C++程序  |  627行  |  19.56 KB


/*-------------------------------------------------------------*/
/*--- Decompression machinery                               ---*/
/*---                                          decompress.c ---*/
/*-------------------------------------------------------------*/

/* ------------------------------------------------------------------
   This file is part of bzip2/libbzip2, a program and library for
   lossless, block-sorting data compression.

   bzip2/libbzip2 version 1.0.5 of 10 December 2007
   Copyright (C) 1996-2007 Julian Seward <jseward@bzip.org>

   Please read the WARNING, DISCLAIMER and PATENTS sections in the 
   README file.

   This program is released under the terms of the license contained
   in the file LICENSE.
   ------------------------------------------------------------------ */


#include "bzlib_private.h"


/*---------------------------------------------------*/
static
void makeMaps_d ( DState* s )
{
   Int32 i;
   s->nInUse = 0;
   for (i = 0; i < 256; i++)
      if (s->inUse[i]) {
         s->seqToUnseq[s->nInUse] = i;
         s->nInUse++;
      }
}


/*---------------------------------------------------*/
#define RETURN(rrr)                               \
   { retVal = rrr; goto save_state_and_return; };

#define GET_BITS(lll,vvv,nnn)                     \
   case lll: s->state = lll;                      \
   while (True) {                                 \
      if (s->bsLive >= nnn) {                     \
         UInt32 v;                                \
         v = (s->bsBuff >>                        \
             (s->bsLive-nnn)) & ((1 << nnn)-1);   \
         s->bsLive -= nnn;                        \
         vvv = v;                                 \
         break;                                   \
      }                                           \
      if (s->strm->avail_in == 0) RETURN(BZ_OK);  \
      s->bsBuff                                   \
         = (s->bsBuff << 8) |                     \
           ((UInt32)                              \
              (*((UChar*)(s->strm->next_in))));   \
      s->bsLive += 8;                             \
      s->strm->next_in++;                         \
      s->strm->avail_in--;                        \
      s->strm->total_in_lo32++;                   \
      if (s->strm->total_in_lo32 == 0)            \
         s->strm->total_in_hi32++;                \
   }

#define GET_UCHAR(lll,uuu)                        \
   GET_BITS(lll,uuu,8)

#define GET_BIT(lll,uuu)                          \
   GET_BITS(lll,uuu,1)

/*---------------------------------------------------*/
#define GET_MTF_VAL(label1,label2,lval)           \
{                                                 \
   if (groupPos == 0) {                           \
      groupNo++;                                  \
      if (groupNo >= nSelectors)                  \
         RETURN(BZ_DATA_ERROR);                   \
      groupPos = BZ_G_SIZE;                       \
      gSel = s->selector[groupNo];                \
      gMinlen = s->minLens[gSel];                 \
      gLimit = &(s->limit[gSel][0]);              \
      gPerm = &(s->perm[gSel][0]);                \
      gBase = &(s->base[gSel][0]);                \
   }                                              \
   groupPos--;                                    \
   zn = gMinlen;                                  \
   GET_BITS(label1, zvec, zn);                    \
   while (1) {                                    \
      if (zn > 20 /* the longest code */)         \
         RETURN(BZ_DATA_ERROR);                   \
      if (zvec <= gLimit[zn]) break;              \
      zn++;                                       \
      GET_BIT(label2, zj);                        \
      zvec = (zvec << 1) | zj;                    \
   };                                             \
   if (zvec - gBase[zn] < 0                       \
       || zvec - gBase[zn] >= BZ_MAX_ALPHA_SIZE)  \
      RETURN(BZ_DATA_ERROR);                      \
   lval = gPerm[zvec - gBase[zn]];                \
}


/*---------------------------------------------------*/
Int32 BZ2_decompress ( DState* s )
{
   UChar      uc;
   Int32      retVal;
   Int32      minLen, maxLen;
   bz_stream* strm = s->strm;

   /* stuff that needs to be saved/restored */
   Int32  i;
   Int32  j;
   Int32  t;
   Int32  alphaSize;
   Int32  nGroups;
   Int32  nSelectors;
   Int32  EOB;
   Int32  groupNo;
   Int32  groupPos;
   Int32  nextSym;
   Int32  nblockMAX;
   Int32  nblock;
   Int32  es;
   Int32  N;
   Int32  curr;
   Int32  zt;
   Int32  zn; 
   Int32  zvec;
   Int32  zj;
   Int32  gSel;
   Int32  gMinlen;
   Int32* gLimit;
   Int32* gBase;
   Int32* gPerm;

   if (s->state == BZ_X_MAGIC_1) {
      /*initialise the save area*/
      s->save_i           = 0;
      s->save_j           = 0;
      s->save_t           = 0;
      s->save_alphaSize   = 0;
      s->save_nGroups     = 0;
      s->save_nSelectors  = 0;
      s->save_EOB         = 0;
      s->save_groupNo     = 0;
      s->save_groupPos    = 0;
      s->save_nextSym     = 0;
      s->save_nblockMAX   = 0;
      s->save_nblock      = 0;
      s->save_es          = 0;
      s->save_N           = 0;
      s->save_curr        = 0;
      s->save_zt          = 0;
      s->save_zn          = 0;
      s->save_zvec        = 0;
      s->save_zj          = 0;
      s->save_gSel        = 0;
      s->save_gMinlen     = 0;
      s->save_gLimit      = NULL;
      s->save_gBase       = NULL;
      s->save_gPerm       = NULL;
   }

   /*restore from the save area*/
   i           = s->save_i;
   j           = s->save_j;
   t           = s->save_t;
   alphaSize   = s->save_alphaSize;
   nGroups     = s->save_nGroups;
   nSelectors  = s->save_nSelectors;
   EOB         = s->save_EOB;
   groupNo     = s->save_groupNo;
   groupPos    = s->save_groupPos;
   nextSym     = s->save_nextSym;
   nblockMAX   = s->save_nblockMAX;
   nblock      = s->save_nblock;
   es          = s->save_es;
   N           = s->save_N;
   curr        = s->save_curr;
   zt          = s->save_zt;
   zn          = s->save_zn; 
   zvec        = s->save_zvec;
   zj          = s->save_zj;
   gSel        = s->save_gSel;
   gMinlen     = s->save_gMinlen;
   gLimit      = s->save_gLimit;
   gBase       = s->save_gBase;
   gPerm       = s->save_gPerm;

   retVal = BZ_OK;

   switch (s->state) {

      GET_UCHAR(BZ_X_MAGIC_1, uc);
      if (uc != BZ_HDR_B) RETURN(BZ_DATA_ERROR_MAGIC);

      GET_UCHAR(BZ_X_MAGIC_2, uc);
      if (uc != BZ_HDR_Z) RETURN(BZ_DATA_ERROR_MAGIC);

      GET_UCHAR(BZ_X_MAGIC_3, uc)
      if (uc != BZ_HDR_h) RETURN(BZ_DATA_ERROR_MAGIC);

      GET_BITS(BZ_X_MAGIC_4, s->blockSize100k, 8)
      if (s->blockSize100k < (BZ_HDR_0 + 1) || 
          s->blockSize100k > (BZ_HDR_0 + 9)) RETURN(BZ_DATA_ERROR_MAGIC);
      s->blockSize100k -= BZ_HDR_0;

      if (s->smallDecompress) {
         s->ll16 = BZALLOC( s->blockSize100k * 100000 * sizeof(UInt16) );
         s->ll4  = BZALLOC( 
                      ((1 + s->blockSize100k * 100000) >> 1) * sizeof(UChar) 
                   );
         if (s->ll16 == NULL || s->ll4 == NULL) RETURN(BZ_MEM_ERROR);
      } else {
         s->tt  = BZALLOC( s->blockSize100k * 100000 * sizeof(Int32) );
         if (s->tt == NULL) RETURN(BZ_MEM_ERROR);
      }

      GET_UCHAR(BZ_X_BLKHDR_1, uc);

      if (uc == 0x17) goto endhdr_2;
      if (uc != 0x31) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_BLKHDR_2, uc);
      if (uc != 0x41) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_BLKHDR_3, uc);
      if (uc != 0x59) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_BLKHDR_4, uc);
      if (uc != 0x26) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_BLKHDR_5, uc);
      if (uc != 0x53) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_BLKHDR_6, uc);
      if (uc != 0x59) RETURN(BZ_DATA_ERROR);

      s->currBlockNo++;
      if (s->verbosity >= 2)
         VPrintf1 ( "\n    [%d: huff+mtf ", s->currBlockNo );
 
      s->storedBlockCRC = 0;
      GET_UCHAR(BZ_X_BCRC_1, uc);
      s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
      GET_UCHAR(BZ_X_BCRC_2, uc);
      s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
      GET_UCHAR(BZ_X_BCRC_3, uc);
      s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
      GET_UCHAR(BZ_X_BCRC_4, uc);
      s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);

      GET_BITS(BZ_X_RANDBIT, s->blockRandomised, 1);

      s->origPtr = 0;
      GET_UCHAR(BZ_X_ORIGPTR_1, uc);
      s->origPtr = (s->origPtr << 8) | ((Int32)uc);
      GET_UCHAR(BZ_X_ORIGPTR_2, uc);
      s->origPtr = (s->origPtr << 8) | ((Int32)uc);
      GET_UCHAR(BZ_X_ORIGPTR_3, uc);
      s->origPtr = (s->origPtr << 8) | ((Int32)uc);

      if (s->origPtr < 0)
         RETURN(BZ_DATA_ERROR);
      if (s->origPtr > 10 + 100000*s->blockSize100k) 
         RETURN(BZ_DATA_ERROR);

      /*--- Receive the mapping table ---*/
      for (i = 0; i < 16; i++) {
         GET_BIT(BZ_X_MAPPING_1, uc);
         if (uc == 1) 
            s->inUse16[i] = True; else 
            s->inUse16[i] = False;
      }

      for (i = 0; i < 256; i++) s->inUse[i] = False;

      for (i = 0; i < 16; i++)
         if (s->inUse16[i])
            for (j = 0; j < 16; j++) {
               GET_BIT(BZ_X_MAPPING_2, uc);
               if (uc == 1) s->inUse[i * 16 + j] = True;
            }
      makeMaps_d ( s );
      if (s->nInUse == 0) RETURN(BZ_DATA_ERROR);
      alphaSize = s->nInUse+2;

      /*--- Now the selectors ---*/
      GET_BITS(BZ_X_SELECTOR_1, nGroups, 3);
      if (nGroups < 2 || nGroups > 6) RETURN(BZ_DATA_ERROR);
      GET_BITS(BZ_X_SELECTOR_2, nSelectors, 15);
      if (nSelectors < 1) RETURN(BZ_DATA_ERROR);
      for (i = 0; i < nSelectors; i++) {
         j = 0;
         while (True) {
            GET_BIT(BZ_X_SELECTOR_3, uc);
            if (uc == 0) break;
            j++;
            if (j >= nGroups) RETURN(BZ_DATA_ERROR);
         }
         s->selectorMtf[i] = j;
      }

      /*--- Undo the MTF values for the selectors. ---*/
      {
         UChar pos[BZ_N_GROUPS], tmp, v;
         for (v = 0; v < nGroups; v++) pos[v] = v;
   
         for (i = 0; i < nSelectors; i++) {
            v = s->selectorMtf[i];
            tmp = pos[v];
            while (v > 0) { pos[v] = pos[v-1]; v--; }
            pos[0] = tmp;
            s->selector[i] = tmp;
         }
      }

      /*--- Now the coding tables ---*/
      for (t = 0; t < nGroups; t++) {
         GET_BITS(BZ_X_CODING_1, curr, 5);
         for (i = 0; i < alphaSize; i++) {
            while (True) {
               if (curr < 1 || curr > 20) RETURN(BZ_DATA_ERROR);
               GET_BIT(BZ_X_CODING_2, uc);
               if (uc == 0) break;
               GET_BIT(BZ_X_CODING_3, uc);
               if (uc == 0) curr++; else curr--;
            }
            s->len[t][i] = curr;
         }
      }

      /*--- Create the Huffman decoding tables ---*/
      for (t = 0; t < nGroups; t++) {
         minLen = 32;
         maxLen = 0;
         for (i = 0; i < alphaSize; i++) {
            if (s->len[t][i] > maxLen) maxLen = s->len[t][i];
            if (s->len[t][i] < minLen) minLen = s->len[t][i];
         }
         BZ2_hbCreateDecodeTables ( 
            &(s->limit[t][0]), 
            &(s->base[t][0]), 
            &(s->perm[t][0]), 
            &(s->len[t][0]),
            minLen, maxLen, alphaSize
         );
         s->minLens[t] = minLen;
      }

      /*--- Now the MTF values ---*/

      EOB      = s->nInUse+1;
      nblockMAX = 100000 * s->blockSize100k;
      groupNo  = -1;
      groupPos = 0;

      for (i = 0; i <= 255; i++) s->unzftab[i] = 0;

      /*-- MTF init --*/
      {
         Int32 ii, jj, kk;
         kk = MTFA_SIZE-1;
         for (ii = 256 / MTFL_SIZE - 1; ii >= 0; ii--) {
            for (jj = MTFL_SIZE-1; jj >= 0; jj--) {
               s->mtfa[kk] = (UChar)(ii * MTFL_SIZE + jj);
               kk--;
            }
            s->mtfbase[ii] = kk + 1;
         }
      }
      /*-- end MTF init --*/

      nblock = 0;
      GET_MTF_VAL(BZ_X_MTF_1, BZ_X_MTF_2, nextSym);

      while (True) {

         if (nextSym == EOB) break;

         if (nextSym == BZ_RUNA || nextSym == BZ_RUNB) {

            es = -1;
            N = 1;
            do {
               if (nextSym == BZ_RUNA) es = es + (0+1) * N; else
               if (nextSym == BZ_RUNB) es = es + (1+1) * N;
               N = N * 2;
               GET_MTF_VAL(BZ_X_MTF_3, BZ_X_MTF_4, nextSym);
            }
               while (nextSym == BZ_RUNA || nextSym == BZ_RUNB);

            es++;
            uc = s->seqToUnseq[ s->mtfa[s->mtfbase[0]] ];
            s->unzftab[uc] += es;

            if (s->smallDecompress)
               while (es > 0) {
                  if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);
                  s->ll16[nblock] = (UInt16)uc;
                  nblock++;
                  es--;
               }
            else
               while (es > 0) {
                  if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);
                  s->tt[nblock] = (UInt32)uc;
                  nblock++;
                  es--;
               };

            continue;

         } else {

            if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);

            /*-- uc = MTF ( nextSym-1 ) --*/
            {
               Int32 ii, jj, kk, pp, lno, off;
               UInt32 nn;
               nn = (UInt32)(nextSym - 1);

               if (nn < MTFL_SIZE) {
                  /* avoid general-case expense */
                  pp = s->mtfbase[0];
                  uc = s->mtfa[pp+nn];
                  while (nn > 3) {
                     Int32 z = pp+nn;
                     s->mtfa[(z)  ] = s->mtfa[(z)-1];
                     s->mtfa[(z)-1] = s->mtfa[(z)-2];
                     s->mtfa[(z)-2] = s->mtfa[(z)-3];
                     s->mtfa[(z)-3] = s->mtfa[(z)-4];
                     nn -= 4;
                  }
                  while (nn > 0) { 
                     s->mtfa[(pp+nn)] = s->mtfa[(pp+nn)-1]; nn--; 
                  };
                  s->mtfa[pp] = uc;
               } else { 
                  /* general case */
                  lno = nn / MTFL_SIZE;
                  off = nn % MTFL_SIZE;
                  pp = s->mtfbase[lno] + off;
                  uc = s->mtfa[pp];
                  while (pp > s->mtfbase[lno]) { 
                     s->mtfa[pp] = s->mtfa[pp-1]; pp--; 
                  };
                  s->mtfbase[lno]++;
                  while (lno > 0) {
                     s->mtfbase[lno]--;
                     s->mtfa[s->mtfbase[lno]] 
                        = s->mtfa[s->mtfbase[lno-1] + MTFL_SIZE - 1];
                     lno--;
                  }
                  s->mtfbase[0]--;
                  s->mtfa[s->mtfbase[0]] = uc;
                  if (s->mtfbase[0] == 0) {
                     kk = MTFA_SIZE-1;
                     for (ii = 256 / MTFL_SIZE-1; ii >= 0; ii--) {
                        for (jj = MTFL_SIZE-1; jj >= 0; jj--) {
                           s->mtfa[kk] = s->mtfa[s->mtfbase[ii] + jj];
                           kk--;
                        }
                        s->mtfbase[ii] = kk + 1;
                     }
                  }
               }
            }
            /*-- end uc = MTF ( nextSym-1 ) --*/

            s->unzftab[s->seqToUnseq[uc]]++;
            if (s->smallDecompress)
               s->ll16[nblock] = (UInt16)(s->seqToUnseq[uc]); else
               s->tt[nblock]   = (UInt32)(s->seqToUnseq[uc]);
            nblock++;

            GET_MTF_VAL(BZ_X_MTF_5, BZ_X_MTF_6, nextSym);
            continue;
         }
      }

      /* Now we know what nblock is, we can do a better sanity
         check on s->origPtr.
      */
      if (s->origPtr < 0 || s->origPtr >= nblock)
         RETURN(BZ_DATA_ERROR);

      /*-- Set up cftab to facilitate generation of T^(-1) --*/
      s->cftab[0] = 0;
      for (i = 1; i <= 256; i++) s->cftab[i] = s->unzftab[i-1];
      for (i = 1; i <= 256; i++) s->cftab[i] += s->cftab[i-1];
      for (i = 0; i <= 256; i++) {
         if (s->cftab[i] < 0 || s->cftab[i] > nblock) {
            /* s->cftab[i] can legitimately be == nblock */
            RETURN(BZ_DATA_ERROR);
         }
      }

      s->state_out_len = 0;
      s->state_out_ch  = 0;
      BZ_INITIALISE_CRC ( s->calculatedBlockCRC );
      s->state = BZ_X_OUTPUT;
      if (s->verbosity >= 2) VPrintf0 ( "rt+rld" );

      if (s->smallDecompress) {

         /*-- Make a copy of cftab, used in generation of T --*/
         for (i = 0; i <= 256; i++) s->cftabCopy[i] = s->cftab[i];

         /*-- compute the T vector --*/
         for (i = 0; i < nblock; i++) {
            uc = (UChar)(s->ll16[i]);
            SET_LL(i, s->cftabCopy[uc]);
            s->cftabCopy[uc]++;
         }

         /*-- Compute T^(-1) by pointer reversal on T --*/
         i = s->origPtr;
         j = GET_LL(i);
         do {
            Int32 tmp = GET_LL(j);
            SET_LL(j, i);
            i = j;
            j = tmp;
         }
            while (i != s->origPtr);

         s->tPos = s->origPtr;
         s->nblock_used = 0;
         if (s->blockRandomised) {
            BZ_RAND_INIT_MASK;
            BZ_GET_SMALL(s->k0); s->nblock_used++;
            BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; 
         } else {
            BZ_GET_SMALL(s->k0); s->nblock_used++;
         }

      } else {

         /*-- compute the T^(-1) vector --*/
         for (i = 0; i < nblock; i++) {
            uc = (UChar)(s->tt[i] & 0xff);
            s->tt[s->cftab[uc]] |= (i << 8);
            s->cftab[uc]++;
         }

         s->tPos = s->tt[s->origPtr] >> 8;
         s->nblock_used = 0;
         if (s->blockRandomised) {
            BZ_RAND_INIT_MASK;
            BZ_GET_FAST(s->k0); s->nblock_used++;
            BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; 
         } else {
            BZ_GET_FAST(s->k0); s->nblock_used++;
         }

      }

      RETURN(BZ_OK);



    endhdr_2:

      GET_UCHAR(BZ_X_ENDHDR_2, uc);
      if (uc != 0x72) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_ENDHDR_3, uc);
      if (uc != 0x45) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_ENDHDR_4, uc);
      if (uc != 0x38) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_ENDHDR_5, uc);
      if (uc != 0x50) RETURN(BZ_DATA_ERROR);
      GET_UCHAR(BZ_X_ENDHDR_6, uc);
      if (uc != 0x90) RETURN(BZ_DATA_ERROR);

      s->storedCombinedCRC = 0;
      GET_UCHAR(BZ_X_CCRC_1, uc);
      s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
      GET_UCHAR(BZ_X_CCRC_2, uc);
      s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
      GET_UCHAR(BZ_X_CCRC_3, uc);
      s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
      GET_UCHAR(BZ_X_CCRC_4, uc);
      s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);

      s->state = BZ_X_IDLE;
      RETURN(BZ_STREAM_END);

      default: AssertH ( False, 4001 );
   }

   AssertH ( False, 4002 );

   save_state_and_return:

   s->save_i           = i;
   s->save_j           = j;
   s->save_t           = t;
   s->save_alphaSize   = alphaSize;
   s->save_nGroups     = nGroups;
   s->save_nSelectors  = nSelectors;
   s->save_EOB         = EOB;
   s->save_groupNo     = groupNo;
   s->save_groupPos    = groupPos;
   s->save_nextSym     = nextSym;
   s->save_nblockMAX   = nblockMAX;
   s->save_nblock      = nblock;
   s->save_es          = es;
   s->save_N           = N;
   s->save_curr        = curr;
   s->save_zt          = zt;
   s->save_zn          = zn;
   s->save_zvec        = zvec;
   s->save_zj          = zj;
   s->save_gSel        = gSel;
   s->save_gMinlen     = gMinlen;
   s->save_gLimit      = gLimit;
   s->save_gBase       = gBase;
   s->save_gPerm       = gPerm;

   return retVal;   
}


/*-------------------------------------------------------------*/
/*--- end                                      decompress.c ---*/
/*-------------------------------------------------------------*/