal capture (start of capture after end of capture). BranchOrBacktrack(less, on_no_match); // Succeed on empty capture (including no capture) __ j(equal, &fallthrough); // Check that there are sufficient characters left in the input. __ mov(ebx, edi); __ add(ebx, Operand(eax)); BranchOrBacktrack(greater, on_no_match); // Save register to make it available below. __ push(backtrack_stackpointer()); // Compute pointers to match string and capture string __ lea(ebx, Operand(esi, edi, times_1, 0)); // Start of match. __ add(edx, Operand(esi)); // Start of capture. __ lea(ecx, Operand(eax, ebx, times_1, 0)); // End of match Label loop; __ bind(&loop); if (mode_ == ASCII) { __ movzx_b(eax, Operand(edx, 0)); __ cmpb_al(Operand(ebx, 0)); } else { ASSERT(mode_ == UC16); __ movzx_w(eax, Operand(edx, 0)); __ cmpw_ax(Operand(ebx, 0)); } __ j(not_equal, &fail); // Increment pointers into capture and match string. __ add(Operand(edx), Immediate(char_size())); __ add(Operand(ebx), Immediate(char_size())); // Check if we have reached end of match area. __ cmp(ebx, Operand(ecx)); __ j(below, &loop); __ jmp(&success); __ bind(&fail); // Restore backtrack stackpointer. __ pop(backtrack_stackpointer()); BranchOrBacktrack(no_condition, on_no_match); __ bind(&success); // Move current character position to position after match. __ mov(edi, ecx); __ sub(Operand(edi), esi); // Restore backtrack stackpointer. __ pop(backtrack_stackpointer()); __ bind(&fallthrough); } void RegExpMacroAssemblerIA32::CheckNotRegistersEqual(int reg1, int reg2, Label* on_not_equal) { __ mov(eax, register_location(reg1)); __ cmp(eax, register_location(reg2)); BranchOrBacktrack(not_equal, on_not_equal); } void RegExpMacroAssemblerIA32::CheckNotCharacter(uint32_t c, Label* on_not_equal) { __ cmp(current_character(), c); BranchOrBacktrack(not_equal, on_not_equal); } void RegExpMacroAssemblerIA32::CheckCharacterAfterAnd(uint32_t c, uint32_t mask, Label* on_equal) { __ mov(eax, current_character()); __ and_(eax, mask); __ cmp(eax, c); BranchOrBacktrack(equal, on_equal); } void RegExpMacroAssemblerIA32::CheckNotCharacterAfterAnd(uint32_t c, uint32_t mask, Label* on_not_equal) { __ mov(eax, current_character()); __ and_(eax, mask); __ cmp(eax, c); BranchOrBacktrack(not_equal, on_not_equal); } void RegExpMacroAssemblerIA32::CheckNotCharacterAfterMinusAnd( uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) { ASSERT(minus < String::kMaxUC16CharCode); __ lea(eax, Operand(current_character(), -minus)); __ and_(eax, mask); __ cmp(eax, c); BranchOrBacktrack(not_equal, on_not_equal); } bool RegExpMacroAssemblerIA32::CheckSpecialCharacterClass(uc16 type, Label* on_no_match) { // Range checks (c in min..max) are generally implemented by an unsigned // (c - min) <= (max - min) check switch (type) { case 's': // Match space-characters if (mode_ == ASCII) { // ASCII space characters are '\t'..'\r' and ' '. Label success; __ cmp(current_character(), ' '); __ j(equal, &success); // Check range 0x09..0x0d __ lea(eax, Operand(current_character(), -'\t')); __ cmp(eax, '\r' - '\t'); BranchOrBacktrack(above, on_no_match); __ bind(&success); return true; } return false; case 'S': // Match non-space characters. if (mode_ == ASCII) { // ASCII space characters are '\t'..'\r' and ' '. __ cmp(current_character(), ' '); BranchOrBacktrack(equal, on_no_match); __ lea(eax, Operand(current_character(), -'\t')); __ cmp(eax, '\r' - '\t'); BranchOrBacktrack(below_equal, on_no_match); return true; } return false; case 'd': // Match ASCII digits ('0'..'9') __ lea(eax, Operand(current_character(), -'0')); __ cmp(eax, '9' - '0'); BranchOrBacktrack(above, on_no_match); return true; case 'D': // Match non ASCII-digits __ lea(eax, Operand(current_character(), -'0')); __ cmp(eax, '9' - '0'); BranchOrBacktrack(below_equal, on_no_match); return true; case '.': { // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029) __ mov(Operand(eax), current_character()); __ xor_(Operand(eax), Immediate(0x01)); // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c __ sub(Operand(eax), Immediate(0x0b)); __ cmp(eax, 0x0c - 0x0b); BranchOrBacktrack(below_equal, on_no_match); if (mode_ == UC16) { // Compare original value to 0x2028 and 0x2029, using the already // computed (current_char ^ 0x01 - 0x0b). I.e., check for // 0x201d (0x2028 - 0x0b) or 0x201e. __ sub(Operand(eax), Immediate(0x2028 - 0x0b)); __ cmp(eax, 0x2029 - 0x2028); BranchOrBacktrack(below_equal, on_no_match); } return true; } case 'w': { if (mode_ != ASCII) { // Table is 128 entries, so all ASCII characters can be tested. __ cmp(Operand(current_character()), Immediate('z')); BranchOrBacktrack(above, on_no_match); } ASSERT_EQ(0, word_character_map[0]); // Character '\0' is not a word char. ExternalReference word_map = ExternalReference::re_word_character_map(); __ test_b(current_character(), Operand::StaticArray(current_character(), times_1, word_map)); BranchOrBacktrack(zero, on_no_match); return true; } case 'W': { Label done; if (mode_ != ASCII) { // Table is 128 entries, so all ASCII characters can be tested. __ cmp(Operand(current_character()), Immediate('z')); __ j(above, &done); } ASSERT_EQ(0, word_character_map[0]); // Character '\0' is not a word char. ExternalReference word_map = ExternalReference::re_word_character_map(); __ test_b(current_character(), Operand::StaticArray(current_character(), times_1, word_map)); BranchOrBacktrack(not_zero, on_no_match); if (mode_ != ASCII) { __ bind(&done); } return true; } // Non-standard classes (with no syntactic shorthand) used internally. case '*': // Match any character. return true; case 'n': { // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 or 0x2029). // The opposite of '.'. __ mov(Operand(eax), current_character()); __ xor_(Operand(eax), Immediate(0x01)); // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c __ sub(Operand(eax), Immediate(0x0b)); __ cmp(eax, 0x0c - 0x0b); if (mode_ == ASCII) { BranchOrBacktrack(above, on_no_match); } else { Label done; BranchOrBacktrack(below_equal, &done); ASSERT_EQ(UC16, mode_); // Compare original value to 0x2028 and 0x2029, using the already // computed (current_char ^ 0x01 - 0x0b). I.e., check for // 0x201d (0x2028 - 0x0b) or 0x201e. __ sub(Operand(eax), Immediate(0x2028 - 0x0b)); __ cmp(eax, 1); BranchOrBacktrack(above, on_no_match); __ bind(&done); } return true; } // No custom implementation (yet): s(UC16), S(UC16). default: return false; } } void RegExpMacroAssemblerIA32::Fail() { ASSERT(FAILURE == 0); // Return value for failure is zero. __ xor_(eax, Operand(eax)); // zero eax. __ jmp(&exit_label_); } Handle<Object> RegExpMacroAssemblerIA32::GetCode(Handle<String> source) { // Finalize code - write the entry point code now we know how many // registers we need. // Entry code: __ bind(&entry_label_); // Start new stack frame. __ push(ebp); __ mov(ebp, esp); // Save callee-save registers. Order here should correspond to order of // kBackup_ebx etc. __ push(esi); __ push(edi); __ push(ebx); // Callee-save on MacOS. __ push(Immediate(0)); // Make room for "input start - 1" constant. __ push(Immediate(0)); // Make room for "at start" constant. // Check if we have space on the stack for registers. Label stack_limit_hit; Label stack_ok; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(); __ mov(ecx, esp); __ sub(ecx, Operand::StaticVariable(stack_limit)); // Handle it if the stack pointer is already below the stack limit. __ j(below_equal, &stack_limit_hit, not_taken); // Check if there is room for the variable number of registers above // the stack limit. __ cmp(ecx, num_registers_ * kPointerSize); __ j(above_equal, &stack_ok, taken); // Exit with OutOfMemory exception. There is not enough space on the stack // for our working registers. __ mov(eax, EXCEPTION); __ jmp(&exit_label_); __ bind(&stack_limit_hit); CallCheckStackGuardState(ebx); __ or_(eax, Operand(eax)); // If returned value is non-zero, we exit with the returned value as result. __ j(not_zero, &exit_label_); __ bind(&stack_ok); // Allocate space on stack for registers. __ sub(Operand(esp), Immediate(num_registers_ * kPointerSize)); // Load string length. __ mov(esi, Operand(ebp, kInputEnd)); // Load input position. __ mov(edi, Operand(ebp, kInputStart)); // Set up edi to be negative offset from string end. __ sub(edi, Operand(esi)); // Set eax to address of char before start of input // (effectively string position -1). __ lea(eax, Operand(edi, -char_size())); // Store this value in a local variable, for use when clearing // position registers. __ mov(Operand(ebp, kInputStartMinusOne), eax); // Determine whether the start index is zero, that is at the start of the // string, and store that value in a local variable. __ mov(ebx, Operand(ebp, kStartIndex)); __ xor_(Operand(ecx), ecx); // setcc only operates on cl (lower byte of ecx). __ test(ebx, Operand(ebx)); __ setcc(zero, ecx); // 1 if 0 (start of string), 0 if positive. __ mov(Operand(ebp, kAtStart), ecx); if (num_saved_registers_ > 0) { // Always is, if generated from a regexp. // Fill saved registers with initial value = start offset - 1 // Fill in stack push order, to avoid accessing across an unwritten // page (a problem on Windows). __ mov(ecx, kRegisterZero); Label init_loop; __ bind(&init_loop); __ mov(Operand(ebp, ecx, times_1, +0), eax); __ sub(Operand(ecx), Immediate(kPointerSize)); __ cmp(ecx, kRegisterZero - num_saved_registers_ * kPointerSize); __ j(greater, &init_loop); } // Ensure that we have written to each stack page, in order. Skipping a page // on Windows can cause segmentation faults. Assuming page size is 4k. const int kPageSize = 4096; const int kRegistersPerPage = kPageSize / kPointerSize; for (int i = num_saved_registers_ + kRegistersPerPage - 1; i < num_registers_; i += kRegistersPerPage) { __ mov(register_location(i), eax); // One write every page. } // Initialize backtrack stack pointer. __ mov(backtrack_stackpointer(), Operand(ebp, kStackHighEnd)); // Load previous char as initial value of current-character. Label at_start; __ cmp(Operand(ebp, kAtStart), Immediate(0)); __ j(not_equal, &at_start); LoadCurrentCharacterUnchecked(-1, 1); // Load previous char. __ jmp(&start_label_); __ bind(&at_start); __ mov(current_character(), '\n'); __ jmp(&start_label_); // Exit code: if (success_label_.is_linked()) { // Save captures when successful. __ bind(&success_label_); if (num_saved_registers_ > 0) { // copy captures to output __ mov(ebx, Operand(ebp, kRegisterOutput)); __ mov(ecx, Operand(ebp, kInputEnd)); __ sub(ecx, Operand(ebp, kInputStart)); for (int i = 0; i < num_saved_registers_; i++) { __ mov(eax, register_location(i)); __ add(eax, Operand(ecx)); // Convert to index from start, not end. if (mode_ == UC16) { __ sar(eax, 1); // Convert byte index to character index. } __ mov(Operand(ebx, i * kPointerSize), eax); } } __ mov(eax, Immediate(SUCCESS)); } // Exit and return eax __ bind(&exit_label_); // Skip esp past regexp registers. __ lea(esp, Operand(ebp, kBackup_ebx)); // Restore callee-save registers. __ pop(ebx); __ pop(edi); __ pop(esi); // Exit function frame, restore previous one. __ pop(ebp); __ ret(0); // Backtrack code (branch target for conditional backtracks). if (backtrack_label_.is_linked()) { __ bind(&backtrack_label_); Backtrack(); } Label exit_with_exception; // Preempt-code if (check_preempt_label_.is_linked()) { SafeCallTarget(&check_preempt_label_); __ push(backtrack_stackpointer()); __ push(edi); CallCheckStackGuardState(ebx); __ or_(eax, Operand(eax)); // If returning non-zero, we should end execution with the given // result as return value. __ j(not_zero, &exit_label_); __ pop(edi); __ pop(backtrack_stackpointer()); // String might have moved: Reload esi from frame. __ mov(esi, Operand(ebp, kInputEnd)); SafeReturn(); } // Backtrack stack overflow code. if (stack_overflow_label_.is_linked()) { SafeCallTarget(&stack_overflow_label_); // Reached if the backtrack-stack limit has been hit. Label grow_failed; // Save registers before calling C function __ push(esi); __ push(edi); // Call GrowStack(backtrack_stackpointer()) int num_arguments = 2; FrameAlign(num_arguments, ebx); __ lea(eax, Operand(ebp, kStackHighEnd)); __ mov(Operand(esp, 1 * kPointerSize), eax); __ mov(Operand(esp, 0 * kPointerSize), backtrack_stackpointer()); ExternalReference grow_stack = ExternalReference::re_grow_stack(); CallCFunction(grow_stack, num_arguments); // If return NULL, we have failed to grow the stack, and // must exit with a stack-overflow exception. __ or_(eax, Operand(eax)); __ j(equal, &exit_with_exception); // Otherwise use return value as new stack pointer. __ mov(backtrack_stackpointer(), eax); // Restore saved registers and continue. __ pop(edi); __ pop(esi); SafeReturn(); } if (exit_with_exception.is_linked()) { // If any of the code above needed to exit with an exception. __ bind(&exit_with_exception); // Exit with Result EXCEPTION(-1) to signal thrown exception. __ mov(eax, EXCEPTION); __ jmp(&exit_label_); } CodeDesc code_desc; masm_->GetCode(&code_desc); Handle<Code> code = Factory::NewCode(code_desc, NULL, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject()); LOG(RegExpCodeCreateEvent(*code, *source)); return Handle<Object>::cast(code); } void RegExpMacroAssemblerIA32::GoTo(Label* to) { BranchOrBacktrack(no_condition, to); } void RegExpMacroAssemblerIA32::IfRegisterGE(int reg, int comparand, Label* if_ge) { __ cmp(register_location(reg), Immediate(comparand)); BranchOrBacktrack(greater_equal, if_ge); } void RegExpMacroAssemblerIA32::IfRegisterLT(int reg, int comparand, Label* if_lt) { __ cmp(register_location(reg), Immediate(comparand)); BranchOrBacktrack(less, if_lt); } void RegExpMacroAssemblerIA32::IfRegisterEqPos(int reg, Label* if_eq) { __ cmp(edi, register_location(reg)); BranchOrBacktrack(equal, if_eq); } RegExpMacroAssembler::IrregexpImplementation RegExpMacroAssemblerIA32::Implementation() { return kIA32Implementation; } void RegExpMacroAssemblerIA32::LoadCurrentCharacter(int cp_offset, Label* on_end_of_input, bool check_bounds, int characters) { ASSERT(cp_offset >= -1); // ^ and \b can look behind one character. ASSERT(cp_offset < (1<<30)); // Be sane! (And ensure negation works) if (check_bounds) { CheckPosition(cp_offset + characters - 1, on_end_of_input); } LoadCurrentCharacterUnchecked(cp_offset, characters); } void RegExpMacroAssemblerIA32::PopCurrentPosition() { Pop(edi); } void RegExpMacroAssemblerIA32::PopRegister(int register_index) { Pop(eax); __ mov(register_location(register_index), eax); } void RegExpMacroAssemblerIA32::PushBacktrack(Label* label) { Push(Immediate::CodeRelativeOffset(label)); CheckStackLimit(); } void RegExpMacroAssemblerIA32::PushCurrentPosition() { Push(edi); } void RegExpMacroAssemblerIA32::PushRegister(int register_index, StackCheckFlag check_stack_limit) { __ mov(eax, register_location(register_index)); Push(eax); if (check_stack_limit) CheckStackLimit(); } void RegExpMacroAssemblerIA32::ReadCurrentPositionFromRegister(int reg) { __ mov(edi, register_location(reg)); } void RegExpMacroAssemblerIA32::ReadStackPointerFromRegister(int reg) { __ mov(backtrack_stackpointer(), register_location(reg)); __ add(backtrack_stackpointer(), Operand(ebp, kStackHighEnd)); } void RegExpMacroAssemblerIA32::SetRegister(int register_index, int to) { ASSERT(register_index >= num_saved_registers_); // Reserved for positions! __ mov(register_location(register_index), Immediate(to)); } void RegExpMacroAssemblerIA32::Succeed() { __ jmp(&success_label_); } void RegExpMacroAssemblerIA32::WriteCurrentPositionToRegister(int reg, int cp_offset) { if (cp_offset == 0) { __ mov(register_location(reg), edi); } else { __ lea(eax, Operand(edi, cp_offset * char_size())); __ mov(register_location(reg), eax); } } void RegExpMacroAssemblerIA32::ClearRegisters(int reg_from, int reg_to) { ASSERT(reg_from <= reg_to); __ mov(eax, Operand(ebp, kInputStartMinusOne)); for (int reg = reg_from; reg <= reg_to; reg++) { __ mov(register_location(reg), eax); } } void RegExpMacroAssemblerIA32::WriteStackPointerToRegister(int reg) { __ mov(eax, backtrack_stackpointer()); __ sub(eax, Operand(ebp, kStackHighEnd)); __ mov(register_location(reg), eax); } // Private methods: void RegExpMacroAssemblerIA32::CallCheckStackGuardState(Register scratch) { int num_arguments = 3; FrameAlign(num_arguments, scratch); // RegExp code frame pointer. __ mov(Operand(esp, 2 * kPointerSize), ebp); // Code* of self. __ mov(Operand(esp, 1 * kPointerSize), Immediate(masm_->CodeObject())); // Next address on the stack (will be address of return address). __ lea(eax, Operand(esp, -kPointerSize)); __ mov(Operand(esp, 0 * kPointerSize), eax); ExternalReference check_stack_guard = ExternalReference::re_check_stack_guard_state(); CallCFunction(check_stack_guard, num_arguments); } // Helper function for reading a value out of a stack frame. template <typename T> static T& frame_entry(Address re_frame, int frame_offset) { return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset)); } int RegExpMacroAssemblerIA32::CheckStackGuardState(Address* return_address, Code* re_code, Address re_frame) { if (StackGuard::IsStackOverflow()) { Top::StackOverflow(); return EXCEPTION; } // If not real stack overflow the stack guard was used to interrupt // execution for another purpose. // If this is a direct call from JavaScript retry the RegExp forcing the call // through the runtime system. Currently the direct call cannot handle a GC. if (frame_entry<int>(re_frame, kDirectCall) == 1) { return RETRY; } // Prepare for possible GC. HandleScope handles; Handle<Code> code_handle(re_code); Handle<String> subject(frame_entry<String*>(re_frame, kInputString)); // Current string. bool is_ascii = subject->IsAsciiRepresentation(); ASSERT(re_code->instruction_start() <= *return_address); ASSERT(*return_address <= re_code->instruction_start() + re_code->instruction_size()); Object* result = Execution::HandleStackGuardInterrupt(); if (*code_handle != re_code) { // Return address no longer valid int delta = *code_handle - re_code; // Overwrite the return address on the stack. *return_address += delta; } if (result->IsException()) { return EXCEPTION; } // String might have changed. if (subject->IsAsciiRepresentation() != is_ascii) { // If we changed between an ASCII and an UC16 string, the specialized // code cannot be used, and we need to restart regexp matching from // scratch (including, potentially, compiling a new version of the code). return RETRY; } // Otherwise, the content of the string might have moved. It must still // be a sequential or external string with the same content. // Update the start and end pointers in the stack frame to the current // location (whether it has actually moved or not). ASSERT(StringShape(*subject).IsSequential() || StringShape(*subject).IsExternal()); // The original start address of the characters to match. const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart); // Find the current start address of the same character at the current string // position. int start_index = frame_entry<int>(re_frame, kStartIndex); const byte* new_address = StringCharacterPosition(*subject, start_index); if (start_address != new_address) { // If there is a difference, update the object pointer and start and end // addresses in the RegExp stack frame to match the new value. const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd); int byte_length = end_address - start_address; frame_entry<const String*>(re_frame, kInputString) = *subject; frame_entry<const byte*>(re_frame, kInputStart) = new_address; frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length; } return 0; } Operand RegExpMacroAssemblerIA32::register_location(int register_index) { ASSERT(register_index < (1<<30)); if (num_registers_ <= register_index) { num_registers_ = register_index + 1; } return Operand(ebp, kRegisterZero - register_index * kPointerSize); } void RegExpMacroAssemblerIA32::CheckPosition(int cp_offset, Label* on_outside_input) { __ cmp(edi, -cp_offset * char_size()); BranchOrBacktrack(greater_equal, on_outside_input); } void RegExpMacroAssemblerIA32::BranchOrBacktrack(Condition condition, Label* to, Hint hint) { if (condition < 0) { // No condition if (to == NULL) { Backtrack(); return; } __ jmp(to); return; } if (to == NULL) { __ j(condition, &backtrack_label_, hint); return; } __ j(condition, to, hint); } void RegExpMacroAssemblerIA32::SafeCall(Label* to) { __ call(to); } void RegExpMacroAssemblerIA32::SafeReturn() { __ add(Operand(esp, 0), Immediate(masm_->CodeObject())); __ ret(0); } void RegExpMacroAssemblerIA32::SafeCallTarget(Label* name) { __ bind(name); __ sub(Operand(esp, 0), Immediate(masm_->CodeObject())); } void RegExpMacroAssemblerIA32::Push(Register source) { ASSERT(!source.is(backtrack_stackpointer())); // Notice: This updates flags, unlike normal Push. __ sub(Operand(backtrack_stackpointer()), Immediate(kPointerSize)); __ mov(Operand(backtrack_stackpointer(), 0), source); } void RegExpMacroAssemblerIA32::Push(Immediate value) { // Notice: This updates flags, unlike normal Push. __ sub(Operand(backtrack_stackpointer()), Immediate(kPointerSize)); __ mov(Operand(backtrack_stackpointer(), 0), value); } void RegExpMacroAssemblerIA32::Pop(Register target) { ASSERT(!target.is(backtrack_stackpointer())); __ mov(target, Operand(backtrack_stackpointer(), 0)); // Notice: This updates flags, unlike normal Pop. __ add(Operand(backtrack_stackpointer()), Immediate(kPointerSize)); } void RegExpMacroAssemblerIA32::CheckPreemption() { // Check for preemption. Label no_preempt; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(); __ cmp(esp, Operand::StaticVariable(stack_limit)); __ j(above, &no_preempt, taken); SafeCall(&check_preempt_label_); __ bind(&no_preempt); } void RegExpMacroAssemblerIA32::CheckStackLimit() { Label no_stack_overflow; ExternalReference stack_limit = ExternalReference::address_of_regexp_stack_limit(); __ cmp(backtrack_stackpointer(), Operand::StaticVariable(stack_limit)); __ j(above, &no_stack_overflow); SafeCall(&stack_overflow_label_); __ bind(&no_stack_overflow); } void RegExpMacroAssemblerIA32::FrameAlign(int num_arguments, Register scratch) { // TODO(lrn): Since we no longer use the system stack arbitrarily (but we do // use it, e.g., for SafeCall), we know the number of elements on the stack // since the last frame alignment. We might be able to do this simpler then. int frameAlignment = OS::ActivationFrameAlignment(); if (frameAlignment != 0) { // Make stack end at alignment and make room for num_arguments words // and the original value of esp. __ mov(scratch, esp); __ sub(Operand(esp), Immediate((num_arguments + 1) * kPointerSize)); ASSERT(IsPowerOf2(frameAlignment)); __ and_(esp, -frameAlignment); __ mov(Operand(esp, num_arguments * kPointerSize), scratch); } else { __ sub(Operand(esp), Immediate(num_arguments * kPointerSize)); } } void RegExpMacroAssemblerIA32::CallCFunction(ExternalReference function, int num_arguments) { __ mov(Operand(eax), Immediate(function)); __ call(Operand(eax)); if (OS::ActivationFrameAlignment() != 0) { __ mov(esp, Operand(esp, num_arguments * kPointerSize)); } else { __ add(Operand(esp), Immediate(num_arguments * sizeof(int32_t))); } } void RegExpMacroAssemblerIA32::LoadCurrentCharacterUnchecked(int cp_offset, int characters) { if (mode_ == ASCII) { if (characters == 4) { __ mov(current_character(), Operand(esi, edi, times_1, cp_offset)); } else if (characters == 2) { __ movzx_w(current_character(), Operand(esi, edi, times_1, cp_offset)); } else { ASSERT(characters == 1); __ movzx_b(current_character(), Operand(esi, edi, times_1, cp_offset)); } } else { ASSERT(mode_ == UC16); if (characters == 2) { __ mov(current_character(), Operand(esi, edi, times_1, cp_offset * sizeof(uc16))); } else { ASSERT(characters == 1); __ movzx_w(current_character(), Operand(esi, edi, times_1, cp_offset * sizeof(uc16))); } } } #undef __ #endif // V8_NATIVE_REGEXP }} // namespace v8::internal