/*
*******************************************************************************
*
* Copyright (C) 2004-2009, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: ucase.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2004aug30
* created by: Markus W. Scherer
*
* Low-level Unicode character/string case mapping code.
* Much code moved here (and modified) from uchar.c.
*/
#include "unicode/utypes.h"
#include "unicode/uset.h"
#include "unicode/udata.h" /* UDataInfo */
#include "ucmndata.h" /* DataHeader */
#include "udatamem.h"
#include "umutex.h"
#include "uassert.h"
#include "cmemory.h"
#include "utrie2.h"
#include "ucase.h"
#include "ucln_cmn.h"
struct UCaseProps {
UDataMemory *mem;
const int32_t *indexes;
const uint16_t *exceptions;
const UChar *unfold;
UTrie2 trie;
uint8_t formatVersion[4];
};
/* data loading etc. -------------------------------------------------------- */
#if UCASE_HARDCODE_DATA
/* ucase_props_data.c is machine-generated by gencase --csource */
#include "ucase_props_data.c"
#else
static UBool U_CALLCONV
isAcceptable(void *context,
const char *type, const char *name,
const UDataInfo *pInfo) {
if(
pInfo->size>=20 &&
pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
pInfo->charsetFamily==U_CHARSET_FAMILY &&
pInfo->dataFormat[0]==UCASE_FMT_0 && /* dataFormat="cAsE" */
pInfo->dataFormat[1]==UCASE_FMT_1 &&
pInfo->dataFormat[2]==UCASE_FMT_2 &&
pInfo->dataFormat[3]==UCASE_FMT_3 &&
pInfo->formatVersion[0]==1 &&
pInfo->formatVersion[2]==UTRIE_SHIFT &&
pInfo->formatVersion[3]==UTRIE_INDEX_SHIFT
) {
UCaseProps *csp=(UCaseProps *)context;
uprv_memcpy(csp->formatVersion, pInfo->formatVersion, 4);
return TRUE;
} else {
return FALSE;
}
}
static UCaseProps *
ucase_openData(UCaseProps *cspProto,
const uint8_t *bin, int32_t length, UErrorCode *pErrorCode) {
UCaseProps *csp;
int32_t size;
cspProto->indexes=(const int32_t *)bin;
if( (length>=0 && length<16*4) ||
cspProto->indexes[UCASE_IX_INDEX_TOP]<16
) {
/* length or indexes[] too short for minimum indexes[] length of 16 */
*pErrorCode=U_INVALID_FORMAT_ERROR;
return NULL;
}
size=cspProto->indexes[UCASE_IX_INDEX_TOP]*4;
if(length>=0) {
if(length>=size && length>=cspProto->indexes[UCASE_IX_LENGTH]) {
length-=size;
} else {
/* length too short for indexes[] or for the whole data length */
*pErrorCode=U_INVALID_FORMAT_ERROR;
return NULL;
}
}
bin+=size;
/* from here on, assume that the sizes of the items fit into the total length */
/* unserialize the trie, after indexes[] */
size=cspProto->indexes[UCASE_IX_TRIE_SIZE];
utrie_unserialize(&cspProto->trie, bin, size, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
return NULL;
}
bin+=size;
/* get exceptions[] */
size=2*cspProto->indexes[UCASE_IX_EXC_LENGTH];
cspProto->exceptions=(const uint16_t *)bin;
bin+=size;
/* get unfold[] */
size=2*cspProto->indexes[UCASE_IX_UNFOLD_LENGTH];
if(size!=0) {
cspProto->unfold=(const UChar *)bin;
bin+=size;
} else {
cspProto->unfold=NULL;
}
/* allocate, copy, and return the new UCaseProps */
csp=(UCaseProps *)uprv_malloc(sizeof(UCaseProps));
if(csp==NULL) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
return NULL;
} else {
uprv_memcpy(csp, cspProto, sizeof(UCaseProps));
return csp;
}
}
U_CAPI UCaseProps * U_EXPORT2
ucase_open(UErrorCode *pErrorCode) {
UCaseProps cspProto={ NULL }, *csp;
cspProto.mem=udata_openChoice(NULL, UCASE_DATA_TYPE, UCASE_DATA_NAME, isAcceptable, &cspProto, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
return NULL;
}
csp=ucase_openData(
&cspProto,
udata_getMemory(cspProto.mem),
udata_getLength(cspProto.mem),
pErrorCode);
if(U_FAILURE(*pErrorCode)) {
udata_close(cspProto.mem);
return NULL;
} else {
return csp;
}
}
U_CAPI UCaseProps * U_EXPORT2
ucase_openBinary(const uint8_t *bin, int32_t length, UErrorCode *pErrorCode) {
UCaseProps cspProto={ NULL };
const DataHeader *hdr;
if(U_FAILURE(*pErrorCode)) {
return NULL;
}
if(bin==NULL) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return NULL;
}
/* check the header */
if(length>=0 && length<20) {
*pErrorCode=U_INVALID_FORMAT_ERROR;
return NULL;
}
hdr=(const DataHeader *)bin;
if(
!(hdr->dataHeader.magic1==0xda && hdr->dataHeader.magic2==0x27 &&
hdr->info.isBigEndian==U_IS_BIG_ENDIAN &&
isAcceptable(&cspProto, UCASE_DATA_TYPE, UCASE_DATA_NAME, &hdr->info))
) {
*pErrorCode=U_INVALID_FORMAT_ERROR;
return NULL;
}
bin+=hdr->dataHeader.headerSize;
if(length>=0) {
length-=hdr->dataHeader.headerSize;
}
return ucase_openData(&cspProto, bin, length, pErrorCode);
}
#endif
U_CAPI void U_EXPORT2
ucase_close(UCaseProps *csp) {
if(csp!=NULL) {
#if !UCASE_HARDCODE_DATA
udata_close(csp->mem);
#endif
uprv_free(csp);
}
}
/* UCaseProps singleton ----------------------------------------------------- */
#if !UCASE_HARDCODE_DATA
static UCaseProps *gCsp=NULL;
static UCaseProps *gCspDummy=NULL;
static UErrorCode gErrorCode=U_ZERO_ERROR;
static int8_t gHaveData=0;
#endif
#if !UCASE_HARDCODE_DATA
static UBool U_CALLCONV ucase_cleanup(void) {
ucase_close(gCsp);
gCsp=NULL;
ucase_close(gCspDummy);
gCspDummy=NULL;
gErrorCode=U_ZERO_ERROR;
gHaveData=0;
return TRUE;
}
#endif
U_CAPI const UCaseProps * U_EXPORT2
ucase_getSingleton(UErrorCode *pErrorCode) {
#if UCASE_HARDCODE_DATA
if(U_FAILURE(*pErrorCode)) {
return NULL;
}
return &ucase_props_singleton;
#else
int8_t haveData;
if(U_FAILURE(*pErrorCode)) {
return NULL;
}
UMTX_CHECK(NULL, gHaveData, haveData);
if(haveData>0) {
/* data was loaded */
return gCsp;
} else if(haveData<0) {
/* data loading failed */
*pErrorCode=gErrorCode;
return NULL;
} else /* haveData==0 */ {
/* load the data */
UCaseProps *csp=ucase_open(pErrorCode);
if(U_FAILURE(*pErrorCode)) {
gHaveData=-1;
gErrorCode=*pErrorCode;
return NULL;
}
/* set the static variables */
umtx_lock(NULL);
if(gCsp==NULL) {
gCsp=csp;
csp=NULL;
gHaveData=1;
ucln_common_registerCleanup(UCLN_COMMON_UCASE, ucase_cleanup);
}
umtx_unlock(NULL);
ucase_close(csp);
return gCsp;
}
#endif
}
#if !UCASE_HARDCODE_DATA
U_CAPI const UCaseProps * U_EXPORT2
ucase_getDummy(UErrorCode *pErrorCode) {
UCaseProps *csp;
if(U_FAILURE(*pErrorCode)) {
return NULL;
}
UMTX_CHECK(NULL, gCspDummy, csp);
if(csp!=NULL) {
/* the dummy object was already created */
return csp;
} else /* csp==NULL */ {
/* create the dummy object */
int32_t *indexes;
csp=(UCaseProps *)uprv_malloc(sizeof(UCaseProps)+UCASE_IX_TOP*4+UTRIE_DUMMY_SIZE);
if(csp==NULL) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
uprv_memset(csp, 0, sizeof(UCaseProps)+UCASE_IX_TOP*4);
csp->indexes=indexes=(int32_t *)(csp+1);
indexes[UCASE_IX_INDEX_TOP]=UCASE_IX_TOP;
indexes[UCASE_IX_TRIE_SIZE]=
utrie_unserializeDummy(&csp->trie, indexes+UCASE_IX_TOP, UTRIE_DUMMY_SIZE, 0, 0, TRUE, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
uprv_free(csp);
return NULL;
}
csp->formatVersion[0]=1;
csp->formatVersion[2]=UTRIE_SHIFT;
csp->formatVersion[3]=UTRIE_INDEX_SHIFT;
/* set the static variables */
umtx_lock(NULL);
if(gCspDummy==NULL) {
gCspDummy=csp;
csp=NULL;
ucln_common_registerCleanup(UCLN_COMMON_UCASE, ucase_cleanup);
}
umtx_unlock(NULL);
uprv_free(csp);
return gCspDummy;
}
}
#endif
/* set of property starts for UnicodeSet ------------------------------------ */
static UBool U_CALLCONV
_enumPropertyStartsRange(const void *context, UChar32 start, UChar32 end, uint32_t value) {
/* add the start code point to the USet */
const USetAdder *sa=(const USetAdder *)context;
sa->add(sa->set, start);
return TRUE;
}
U_CFUNC void U_EXPORT2
ucase_addPropertyStarts(const UCaseProps *csp, const USetAdder *sa, UErrorCode *pErrorCode) {
if(U_FAILURE(*pErrorCode)) {
return;
}
/* add the start code point of each same-value range of the trie */
utrie2_enum(&csp->trie, NULL, _enumPropertyStartsRange, sa);
/* add code points with hardcoded properties, plus the ones following them */
/* (none right now, see comment below) */
/*
* Omit code points with hardcoded specialcasing properties
* because we do not build property UnicodeSets for them right now.
*/
}
/* data access primitives --------------------------------------------------- */
#define GET_EXCEPTIONS(csp, props) ((csp)->exceptions+((props)>>UCASE_EXC_SHIFT))
#define PROPS_HAS_EXCEPTION(props) ((props)&UCASE_EXCEPTION)
/* number of bits in an 8-bit integer value */
static const uint8_t flagsOffset[256]={
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
};
#define HAS_SLOT(flags, idx) ((flags)&(1<<(idx)))
#define SLOT_OFFSET(flags, idx) flagsOffset[(flags)&((1<<(idx))-1)]
/*
* Get the value of an optional-value slot where HAS_SLOT(excWord, idx).
*
* @param excWord (in) initial exceptions word
* @param idx (in) desired slot index
* @param pExc16 (in/out) const uint16_t * after excWord=*pExc16++;
* moved to the last uint16_t of the value, use +1 for beginning of next slot
* @param value (out) int32_t or uint32_t output if hasSlot, otherwise not modified
*/
#define GET_SLOT_VALUE(excWord, idx, pExc16, value) \
if(((excWord)&UCASE_EXC_DOUBLE_SLOTS)==0) { \
(pExc16)+=SLOT_OFFSET(excWord, idx); \
(value)=*pExc16; \
} else { \
(pExc16)+=2*SLOT_OFFSET(excWord, idx); \
(value)=*pExc16++; \
(value)=((value)<<16)|*pExc16; \
}
/* simple case mappings ----------------------------------------------------- */
U_CAPI UChar32 U_EXPORT2
ucase_tolower(const UCaseProps *csp, UChar32 c) {
uint16_t props=UTRIE2_GET16(&csp->trie, c);
if(!PROPS_HAS_EXCEPTION(props)) {
if(UCASE_GET_TYPE(props)>=UCASE_UPPER) {
c+=UCASE_GET_DELTA(props);
}
} else {
const uint16_t *pe=GET_EXCEPTIONS(csp, props);
uint16_t excWord=*pe++;
if(HAS_SLOT(excWord, UCASE_EXC_LOWER)) {
GET_SLOT_VALUE(excWord, UCASE_EXC_LOWER, pe, c);
}
}
return c;
}
U_CAPI UChar32 U_EXPORT2
ucase_toupper(const UCaseProps *csp, UChar32 c) {
uint16_t props=UTRIE2_GET16(&csp->trie, c);
if(!PROPS_HAS_EXCEPTION(props)) {
if(UCASE_GET_TYPE(props)==UCASE_LOWER) {
c+=UCASE_GET_DELTA(props);
}
} else {
const uint16_t *pe=GET_EXCEPTIONS(csp, props);
uint16_t excWord=*pe++;
if(HAS_SLOT(excWord, UCASE_EXC_UPPER)) {
GET_SLOT_VALUE(excWord, UCASE_EXC_UPPER, pe, c);
}
}
return c;
}
U_CAPI UChar32 U_EXPORT2
ucase_totitle(const UCaseProps *csp, UChar32 c) {
uint16_t props=UTRIE2_GET16(&csp->trie, c);
if(!PROPS_HAS_EXCEPTION(props)) {
if(UCASE_GET_TYPE(props)==UCASE_LOWER) {
c+=UCASE_GET_DELTA(props);
}
} else {
const uint16_t *pe=GET_EXCEPTIONS(csp, props);
uint16_t excWord=*pe++;
int32_t idx;
if(HAS_SLOT(excWord, UCASE_EXC_TITLE)) {
idx=UCASE_EXC_TITLE;
} else if(HAS_SLOT(excWord, UCASE_EXC_UPPER)) {
idx=UCASE_EXC_UPPER;
} else {
return c;
}
GET_SLOT_VALUE(excWord, idx, pe, c);
}
return c;
}
static const UChar iDot[2] = { 0x69, 0x307 };
static const UChar jDot[2] = { 0x6a, 0x307 };
static const UChar iOgonekDot[3] = { 0x12f, 0x307 };
static const UChar iDotGrave[3] = { 0x69, 0x307, 0x300 };
static const UChar iDotAcute[3] = { 0x69, 0x307, 0x301 };
static const UChar iDotTilde[3] = { 0x69, 0x307, 0x303 };
U_CFUNC void U_EXPORT2
ucase_addCaseClosure(const UCaseProps *csp, UChar32 c, const USetAdder *sa) {
uint16_t props;
/*
* Hardcode the case closure of i and its relatives and ignore the
* data file data for these characters.
* The Turkic dotless i and dotted I with their case mapping conditions
* and case folding option make the related characters behave specially.
* This code matches their closure behavior to their case folding behavior.
*/
switch(c) {
case 0x49:
/* regular i and I are in one equivalence class */
sa->add(sa->set, 0x69);
return;
case 0x69:
sa->add(sa->set, 0x49);
return;
case 0x130:
/* dotted I is in a class with <0069 0307> (for canonical equivalence with <0049 0307>) */
sa->addString(sa->set, iDot, 2);
return;
case 0x131:
/* dotless i is in a class by itself */
return;
default:
/* otherwise use the data file data */
break;
}
props=UTRIE2_GET16(&csp->trie, c);
if(!PROPS_HAS_EXCEPTION(props)) {
if(UCASE_GET_TYPE(props)!=UCASE_NONE) {
/* add the one simple case mapping, no matter what type it is */
int32_t delta=UCASE_GET_DELTA(props);
if(delta!=0) {
sa->add(sa->set, c+delta);
}
}
} else {
/*
* c has exceptions, so there may be multiple simple and/or
* full case mappings. Add them all.
*/
const uint16_t *pe0, *pe=GET_EXCEPTIONS(csp, props);
const UChar *closure;
uint16_t excWord=*pe++;
int32_t idx, closureLength, fullLength, length;
pe0=pe;
/* add all simple case mappings */
for(idx=UCASE_EXC_LOWER; idx<=UCASE_EXC_TITLE; ++idx) {
if(HAS_SLOT(excWord, idx)) {
pe=pe0;
GET_SLOT_VALUE(excWord, idx, pe, c);
sa->add(sa->set, c);
}
}
/* get the closure string pointer & length */
if(HAS_SLOT(excWord, UCASE_EXC_CLOSURE)) {
pe=pe0;
GET_SLOT_VALUE(excWord, UCASE_EXC_CLOSURE, pe, closureLength);
closureLength&=UCASE_CLOSURE_MAX_LENGTH; /* higher bits are reserved */
closure=(const UChar *)pe+1; /* behind this slot, unless there are full case mappings */
} else {
closureLength=0;
closure=NULL;
}
/* add the full case folding */
if(HAS_SLOT(excWord, UCASE_EXC_FULL_MAPPINGS)) {
pe=pe0;
GET_SLOT_VALUE(excWord, UCASE_EXC_FULL_MAPPINGS, pe, fullLength);
/* start of full case mapping strings */
++pe;
fullLength&=0xffff; /* bits 16 and higher are reserved */
/* skip the lowercase result string */
pe+=fullLength&UCASE_FULL_LOWER;
fullLength>>=4;
/* add the full case folding string */
length=fullLength&0xf;
if(length!=0) {
sa->addString(sa->set, (const UChar *)pe, length);
pe+=length;
}
/* skip the uppercase and titlecase strings */
fullLength>>=4;
pe+=fullLength&0xf;
fullLength>>=4;
pe+=fullLength;
closure=(const UChar *)pe; /* behind full case mappings */
}
/* add each code point in the closure string */
for(idx=0; idx<closureLength;) {
U16_NEXT_UNSAFE(closure, idx, c);
sa->add(sa->set, c);
}
}
}
/*
* compare s, which has a length, with t, which has a maximum length or is NUL-terminated
* must be length>0 and max>0 and length<=max
*/
static U_INLINE int32_t
strcmpMax(const UChar *s, int32_t length, const UChar *t, int32_t max) {
int32_t c1, c2;
max-=length; /* we require length<=max, so no need to decrement max in the loop */
do {
c1=*s++;
c2=*t++;
if(c2==0) {
return 1; /* reached the end of t but not of s */
}
c1-=c2;
if(c1!=0) {
return c1; /* return difference result */
}
} while(--length>0);
/* ends with length==0 */
if(max==0 || *t==0) {
return 0; /* equal to length of both strings */
} else {
return -max; /* return lengh difference */
}
}
U_CFUNC UBool U_EXPORT2
ucase_addStringCaseClosure(const UCaseProps *csp, const UChar *s, int32_t length, const USetAdder *sa) {
const UChar *unfold, *p;
int32_t i, start, limit, result, unfoldRows, unfoldRowWidth, unfoldStringWidth;
if(csp->unfold==NULL || s==NULL) {
return FALSE; /* no reverse case folding data, or no string */
}
if(length<=1) {
/* the string is too short to find any match */
/*
* more precise would be:
* if(!u_strHasMoreChar32Than(s, length, 1))
* but this does not make much practical difference because
* a single supplementary code point would just not be found
*/
return FALSE;
}
unfold=csp->unfold;
unfoldRows=unfold[UCASE_UNFOLD_ROWS];
unfoldRowWidth=unfold[UCASE_UNFOLD_ROW_WIDTH];
unfoldStringWidth=unfold[UCASE_UNFOLD_STRING_WIDTH];
unfold+=unfoldRowWidth;
if(length>unfoldStringWidth) {
/* the string is too long to find any match */
return FALSE;
}
/* do a binary search for the string */
start=0;
limit=unfoldRows;
while(start<limit) {
i=(start+limit)/2;
p=unfold+(i*unfoldRowWidth);
result=strcmpMax(s, length, p, unfoldStringWidth);
if(result==0) {
/* found the string: add each code point, and its case closure */
UChar32 c;
for(i=unfoldStringWidth; i<unfoldRowWidth && p[i]!=0;) {
U16_NEXT_UNSAFE(p, i, c);
sa->add(sa->set, c);
ucase_addCaseClosure(csp, c, sa);
}
return TRUE;
} else if(result<0) {
limit=i;
} else /* result>0 */ {
start=i+1;
}
}
return FALSE; /* string not found */
}
/** @return UCASE_NONE, UCASE_LOWER, UCASE_UPPER, UCASE_TITLE */
U_CAPI int32_t U_EXPORT2
ucase_getType(const UCaseProps *csp, UChar32 c) {
uint16_t props=UTRIE2_GET16(&csp->trie, c);
return UCASE_GET_TYPE(props);
}
/** @return same as ucase_getType(), or <0 if c is case-ignorable */
U_CAPI int32_t U_EXPORT2
ucase_getTypeOrIgnorable(const UCaseProps *csp, UChar32 c) {
uint16_t props=UTRIE2_GET16(&csp->trie, c);
int32_t type=UCASE_GET_TYPE(props);
if(type!=UCASE_NONE) {
return type;
} else if(
c==0x307 ||
(props&(UCASE_EXCEPTION|UCASE_CASE_IGNORABLE))==UCASE_CASE_IGNORABLE
) {
return -1; /* case-ignorable */
} else {
return 0; /* c is neither cased nor case-ignorable */
}
}
/** @return UCASE_NO_DOT, UCASE_SOFT_DOTTED, UCASE_ABOVE, UCASE_OTHER_ACCENT */
static U_INLINE int32_t
getDotType(const UCaseProps *csp, UChar32 c) {
uint16_t props=UTRIE2_GET16(&csp->trie, c);
if(!PROPS_HAS_EXCEPTION(props)) {
return props&UCASE_DOT_MASK;
} else {
const uint16_t *pe=GET_EXCEPTIONS(csp, props);
return (*pe>>UCASE_EXC_DOT_SHIFT)&UCASE_DOT_MASK;
}
}
U_CAPI UBool U_EXPORT2
ucase_isSoftDotted(const UCaseProps *csp, UChar32 c) {
return (UBool)(getDotType(csp, c)==UCASE_SOFT_DOTTED);
}
U_CAPI UBool U_EXPORT2
ucase_isCaseSensitive(const UCaseProps *csp, UChar32 c) {
uint16_t props=UTRIE2_GET16(&csp->trie, c);
return (UBool)((props&UCASE_SENSITIVE)!=0);
}
/* string casing ------------------------------------------------------------ */
/*
* These internal functions form the core of string case mappings.
* They map single code points to result code points or strings and take
* all necessary conditions (context, locale ID, options) into account.
*
* They do not iterate over the source or write to the destination
* so that the same functions are useful for non-standard string storage,
* such as in a Replaceable (for Transliterator) or UTF-8/32 strings etc.
* For the same reason, the "surrounding text" context is passed in as a
* UCaseContextIterator which does not make any assumptions about
* the underlying storage.
*
* This section contains helper functions that check for conditions
* in the input text surrounding the current code point
* according to SpecialCasing.txt.
*
* Each helper function gets the index
* - after the current code point if it looks at following text
* - before the current code point if it looks at preceding text
*
* Unicode 3.2 UAX 21 "Case Mappings" defines the conditions as follows:
*
* Final_Sigma
* C is preceded by a sequence consisting of
* a cased letter and a case-ignorable sequence,
* and C is not followed by a sequence consisting of
* an ignorable sequence and then a cased letter.
*
* More_Above
* C is followed by one or more characters of combining class 230 (ABOVE)
* in the combining character sequence.
*
* After_Soft_Dotted
* The last preceding character with combining class of zero before C
* was Soft_Dotted,
* and there is no intervening combining character class 230 (ABOVE).
*
* Before_Dot
* C is followed by combining dot above (U+0307).
* Any sequence of characters with a combining class that is neither 0 nor 230
* may intervene between the current character and the combining dot above.
*
* The erratum from 2002-10-31 adds the condition
*
* After_I
* The last preceding base character was an uppercase I, and there is no
* intervening combining character class 230 (ABOVE).
*
* (See Jitterbug 2344 and the comments on After_I below.)
*
* Helper definitions in Unicode 3.2 UAX 21:
*
* D1. A character C is defined to be cased
* if it meets any of the following criteria:
*
* - The general category of C is Titlecase Letter (Lt)
* - In [CoreProps], C has one of the properties Uppercase, or Lowercase
* - Given D = NFD(C), then it is not the case that:
* D = UCD_lower(D) = UCD_upper(D) = UCD_title(D)
* (This third criterium does not add any characters to the list
* for Unicode 3.2. Ignored.)
*
* D2. A character C is defined to be case-ignorable
* if it meets either of the following criteria:
*
* - The general category of C is
* Nonspacing Mark (Mn), or Enclosing Mark (Me), or Format Control (Cf), or
* Letter Modifier (Lm), or Symbol Modifier (Sk)
* - C is one of the following characters
* U+0027 APOSTROPHE
* U+00AD SOFT HYPHEN (SHY)
* U+2019 RIGHT SINGLE QUOTATION MARK
* (the preferred character for apostrophe)
*
* D3. A case-ignorable sequence is a sequence of
* zero or more case-ignorable characters.
*/
#define is_a(c) ((c)=='a' || (c)=='A')
#define is_d(c) ((c)=='d' || (c)=='D')
#define is_e(c) ((c)=='e' || (c)=='E')
#define is_i(c) ((c)=='i' || (c)=='I')
#define is_l(c) ((c)=='l' || (c)=='L')
#define is_n(c) ((c)=='n' || (c)=='N')
#define is_r(c) ((c)=='r' || (c)=='R')
#define is_t(c) ((c)=='t' || (c)=='T')
#define is_u(c) ((c)=='u' || (c)=='U')
#define is_z(c) ((c)=='z' || (c)=='Z')
/* separator? */
#define is_sep(c) ((c)=='_' || (c)=='-' || (c)==0)
/**
* Requires non-NULL locale ID but otherwise does the equivalent of
* checking for language codes as if uloc_getLanguage() were called:
* Accepts both 2- and 3-letter codes and accepts case variants.
*/
U_CFUNC int32_t
ucase_getCaseLocale(const char *locale, int32_t *locCache) {
int32_t result;
char c;
if(locCache!=NULL && (result=*locCache)!=UCASE_LOC_UNKNOWN) {
return result;
}
result=UCASE_LOC_ROOT;
/*
* This function used to use uloc_getLanguage(), but the current code
* removes the dependency of this low-level code on uloc implementation code
* and is faster because not the whole locale ID has to be
* examined and copied/transformed.
*
* Because this code does not want to depend on uloc, the caller must
* pass in a non-NULL locale, i.e., may need to call uloc_getDefault().
*/
c=*locale++;
if(is_t(c)) {
/* tr or tur? */
c=*locale++;
if(is_u(c)) {
c=*locale++;
}
if(is_r(c)) {
c=*locale;
if(is_sep(c)) {
result=UCASE_LOC_TURKISH;
}
}
} else if(is_a(c)) {
/* az or aze? */
c=*locale++;
if(is_z(c)) {
c=*locale++;
if(is_e(c)) {
c=*locale;
}
if(is_sep(c)) {
result=UCASE_LOC_TURKISH;
}
}
} else if(is_l(c)) {
/* lt or lit? */
c=*locale++;
if(is_i(c)) {
c=*locale++;
}
if(is_t(c)) {
c=*locale;
if(is_sep(c)) {
result=UCASE_LOC_LITHUANIAN;
}
}
} else if(is_n(c)) {
/* nl or nld? */
c=*locale++;
if(is_l(c)) {
c=*locale++;
if(is_d(c)) {
c=*locale;
}
if(is_sep(c)) {
result=UCASE_LOC_DUTCH;
}
}
}
if(locCache!=NULL) {
*locCache=result;
}
return result;
}
/* Is followed by {case-ignorable}* cased ? (dir determines looking forward/backward) */
static UBool
isFollowedByCasedLetter(const UCaseProps *csp, UCaseContextIterator *iter, void *context, int8_t dir) {
UChar32 c;
uint16_t props;
if(iter==NULL) {
return FALSE;
}
for(/* dir!=0 sets direction */; (c=iter(context, dir))>=0; dir=0) {
props=UTRIE2_GET16(&csp->trie, c);
if(UCASE_GET_TYPE(props)!=UCASE_NONE) {
return TRUE; /* followed by cased letter */
} else if(c==0x307 || (props&(UCASE_EXCEPTION|UCASE_CASE_IGNORABLE))==UCASE_CASE_IGNORABLE) {
/* case-ignorable, continue with the loop */
} else {
return FALSE; /* not ignorable */
}
}
return FALSE; /* not followed by cased letter */
}
/* Is preceded by Soft_Dotted character with no intervening cc=230 ? */
static UBool
isPrecededBySoftDotted(const UCaseProps *csp, UCaseContextIterator *iter, void *context) {
UChar32 c;
int32_t dotType;
int8_t dir;
if(iter==NULL) {
return FALSE;
}
for(dir=-1; (c=iter(context, dir))>=0; dir=0) {
dotType=getDotType(csp, c);
if(dotType==UCASE_SOFT_DOTTED) {
return TRUE; /* preceded by TYPE_i */
} else if(dotType!=UCASE_OTHER_ACCENT) {
return FALSE; /* preceded by different base character (not TYPE_i), or intervening cc==230 */
}
}
return FALSE; /* not preceded by TYPE_i */
}
/*
* See Jitterbug 2344:
* The condition After_I for Turkic-lowercasing of U+0307 combining dot above
* is checked in ICU 2.0, 2.1, 2.6 but was not in 2.2 & 2.4 because
* we made those releases compatible with Unicode 3.2 which had not fixed
* a related bug in SpecialCasing.txt.
*
* From the Jitterbug 2344 text:
* ... this bug is listed as a Unicode erratum
* from 2002-10-31 at http://www.unicode.org/uni2errata/UnicodeErrata.html
* <quote>
* There are two errors in SpecialCasing.txt.
* 1. Missing semicolons on two lines. ... [irrelevant for ICU]
* 2. An incorrect context definition. Correct as follows:
* < 0307; ; 0307; 0307; tr After_Soft_Dotted; # COMBINING DOT ABOVE
* < 0307; ; 0307; 0307; az After_Soft_Dotted; # COMBINING DOT ABOVE
* ---
* > 0307; ; 0307; 0307; tr After_I; # COMBINING DOT ABOVE
* > 0307; ; 0307; 0307; az After_I; # COMBINING DOT ABOVE
* where the context After_I is defined as:
* The last preceding base character was an uppercase I, and there is no
* intervening combining character class 230 (ABOVE).
* </quote>
*
* Note that SpecialCasing.txt even in Unicode 3.2 described the condition as:
*
* # When lowercasing, remove dot_above in the sequence I + dot_above, which will turn into i.
* # This matches the behavior of the canonically equivalent I-dot_above
*
* See also the description in this place in older versions of uchar.c (revision 1.100).
*
* Markus W. Scherer 2003-feb-15
*/
/* Is preceded by base character 'I' with no intervening cc=230 ? */
static UBool
isPrecededBy_I(const UCaseProps *csp, UCaseContextIterator *iter, void *context) {
UChar32 c;
int32_t dotType;
int8_t dir;
if(iter==NULL) {
return FALSE;
}
for(dir=-1; (c=iter(context, dir))>=0; dir=0) {
if(c==0x49) {
return TRUE; /* preceded by I */
}
dotType=getDotType(csp, c);
if(dotType!=UCASE_OTHER_ACCENT) {
return FALSE; /* preceded by different base character (not I), or intervening cc==230 */
}
}
return FALSE; /* not preceded by I */
}
/* Is followed by one or more cc==230 ? */
static UBool
isFollowedByMoreAbove(const UCaseProps *csp, UCaseContextIterator *iter, void *context) {
UChar32 c;
int32_t dotType;
int8_t dir;
if(iter==NULL) {
return FALSE;
}
for(dir=1; (c=iter(context, dir))>=0; dir=0) {
dotType=getDotType(csp, c);
if(dotType==UCASE_ABOVE) {
return TRUE; /* at least one cc==230 following */
} else if(dotType!=UCASE_OTHER_ACCENT) {
return FALSE; /* next base character, no more cc==230 following */
}
}
return FALSE; /* no more cc==230 following */
}
/* Is followed by a dot above (without cc==230 in between) ? */
static UBool
isFollowedByDotAbove(const UCaseProps *csp, UCaseContextIterator *iter, void *context) {
UChar32 c;
int32_t dotType;
int8_t dir;
if(iter==NULL) {
return FALSE;
}
for(dir=1; (c=iter(context, dir))>=0; dir=0) {
if(c==0x307) {
return TRUE;
}
dotType=getDotType(csp, c);
if(dotType!=UCASE_OTHER_ACCENT) {
return FALSE; /* next base character or cc==230 in between */
}
}
return FALSE; /* no dot above following */
}
U_CAPI int32_t U_EXPORT2
ucase_toFullLower(const UCaseProps *csp, UChar32 c,
UCaseContextIterator *iter, void *context,
const UChar **pString,
const char *locale, int32_t *locCache)
{
UChar32 result=c;
uint16_t props=UTRIE2_GET16(&csp->trie, c);
if(!PROPS_HAS_EXCEPTION(props)) {
if(UCASE_GET_TYPE(props)>=UCASE_UPPER) {
result=c+UCASE_GET_DELTA(props);
}
} else {
const uint16_t *pe=GET_EXCEPTIONS(csp, props), *pe2;
uint16_t excWord=*pe++;
int32_t full;
pe2=pe;
if(excWord&UCASE_EXC_CONDITIONAL_SPECIAL) {
/* use hardcoded conditions and mappings */
int32_t loc=ucase_getCaseLocale(locale, locCache);
/*
* Test for conditional mappings first
* (otherwise the unconditional default mappings are always taken),
* then test for characters that have unconditional mappings in SpecialCasing.txt,
* then get the UnicodeData.txt mappings.
*/
if( loc==UCASE_LOC_LITHUANIAN &&
/* base characters, find accents above */
(((c==0x49 || c==0x4a || c==0x12e) &&
isFollowedByMoreAbove(csp, iter, context)) ||
/* precomposed with accent above, no need to find one */
(c==0xcc || c==0xcd || c==0x128))
) {
/*
# Lithuanian
# Lithuanian retains the dot in a lowercase i when followed by accents.
# Introduce an explicit dot above when lowercasing capital I's and J's
# whenever there are more accents above.
# (of the accents used in Lithuanian: grave, acute, tilde above, and ogonek)
0049; 0069 0307; 0049; 0049; lt More_Above; # LATIN CAPITAL LETTER I
004A; 006A 0307; 004A; 004A; lt More_Above; # LATIN CAPITAL LETTER J
012E; 012F 0307; 012E; 012E; lt More_Above; # LATIN CAPITAL LETTER I WITH OGONEK
00CC; 0069 0307 0300; 00CC; 00CC; lt; # LATIN CAPITAL LETTER I WITH GRAVE
00CD; 0069 0307 0301; 00CD; 00CD; lt; # LATIN CAPITAL LETTER I WITH ACUTE
0128; 0069 0307 0303; 0128; 0128; lt; # LATIN CAPITAL LETTER I WITH TILDE
*/
switch(c) {
case 0x49: /* LATIN CAPITAL LETTER I */
*pString=iDot;
return 2;
case 0x4a: /* LATIN CAPITAL LETTER J */
*pString=jDot;
return 2;
case 0x12e: /* LATIN CAPITAL LETTER I WITH OGONEK */
*pString=iOgonekDot;
return 2;
case 0xcc: /* LATIN CAPITAL LETTER I WITH GRAVE */
*pString=iDotGrave;
return 3;
case 0xcd: /* LATIN CAPITAL LETTER I WITH ACUTE */
*pString=iDotAcute;
return 3;
case 0x128: /* LATIN CAPITAL LETTER I WITH TILDE */
*pString=iDotTilde;
return 3;
default:
return 0; /* will not occur */
}
/* # Turkish and Azeri */
} else if(loc==UCASE_LOC_TURKISH && c==0x130) {
/*
# I and i-dotless; I-dot and i are case pairs in Turkish and Azeri
# The following rules handle those cases.
0130; 0069; 0130; 0130; tr # LATIN CAPITAL LETTER I WITH DOT ABOVE
0130; 0069; 0130; 0130; az # LATIN CAPITAL LETTER I WITH DOT ABOVE
*/
return 0x69;
} else if(loc==UCASE_LOC_TURKISH && c==0x307 && isPrecededBy_I(csp, iter, context)) {
/*
# When lowercasing, remove dot_above in the sequence I + dot_above, which will turn into i.
# This matches the behavior of the canonically equivalent I-dot_above
0307; ; 0307; 0307; tr After_I; # COMBINING DOT ABOVE
0307; ; 0307; 0307; az After_I; # COMBINING DOT ABOVE
*/
return 0; /* remove the dot (continue without output) */
} else if(loc==UCASE_LOC_TURKISH && c==0x49 && !isFollowedByDotAbove(csp, iter, context)) {
/*
# When lowercasing, unless an I is before a dot_above, it turns into a dotless i.
0049; 0131; 0049; 0049; tr Not_Before_Dot; # LATIN CAPITAL LETTER I
0049; 0131; 0049; 0049; az Not_Before_Dot; # LATIN CAPITAL LETTER I
*/
return 0x131;
} else if(c==0x130) {
/*
# Preserve canonical equivalence for I with dot. Turkic is handled below.
0130; 0069 0307; 0130; 0130; # LATIN CAPITAL LETTER I WITH DOT ABOVE
*/
*pString=iDot;
return 2;
} else if( c==0x3a3 &&
!isFollowedByCasedLetter(csp, iter, context, 1) &&
isFollowedByCasedLetter(csp, iter, context, -1) /* -1=preceded */
) {
/* greek capital sigma maps depending on surrounding cased letters (see SpecialCasing.txt) */
/*
# Special case for final form of sigma
03A3; 03C2; 03A3; 03A3; Final_Sigma; # GREEK CAPITAL LETTER SIGMA
*/
return 0x3c2; /* greek small final sigma */
} else {
/* no known conditional special case mapping, use a normal mapping */
}
} else if(HAS_SLOT(excWord, UCASE_EXC_FULL_MAPPINGS)) {
GET_SLOT_VALUE(excWord, UCASE_EXC_FULL_MAPPINGS, pe, full);
full&=UCASE_FULL_LOWER;
if(full!=0) {
/* set the output pointer to the lowercase mapping */
*pString=pe+1;
/* return the string length */
return full;
}
}
if(HAS_SLOT(excWord, UCASE_EXC_LOWER)) {
GET_SLOT_VALUE(excWord, UCASE_EXC_LOWER, pe2, result);
}
}
return (result==c) ? ~result : result;
}
/* internal */
static int32_t
toUpperOrTitle(const UCaseProps *csp, UChar32 c,
UCaseContextIterator *iter, void *context,
const UChar **pString,
const char *locale, int32_t *locCache,
UBool upperNotTitle) {
UChar32 result=c;
uint16_t props=UTRIE2_GET16(&csp->trie, c);
if(!PROPS_HAS_EXCEPTION(props)) {
if(UCASE_GET_TYPE(props)==UCASE_LOWER) {
result=c+UCASE_GET_DELTA(props);
}
} else {
const uint16_t *pe=GET_EXCEPTIONS(csp, props), *pe2;
uint16_t excWord=*pe++;
int32_t full, idx;
pe2=pe;
if(excWord&UCASE_EXC_CONDITIONAL_SPECIAL) {
/* use hardcoded conditions and mappings */
int32_t loc=ucase_getCaseLocale(locale, locCache);
if(loc==UCASE_LOC_TURKISH && c==0x69) {
/*
# Turkish and Azeri
# I and i-dotless; I-dot and i are case pairs in Turkish and Azeri
# The following rules handle those cases.
# When uppercasing, i turns into a dotted capital I
0069; 0069; 0130; 0130; tr; # LATIN SMALL LETTER I
0069; 0069; 0130; 0130; az; # LATIN SMALL LETTER I
*/
return 0x130;
} else if(loc==UCASE_LOC_LITHUANIAN && c==0x307 && isPrecededBySoftDotted(csp, iter, context)) {
/*
# Lithuanian
# Lithuanian retains the dot in a lowercase i when followed by accents.
# Remove DOT ABOVE after "i" with upper or titlecase
0307; 0307; ; ; lt After_Soft_Dotted; # COMBINING DOT ABOVE
*/
return 0; /* remove the dot (continue without output) */
} else {
/* no known conditional special case mapping, use a normal mapping */
}
} else if(HAS_SLOT(excWord, UCASE_EXC_FULL_MAPPINGS)) {
GET_SLOT_VALUE(excWord, UCASE_EXC_FULL_MAPPINGS, pe, full);
/* start of full case mapping strings */
++pe;
/* skip the lowercase and case-folding result strings */
pe+=full&UCASE_FULL_LOWER;
full>>=4;
pe+=full&0xf;
full>>=4;
if(upperNotTitle) {
full&=0xf;
} else {
/* skip the uppercase result string */
pe+=full&0xf;
full=(full>>4)&0xf;
}
if(full!=0) {
/* set the output pointer to the result string */
*pString=pe;
/* return the string length */
return full;
}
}
if(!upperNotTitle && HAS_SLOT(excWord, UCASE_EXC_TITLE)) {
idx=UCASE_EXC_TITLE;
} else if(HAS_SLOT(excWord, UCASE_EXC_UPPER)) {
/* here, titlecase is same as uppercase */
idx=UCASE_EXC_UPPER;
} else {
return ~c;
}
GET_SLOT_VALUE(excWord, idx, pe2, result);
}
return (result==c) ? ~result : result;
}
U_CAPI int32_t U_EXPORT2
ucase_toFullUpper(const UCaseProps *csp, UChar32 c,
UCaseContextIterator *iter, void *context,
const UChar **pString,
const char *locale, int32_t *locCache) {
return toUpperOrTitle(csp, c, iter, context, pString, locale, locCache, TRUE);
}
U_CAPI int32_t U_EXPORT2
ucase_toFullTitle(const UCaseProps *csp, UChar32 c,
UCaseContextIterator *iter, void *context,
const UChar **pString,
const char *locale, int32_t *locCache) {
return toUpperOrTitle(csp, c, iter, context, pString, locale, locCache, FALSE);
}
/* case folding ------------------------------------------------------------- */
/*
* Case folding is similar to lowercasing.
* The result may be a simple mapping, i.e., a single code point, or
* a full mapping, i.e., a string.
* If the case folding for a code point is the same as its simple (1:1) lowercase mapping,
* then only the lowercase mapping is stored.
*
* Some special cases are hardcoded because their conditions cannot be
* parsed and processed from CaseFolding.txt.
*
* Unicode 3.2 CaseFolding.txt specifies for its status field:
# C: common case folding, common mappings shared by both simple and full mappings.
# F: full case folding, mappings that cause strings to grow in length. Multiple characters are separated by spaces.
# S: simple case folding, mappings to single characters where different from F.
# T: special case for uppercase I and dotted uppercase I
# - For non-Turkic languages, this mapping is normally not used.
# - For Turkic languages (tr, az), this mapping can be used instead of the normal mapping for these characters.
#
# Usage:
# A. To do a simple case folding, use the mappings with status C + S.
# B. To do a full case folding, use the mappings with status C + F.
#
# The mappings with status T can be used or omitted depending on the desired case-folding
# behavior. (The default option is to exclude them.)
* Unicode 3.2 has 'T' mappings as follows:
0049; T; 0131; # LATIN CAPITAL LETTER I
0130; T; 0069; # LATIN CAPITAL LETTER I WITH DOT ABOVE
* while the default mappings for these code points are:
0049; C; 0069; # LATIN CAPITAL LETTER I
0130; F; 0069 0307; # LATIN CAPITAL LETTER I WITH DOT ABOVE
* U+0130 has no simple case folding (simple-case-folds to itself).
*/
/* return the simple case folding mapping for c */
U_CAPI UChar32 U_EXPORT2
ucase_fold(const UCaseProps *csp, UChar32 c, uint32_t options) {
uint16_t props=UTRIE2_GET16(&csp->trie, c);
if(!PROPS_HAS_EXCEPTION(props)) {
if(UCASE_GET_TYPE(props)>=UCASE_UPPER) {
c+=UCASE_GET_DELTA(props);
}
} else {
const uint16_t *pe=GET_EXCEPTIONS(csp, props);
uint16_t excWord=*pe++;
int32_t idx;
if(excWord&UCASE_EXC_CONDITIONAL_FOLD) {
/* special case folding mappings, hardcoded */
if((options&_FOLD_CASE_OPTIONS_MASK)==U_FOLD_CASE_DEFAULT) {
/* default mappings */
if(c==0x49) {
/* 0049; C; 0069; # LATIN CAPITAL LETTER I */
return 0x69;
} else if(c==0x130) {
/* no simple case folding for U+0130 */
return c;
}
} else {
/* Turkic mappings */
if(c==0x49) {
/* 0049; T; 0131; # LATIN CAPITAL LETTER I */
return 0x131;
} else if(c==0x130) {
/* 0130; T; 0069; # LATIN CAPITAL LETTER I WITH DOT ABOVE */
return 0x69;
}
}
}
if(HAS_SLOT(excWord, UCASE_EXC_FOLD)) {
idx=UCASE_EXC_FOLD;
} else if(HAS_SLOT(excWord, UCASE_EXC_LOWER)) {
idx=UCASE_EXC_LOWER;
} else {
return c;
}
GET_SLOT_VALUE(excWord, idx, pe, c);
}
return c;
}
/*
* Issue for canonical caseless match (UAX #21):
* Turkic casefolding (using "T" mappings in CaseFolding.txt) does not preserve
* canonical equivalence, unlike default-option casefolding.
* For example, I-grave and I + grave fold to strings that are not canonically
* equivalent.
* For more details, see the comment in unorm_compare() in unorm.cpp
* and the intermediate prototype changes for Jitterbug 2021.
* (For example, revision 1.104 of uchar.c and 1.4 of CaseFolding.txt.)
*
* This did not get fixed because it appears that it is not possible to fix
* it for uppercase and lowercase characters (I-grave vs. i-grave)
* together in a way that they still fold to common result strings.
*/
U_CAPI int32_t U_EXPORT2
ucase_toFullFolding(const UCaseProps *csp, UChar32 c,
const UChar **pString,
uint32_t options)
{
UChar32 result=c;
uint16_t props=UTRIE2_GET16(&csp->trie, c);
if(!PROPS_HAS_EXCEPTION(props)) {
if(UCASE_GET_TYPE(props)>=UCASE_UPPER) {
result=c+UCASE_GET_DELTA(props);
}
} else {
const uint16_t *pe=GET_EXCEPTIONS(csp, props), *pe2;
uint16_t excWord=*pe++;
int32_t full, idx;
pe2=pe;
if(excWord&UCASE_EXC_CONDITIONAL_FOLD) {
/* use hardcoded conditions and mappings */
if((options&_FOLD_CASE_OPTIONS_MASK)==U_FOLD_CASE_DEFAULT) {
/* default mappings */
if(c==0x49) {
/* 0049; C; 0069; # LATIN CAPITAL LETTER I */
return 0x69;
} else if(c==0x130) {
/* 0130; F; 0069 0307; # LATIN CAPITAL LETTER I WITH DOT ABOVE */
*pString=iDot;
return 2;
}
} else {
/* Turkic mappings */
if(c==0x49) {
/* 0049; T; 0131; # LATIN CAPITAL LETTER I */
return 0x131;
} else if(c==0x130) {
/* 0130; T; 0069; # LATIN CAPITAL LETTER I WITH DOT ABOVE */
return 0x69;
}
}
} else if(HAS_SLOT(excWord, UCASE_EXC_FULL_MAPPINGS)) {
GET_SLOT_VALUE(excWord, UCASE_EXC_FULL_MAPPINGS, pe, full);
/* start of full case mapping strings */
++pe;
/* skip the lowercase result string */
pe+=full&UCASE_FULL_LOWER;
full=(full>>4)&0xf;
if(full!=0) {
/* set the output pointer to the result string */
*pString=pe;
/* return the string length */
return full;
}
}
if(HAS_SLOT(excWord, UCASE_EXC_FOLD)) {
idx=UCASE_EXC_FOLD;
} else if(HAS_SLOT(excWord, UCASE_EXC_LOWER)) {
idx=UCASE_EXC_LOWER;
} else {
return ~c;
}
GET_SLOT_VALUE(excWord, idx, pe2, result);
}
return (result==c) ? ~result : result;
}
/* case mapping properties API ---------------------------------------------- */
/* get the UCaseProps singleton, or else its dummy, once and for all */
#if !UCASE_HARDCODE_DATA
static const UCaseProps *
getCaseProps() {
/*
* This lazy intialization with double-checked locking (without mutex protection for
* the initial check) is transiently unsafe under certain circumstances.
* Check the readme and use u_init() if necessary.
*/
/* the initial check is performed by the GET_CASE_PROPS() macro */
const UCaseProps *csp;
UErrorCode errorCode=U_ZERO_ERROR;
csp=ucase_getSingleton(&errorCode);
if(U_FAILURE(errorCode)) {
errorCode=U_ZERO_ERROR;
csp=ucase_getDummy(&errorCode);
if(U_FAILURE(errorCode)) {
return NULL;
}
}
return csp;
}
#endif
/*
* In ICU 3.0, most Unicode properties were loaded from uprops.icu.
* ICU 3.2 adds ucase.icu for case mapping properties.
* ICU 3.4 adds ubidi.icu for bidi/shaping properties and
* removes case/bidi/shaping properties from uprops.icu.
*
* Loading of uprops.icu was never mutex-protected and required u_init()
* for thread safety.
* In order to maintain performance for all such properties,
* ucase.icu and ubidi.icu are loaded lazily, without mutexing.
* u_init() will try to load them for thread safety,
* but u_init() will not fail if they are missing.
*
* uchar.c maintains a tri-state flag for (not loaded/loaded/failed to load)
* and an error code for load failure.
* Instead, here we try to load at most once.
* If it works, we use the resulting singleton object.
* If it fails, then we get a dummy object, which always works unless
* we are seriously out of memory.
* After the first try, we have a never-changing pointer to either the
* real singleton or the dummy.
*
* This method is used in Unicode properties APIs (uchar.h) that
* do not have a service object and also do not have an error code parameter.
* Other API implementations get the singleton themselves
* (with mutexing), store it in the service object, and report errors.
*/
#if !UCASE_HARDCODE_DATA
#define GET_CASE_PROPS() (gCsp!=NULL ? gCsp : getCaseProps())
#else
#define GET_CASE_PROPS() &ucase_props_singleton
#endif
/* public API (see uchar.h) */
U_CAPI UBool U_EXPORT2
u_isULowercase(UChar32 c) {
return (UBool)(UCASE_LOWER==ucase_getType(GET_CASE_PROPS(), c));
}
U_CAPI UBool U_EXPORT2
u_isUUppercase(UChar32 c) {
return (UBool)(UCASE_UPPER==ucase_getType(GET_CASE_PROPS(), c));
}
/* Transforms the Unicode character to its lower case equivalent.*/
U_CAPI UChar32 U_EXPORT2
u_tolower(UChar32 c) {
return ucase_tolower(GET_CASE_PROPS(), c);
}
/* Transforms the Unicode character to its upper case equivalent.*/
U_CAPI UChar32 U_EXPORT2
u_toupper(UChar32 c) {
return ucase_toupper(GET_CASE_PROPS(), c);
}
/* Transforms the Unicode character to its title case equivalent.*/
U_CAPI UChar32 U_EXPORT2
u_totitle(UChar32 c) {
return ucase_totitle(GET_CASE_PROPS(), c);
}
/* return the simple case folding mapping for c */
U_CAPI UChar32 U_EXPORT2
u_foldCase(UChar32 c, uint32_t options) {
return ucase_fold(GET_CASE_PROPS(), c, options);
}
U_CFUNC int32_t U_EXPORT2
ucase_hasBinaryProperty(UChar32 c, UProperty which) {
/* case mapping properties */
const UCaseProps *csp=GET_CASE_PROPS();
if(csp==NULL) {
return FALSE;
}
switch(which) {
case UCHAR_LOWERCASE:
return (UBool)(UCASE_LOWER==ucase_getType(csp, c));
case UCHAR_UPPERCASE:
return (UBool)(UCASE_UPPER==ucase_getType(csp, c));
case UCHAR_SOFT_DOTTED:
return ucase_isSoftDotted(csp, c);
case UCHAR_CASE_SENSITIVE:
return ucase_isCaseSensitive(csp, c);
default:
return FALSE;
}
}