// Copyright 2007-2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <signal.h> #include "sys/stat.h" #include "v8.h" #include "debug.h" #include "ic-inl.h" #include "runtime.h" #include "serialize.h" #include "scopeinfo.h" #include "snapshot.h" #include "cctest.h" #include "spaces.h" #include "objects.h" #include "natives.h" #include "bootstrapper.h" using namespace v8::internal; static const unsigned kCounters = 256; static int local_counters[kCounters]; static const char* local_counter_names[kCounters]; static unsigned CounterHash(const char* s) { unsigned hash = 0; while (*++s) { hash |= hash << 5; hash += *s; } return hash; } // Callback receiver to track counters in test. static int* counter_function(const char* name) { unsigned hash = CounterHash(name) % kCounters; unsigned original_hash = hash; USE(original_hash); while (true) { if (local_counter_names[hash] == name) { return &local_counters[hash]; } if (local_counter_names[hash] == 0) { local_counter_names[hash] = name; return &local_counters[hash]; } if (strcmp(local_counter_names[hash], name) == 0) { return &local_counters[hash]; } hash = (hash + 1) % kCounters; ASSERT(hash != original_hash); // Hash table has been filled up. } } template <class T> static Address AddressOf(T id) { return ExternalReference(id).address(); } template <class T> static uint32_t Encode(const ExternalReferenceEncoder& encoder, T id) { return encoder.Encode(AddressOf(id)); } static int make_code(TypeCode type, int id) { return static_cast<uint32_t>(type) << kReferenceTypeShift | id; } static int register_code(int reg) { return Debug::k_register_address << kDebugIdShift | reg; } TEST(ExternalReferenceEncoder) { StatsTable::SetCounterFunction(counter_function); Heap::Setup(false); ExternalReferenceEncoder encoder; CHECK_EQ(make_code(BUILTIN, Builtins::ArrayCode), Encode(encoder, Builtins::ArrayCode)); CHECK_EQ(make_code(RUNTIME_FUNCTION, Runtime::kAbort), Encode(encoder, Runtime::kAbort)); CHECK_EQ(make_code(IC_UTILITY, IC::kLoadCallbackProperty), Encode(encoder, IC_Utility(IC::kLoadCallbackProperty))); CHECK_EQ(make_code(DEBUG_ADDRESS, register_code(3)), Encode(encoder, Debug_Address(Debug::k_register_address, 3))); ExternalReference keyed_load_function_prototype = ExternalReference(&Counters::keyed_load_function_prototype); CHECK_EQ(make_code(STATS_COUNTER, Counters::k_keyed_load_function_prototype), encoder.Encode(keyed_load_function_prototype.address())); ExternalReference the_hole_value_location = ExternalReference::the_hole_value_location(); CHECK_EQ(make_code(UNCLASSIFIED, 2), encoder.Encode(the_hole_value_location.address())); ExternalReference stack_limit_address = ExternalReference::address_of_stack_limit(); CHECK_EQ(make_code(UNCLASSIFIED, 4), encoder.Encode(stack_limit_address.address())); ExternalReference real_stack_limit_address = ExternalReference::address_of_real_stack_limit(); CHECK_EQ(make_code(UNCLASSIFIED, 5), encoder.Encode(real_stack_limit_address.address())); CHECK_EQ(make_code(UNCLASSIFIED, 12), encoder.Encode(ExternalReference::debug_break().address())); CHECK_EQ(make_code(UNCLASSIFIED, 7), encoder.Encode(ExternalReference::new_space_start().address())); CHECK_EQ(make_code(UNCLASSIFIED, 3), encoder.Encode(ExternalReference::roots_address().address())); } TEST(ExternalReferenceDecoder) { StatsTable::SetCounterFunction(counter_function); Heap::Setup(false); ExternalReferenceDecoder decoder; CHECK_EQ(AddressOf(Builtins::ArrayCode), decoder.Decode(make_code(BUILTIN, Builtins::ArrayCode))); CHECK_EQ(AddressOf(Runtime::kAbort), decoder.Decode(make_code(RUNTIME_FUNCTION, Runtime::kAbort))); CHECK_EQ(AddressOf(IC_Utility(IC::kLoadCallbackProperty)), decoder.Decode(make_code(IC_UTILITY, IC::kLoadCallbackProperty))); CHECK_EQ(AddressOf(Debug_Address(Debug::k_register_address, 3)), decoder.Decode(make_code(DEBUG_ADDRESS, register_code(3)))); ExternalReference keyed_load_function = ExternalReference(&Counters::keyed_load_function_prototype); CHECK_EQ(keyed_load_function.address(), decoder.Decode( make_code(STATS_COUNTER, Counters::k_keyed_load_function_prototype))); CHECK_EQ(ExternalReference::the_hole_value_location().address(), decoder.Decode(make_code(UNCLASSIFIED, 2))); CHECK_EQ(ExternalReference::address_of_stack_limit().address(), decoder.Decode(make_code(UNCLASSIFIED, 4))); CHECK_EQ(ExternalReference::address_of_real_stack_limit().address(), decoder.Decode(make_code(UNCLASSIFIED, 5))); CHECK_EQ(ExternalReference::debug_break().address(), decoder.Decode(make_code(UNCLASSIFIED, 12))); CHECK_EQ(ExternalReference::new_space_start().address(), decoder.Decode(make_code(UNCLASSIFIED, 7))); } class FileByteSink : public SnapshotByteSink { public: explicit FileByteSink(const char* snapshot_file) { fp_ = OS::FOpen(snapshot_file, "wb"); file_name_ = snapshot_file; if (fp_ == NULL) { PrintF("Unable to write to snapshot file \"%s\"\n", snapshot_file); exit(1); } } virtual ~FileByteSink() { if (fp_ != NULL) { fclose(fp_); } } virtual void Put(int byte, const char* description) { if (fp_ != NULL) { fputc(byte, fp_); } } virtual int Position() { return ftell(fp_); } void WriteSpaceUsed( int new_space_used, int pointer_space_used, int data_space_used, int code_space_used, int map_space_used, int cell_space_used, int large_space_used); private: FILE* fp_; const char* file_name_; }; void FileByteSink::WriteSpaceUsed( int new_space_used, int pointer_space_used, int data_space_used, int code_space_used, int map_space_used, int cell_space_used, int large_space_used) { int file_name_length = StrLength(file_name_) + 10; Vector<char> name = Vector<char>::New(file_name_length + 1); OS::SNPrintF(name, "%s.size", file_name_); FILE* fp = OS::FOpen(name.start(), "w"); fprintf(fp, "new %d\n", new_space_used); fprintf(fp, "pointer %d\n", pointer_space_used); fprintf(fp, "data %d\n", data_space_used); fprintf(fp, "code %d\n", code_space_used); fprintf(fp, "map %d\n", map_space_used); fprintf(fp, "cell %d\n", cell_space_used); fprintf(fp, "large %d\n", large_space_used); fclose(fp); } static bool WriteToFile(const char* snapshot_file) { FileByteSink file(snapshot_file); StartupSerializer ser(&file); ser.Serialize(); return true; } static void Serialize() { // We have to create one context. One reason for this is so that the builtins // can be loaded from v8natives.js and their addresses can be processed. This // will clear the pending fixups array, which would otherwise contain GC roots // that would confuse the serialization/deserialization process. v8::Persistent<v8::Context> env = v8::Context::New(); env.Dispose(); WriteToFile(FLAG_testing_serialization_file); } // Test that the whole heap can be serialized. TEST(Serialize) { Serializer::Enable(); v8::V8::Initialize(); Serialize(); } // Test that heap serialization is non-destructive. TEST(SerializeTwice) { Serializer::Enable(); v8::V8::Initialize(); Serialize(); Serialize(); } //---------------------------------------------------------------------------- // Tests that the heap can be deserialized. static void Deserialize() { CHECK(Snapshot::Initialize(FLAG_testing_serialization_file)); } static void SanityCheck() { v8::HandleScope scope; #ifdef DEBUG Heap::Verify(); #endif CHECK(Top::global()->IsJSObject()); CHECK(Top::global_context()->IsContext()); CHECK(Top::special_function_table()->IsFixedArray()); CHECK(Heap::symbol_table()->IsSymbolTable()); CHECK(!Factory::LookupAsciiSymbol("Empty")->IsFailure()); } DEPENDENT_TEST(Deserialize, Serialize) { // The serialize-deserialize tests only work if the VM is built without // serialization. That doesn't matter. We don't need to be able to // serialize a snapshot in a VM that is booted from a snapshot. if (!Snapshot::IsEnabled()) { v8::HandleScope scope; Deserialize(); v8::Persistent<v8::Context> env = v8::Context::New(); env->Enter(); SanityCheck(); } } DEPENDENT_TEST(DeserializeFromSecondSerialization, SerializeTwice) { if (!Snapshot::IsEnabled()) { v8::HandleScope scope; Deserialize(); v8::Persistent<v8::Context> env = v8::Context::New(); env->Enter(); SanityCheck(); } } DEPENDENT_TEST(DeserializeAndRunScript2, Serialize) { if (!Snapshot::IsEnabled()) { v8::HandleScope scope; Deserialize(); v8::Persistent<v8::Context> env = v8::Context::New(); env->Enter(); const char* c_source = "\"1234\".length"; v8::Local<v8::String> source = v8::String::New(c_source); v8::Local<v8::Script> script = v8::Script::Compile(source); CHECK_EQ(4, script->Run()->Int32Value()); } } DEPENDENT_TEST(DeserializeFromSecondSerializationAndRunScript2, SerializeTwice) { if (!Snapshot::IsEnabled()) { v8::HandleScope scope; Deserialize(); v8::Persistent<v8::Context> env = v8::Context::New(); env->Enter(); const char* c_source = "\"1234\".length"; v8::Local<v8::String> source = v8::String::New(c_source); v8::Local<v8::Script> script = v8::Script::Compile(source); CHECK_EQ(4, script->Run()->Int32Value()); } } TEST(PartialSerialization) { Serializer::Enable(); v8::V8::Initialize(); v8::Persistent<v8::Context> env = v8::Context::New(); ASSERT(!env.IsEmpty()); env->Enter(); // Make sure all builtin scripts are cached. { HandleScope scope; for (int i = 0; i < Natives::GetBuiltinsCount(); i++) { Bootstrapper::NativesSourceLookup(i); } } Heap::CollectAllGarbage(true); Heap::CollectAllGarbage(true); Object* raw_foo; { v8::HandleScope handle_scope; v8::Local<v8::String> foo = v8::String::New("foo"); ASSERT(!foo.IsEmpty()); raw_foo = *(v8::Utils::OpenHandle(*foo)); } int file_name_length = StrLength(FLAG_testing_serialization_file) + 10; Vector<char> startup_name = Vector<char>::New(file_name_length + 1); OS::SNPrintF(startup_name, "%s.startup", FLAG_testing_serialization_file); env->Exit(); env.Dispose(); FileByteSink startup_sink(startup_name.start()); StartupSerializer startup_serializer(&startup_sink); startup_serializer.SerializeStrongReferences(); FileByteSink partial_sink(FLAG_testing_serialization_file); PartialSerializer p_ser(&startup_serializer, &partial_sink); p_ser.Serialize(&raw_foo); startup_serializer.SerializeWeakReferences(); partial_sink.WriteSpaceUsed(p_ser.CurrentAllocationAddress(NEW_SPACE), p_ser.CurrentAllocationAddress(OLD_POINTER_SPACE), p_ser.CurrentAllocationAddress(OLD_DATA_SPACE), p_ser.CurrentAllocationAddress(CODE_SPACE), p_ser.CurrentAllocationAddress(MAP_SPACE), p_ser.CurrentAllocationAddress(CELL_SPACE), p_ser.CurrentAllocationAddress(LO_SPACE)); } static void ReserveSpaceForPartialSnapshot(const char* file_name) { int file_name_length = StrLength(file_name) + 10; Vector<char> name = Vector<char>::New(file_name_length + 1); OS::SNPrintF(name, "%s.size", file_name); FILE* fp = OS::FOpen(name.start(), "r"); int new_size, pointer_size, data_size, code_size, map_size, cell_size; int large_size; #ifdef _MSC_VER // Avoid warning about unsafe fscanf from MSVC. // Please note that this is only fine if %c and %s are not being used. #define fscanf fscanf_s #endif CHECK_EQ(1, fscanf(fp, "new %d\n", &new_size)); CHECK_EQ(1, fscanf(fp, "pointer %d\n", &pointer_size)); CHECK_EQ(1, fscanf(fp, "data %d\n", &data_size)); CHECK_EQ(1, fscanf(fp, "code %d\n", &code_size)); CHECK_EQ(1, fscanf(fp, "map %d\n", &map_size)); CHECK_EQ(1, fscanf(fp, "cell %d\n", &cell_size)); CHECK_EQ(1, fscanf(fp, "large %d\n", &large_size)); #ifdef _MSC_VER #undef fscanf #endif fclose(fp); Heap::ReserveSpace(new_size, pointer_size, data_size, code_size, map_size, cell_size, large_size); } DEPENDENT_TEST(PartialDeserialization, PartialSerialization) { if (!Snapshot::IsEnabled()) { int file_name_length = StrLength(FLAG_testing_serialization_file) + 10; Vector<char> startup_name = Vector<char>::New(file_name_length + 1); OS::SNPrintF(startup_name, "%s.startup", FLAG_testing_serialization_file); CHECK(Snapshot::Initialize(startup_name.start())); const char* file_name = FLAG_testing_serialization_file; ReserveSpaceForPartialSnapshot(file_name); int snapshot_size = 0; byte* snapshot = ReadBytes(file_name, &snapshot_size); Object* root; { SnapshotByteSource source(snapshot, snapshot_size); Deserializer deserializer(&source); deserializer.DeserializePartial(&root); CHECK(root->IsString()); } v8::HandleScope handle_scope; Handle<Object>root_handle(root); Object* root2; { SnapshotByteSource source(snapshot, snapshot_size); Deserializer deserializer(&source); deserializer.DeserializePartial(&root2); CHECK(root2->IsString()); CHECK(*root_handle == root2); } } } TEST(ContextSerialization) { Serializer::Enable(); v8::V8::Initialize(); v8::Persistent<v8::Context> env = v8::Context::New(); ASSERT(!env.IsEmpty()); env->Enter(); // Make sure all builtin scripts are cached. { HandleScope scope; for (int i = 0; i < Natives::GetBuiltinsCount(); i++) { Bootstrapper::NativesSourceLookup(i); } } // If we don't do this then we end up with a stray root pointing at the // context even after we have disposed of env. Heap::CollectAllGarbage(true); int file_name_length = StrLength(FLAG_testing_serialization_file) + 10; Vector<char> startup_name = Vector<char>::New(file_name_length + 1); OS::SNPrintF(startup_name, "%s.startup", FLAG_testing_serialization_file); env->Exit(); Object* raw_context = *(v8::Utils::OpenHandle(*env)); env.Dispose(); FileByteSink startup_sink(startup_name.start()); StartupSerializer startup_serializer(&startup_sink); startup_serializer.SerializeStrongReferences(); FileByteSink partial_sink(FLAG_testing_serialization_file); PartialSerializer p_ser(&startup_serializer, &partial_sink); p_ser.Serialize(&raw_context); startup_serializer.SerializeWeakReferences(); partial_sink.WriteSpaceUsed(p_ser.CurrentAllocationAddress(NEW_SPACE), p_ser.CurrentAllocationAddress(OLD_POINTER_SPACE), p_ser.CurrentAllocationAddress(OLD_DATA_SPACE), p_ser.CurrentAllocationAddress(CODE_SPACE), p_ser.CurrentAllocationAddress(MAP_SPACE), p_ser.CurrentAllocationAddress(CELL_SPACE), p_ser.CurrentAllocationAddress(LO_SPACE)); } DEPENDENT_TEST(ContextDeserialization, ContextSerialization) { if (!Snapshot::IsEnabled()) { int file_name_length = StrLength(FLAG_testing_serialization_file) + 10; Vector<char> startup_name = Vector<char>::New(file_name_length + 1); OS::SNPrintF(startup_name, "%s.startup", FLAG_testing_serialization_file); CHECK(Snapshot::Initialize(startup_name.start())); const char* file_name = FLAG_testing_serialization_file; ReserveSpaceForPartialSnapshot(file_name); int snapshot_size = 0; byte* snapshot = ReadBytes(file_name, &snapshot_size); Object* root; { SnapshotByteSource source(snapshot, snapshot_size); Deserializer deserializer(&source); deserializer.DeserializePartial(&root); CHECK(root->IsContext()); } v8::HandleScope handle_scope; Handle<Object>root_handle(root); Object* root2; { SnapshotByteSource source(snapshot, snapshot_size); Deserializer deserializer(&source); deserializer.DeserializePartial(&root2); CHECK(root2->IsContext()); CHECK(*root_handle != root2); } } } TEST(LinearAllocation) { v8::V8::Initialize(); int new_space_max = 512 * KB; for (int size = 1000; size < 5 * MB; size += size >> 1) { int new_space_size = (size < new_space_max) ? size : new_space_max; Heap::ReserveSpace( new_space_size, size, // Old pointer space. size, // Old data space. size, // Code space. size, // Map space. size, // Cell space. size); // Large object space. LinearAllocationScope linear_allocation_scope; const int kSmallFixedArrayLength = 4; const int kSmallFixedArraySize = FixedArray::kHeaderSize + kSmallFixedArrayLength * kPointerSize; const int kSmallStringLength = 16; const int kSmallStringSize = SeqAsciiString::kHeaderSize + kSmallStringLength; const int kMapSize = Map::kSize; Object* new_last = NULL; for (int i = 0; i + kSmallFixedArraySize <= new_space_size; i += kSmallFixedArraySize) { Object* obj = Heap::AllocateFixedArray(kSmallFixedArrayLength); if (new_last != NULL) { CHECK_EQ(reinterpret_cast<char*>(obj), reinterpret_cast<char*>(new_last) + kSmallFixedArraySize); } new_last = obj; } Object* pointer_last = NULL; for (int i = 0; i + kSmallFixedArraySize <= size; i += kSmallFixedArraySize) { Object* obj = Heap::AllocateFixedArray(kSmallFixedArrayLength, TENURED); int old_page_fullness = i % Page::kPageSize; int page_fullness = (i + kSmallFixedArraySize) % Page::kPageSize; if (page_fullness < old_page_fullness || page_fullness > Page::kObjectAreaSize) { i = RoundUp(i, Page::kPageSize); pointer_last = NULL; } if (pointer_last != NULL) { CHECK_EQ(reinterpret_cast<char*>(obj), reinterpret_cast<char*>(pointer_last) + kSmallFixedArraySize); } pointer_last = obj; } Object* data_last = NULL; for (int i = 0; i + kSmallStringSize <= size; i += kSmallStringSize) { Object* obj = Heap::AllocateRawAsciiString(kSmallStringLength, TENURED); int old_page_fullness = i % Page::kPageSize; int page_fullness = (i + kSmallStringSize) % Page::kPageSize; if (page_fullness < old_page_fullness || page_fullness > Page::kObjectAreaSize) { i = RoundUp(i, Page::kPageSize); data_last = NULL; } if (data_last != NULL) { CHECK_EQ(reinterpret_cast<char*>(obj), reinterpret_cast<char*>(data_last) + kSmallStringSize); } data_last = obj; } Object* map_last = NULL; for (int i = 0; i + kMapSize <= size; i += kMapSize) { Object* obj = Heap::AllocateMap(JS_OBJECT_TYPE, 42 * kPointerSize); int old_page_fullness = i % Page::kPageSize; int page_fullness = (i + kMapSize) % Page::kPageSize; if (page_fullness < old_page_fullness || page_fullness > Page::kObjectAreaSize) { i = RoundUp(i, Page::kPageSize); map_last = NULL; } if (map_last != NULL) { CHECK_EQ(reinterpret_cast<char*>(obj), reinterpret_cast<char*>(map_last) + kMapSize); } map_last = obj; } if (size > Page::kObjectAreaSize) { // Support for reserving space in large object space is not there yet, // but using an always-allocate scope is fine for now. AlwaysAllocateScope always; int large_object_array_length = (size - FixedArray::kHeaderSize) / kPointerSize; Object* obj = Heap::AllocateFixedArray(large_object_array_length, TENURED); CHECK(!obj->IsFailure()); } } } TEST(TestThatAlwaysSucceeds) { } TEST(TestThatAlwaysFails) { bool ArtificialFailure = false; CHECK(ArtificialFailure); } DEPENDENT_TEST(DependentTestThatAlwaysFails, TestThatAlwaysSucceeds) { bool ArtificialFailure2 = false; CHECK(ArtificialFailure2); }