C++程序  |  552行  |  15.37 KB

/*
******************************************************************************
* Copyright (C) 1999-2009, International Business Machines Corporation and   *
* others. All Rights Reserved.                                               *
******************************************************************************
*   Date        Name        Description
*   10/22/99    alan        Creation.
**********************************************************************
*/

#include "uvector.h"
#include "cmemory.h"
#include "uarrsort.h"

U_NAMESPACE_BEGIN

#define DEFUALT_CAPACITY 8

/*
 * Constants for hinting whether a key is an integer
 * or a pointer.  If a hint bit is zero, then the associated
 * token is assumed to be an integer. This is needed for iSeries
 */
#define HINT_KEY_POINTER   (1)
#define HINT_KEY_INTEGER   (0)
 
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UVector)

UVector::UVector(UErrorCode &status) :
    count(0),
    capacity(0),
    elements(0),
    deleter(0),
    comparer(0)
{
    _init(DEFUALT_CAPACITY, status);
}

UVector::UVector(int32_t initialCapacity, UErrorCode &status) :
    count(0),
    capacity(0),
    elements(0),
    deleter(0),
    comparer(0)
{
    _init(initialCapacity, status);
}

UVector::UVector(UObjectDeleter *d, UKeyComparator *c, UErrorCode &status) :
    count(0),
    capacity(0),
    elements(0),
    deleter(d),
    comparer(c)
{
    _init(DEFUALT_CAPACITY, status);
}

UVector::UVector(UObjectDeleter *d, UKeyComparator *c, int32_t initialCapacity, UErrorCode &status) :
    count(0),
    capacity(0),
    elements(0),
    deleter(d),
    comparer(c)
{
    _init(initialCapacity, status);
}

void UVector::_init(int32_t initialCapacity, UErrorCode &status) {
    if (U_FAILURE(status)) {
        return;
    }
    // Fix bogus initialCapacity values; avoid malloc(0)
    if (initialCapacity < 1) {
        initialCapacity = DEFUALT_CAPACITY;
    }
    elements = (UHashTok *)uprv_malloc(sizeof(UHashTok)*initialCapacity);
    if (elements == 0) {
        status = U_MEMORY_ALLOCATION_ERROR;
    } else {
        capacity = initialCapacity;
    }
}

UVector::~UVector() {
    removeAllElements();
    uprv_free(elements);
    elements = 0;
}

/**
 * Assign this object to another (make this a copy of 'other').
 * Use the 'assign' function to assign each element.
 */
void UVector::assign(const UVector& other, UTokenAssigner *assign, UErrorCode &ec) {
    if (ensureCapacity(other.count, ec)) {
        setSize(other.count, ec);
        if (U_SUCCESS(ec)) {
            for (int32_t i=0; i<other.count; ++i) {
                if (elements[i].pointer != 0 && deleter != 0) {
                    (*deleter)(elements[i].pointer);
                }
                (*assign)(&elements[i], &other.elements[i]);
            }
        }
    }
}

// This only does something sensible if this object has a non-null comparer
UBool UVector::operator==(const UVector& other) {
    int32_t i;
    if (count != other.count) return FALSE;
    if (comparer != NULL) {
        // Compare using this object's comparer
        for (i=0; i<count; ++i) {
            if (!(*comparer)(elements[i], other.elements[i])) {
                return FALSE;
            }
        }
    }
    return TRUE;
}

void UVector::addElement(void* obj, UErrorCode &status) {
    if (ensureCapacity(count + 1, status)) {
        elements[count++].pointer = obj;
    }
}

void UVector::addElement(int32_t elem, UErrorCode &status) {
    if (ensureCapacity(count + 1, status)) {
        elements[count].pointer = NULL;     // Pointers may be bigger than ints.
        elements[count].integer = elem;
        count++;
    }
}

void UVector::setElementAt(void* obj, int32_t index) {
    if (0 <= index && index < count) {
        if (elements[index].pointer != 0 && deleter != 0) {
            (*deleter)(elements[index].pointer);
        }
        elements[index].pointer = obj;
    }
    /* else index out of range */
}

void UVector::setElementAt(int32_t elem, int32_t index) {
    if (0 <= index && index < count) {
        if (elements[index].pointer != 0 && deleter != 0) {
            // TODO:  this should be an error.  mixing up ints and pointers.
            (*deleter)(elements[index].pointer);
        }
        elements[index].pointer = NULL;
        elements[index].integer = elem;
    }
    /* else index out of range */
}

void UVector::insertElementAt(void* obj, int32_t index, UErrorCode &status) {
    // must have 0 <= index <= count
    if (0 <= index && index <= count && ensureCapacity(count + 1, status)) {
        for (int32_t i=count; i>index; --i) {
            elements[i] = elements[i-1];
        }
        elements[index].pointer = obj;
        ++count;
    }
    /* else index out of range */
}

void UVector::insertElementAt(int32_t elem, int32_t index, UErrorCode &status) {
    // must have 0 <= index <= count
    if (0 <= index && index <= count && ensureCapacity(count + 1, status)) {
        for (int32_t i=count; i>index; --i) {
            elements[i] = elements[i-1];
        }
        elements[index].pointer = NULL;
        elements[index].integer = elem;
        ++count;
    }
    /* else index out of range */
}

void* UVector::elementAt(int32_t index) const {
    return (0 <= index && index < count) ? elements[index].pointer : 0;
}

int32_t UVector::elementAti(int32_t index) const {
    return (0 <= index && index < count) ? elements[index].integer : 0;
}

UBool UVector::containsAll(const UVector& other) const {
    for (int32_t i=0; i<other.size(); ++i) {
        if (indexOf(other.elements[i]) < 0) {
            return FALSE;
        }
    }
    return TRUE;
}

UBool UVector::containsNone(const UVector& other) const {
    for (int32_t i=0; i<other.size(); ++i) {
        if (indexOf(other.elements[i]) >= 0) {
            return FALSE;
        }
    }
    return TRUE;
}

UBool UVector::removeAll(const UVector& other) {
    UBool changed = FALSE;
    for (int32_t i=0; i<other.size(); ++i) {
        int32_t j = indexOf(other.elements[i]);
        if (j >= 0) {
            removeElementAt(j);
            changed = TRUE;
        }
    }
    return changed;
}

UBool UVector::retainAll(const UVector& other) {
    UBool changed = FALSE;
    for (int32_t j=size()-1; j>=0; --j) {
        int32_t i = other.indexOf(elements[j]);
        if (i < 0) {
            removeElementAt(j);
            changed = TRUE;
        }
    }
    return changed;
}

void UVector::removeElementAt(int32_t index) {
    void* e = orphanElementAt(index);
    if (e != 0 && deleter != 0) {
        (*deleter)(e);
    }
}

UBool UVector::removeElement(void* obj) {
    int32_t i = indexOf(obj);
    if (i >= 0) {
        removeElementAt(i);
        return TRUE;
    }
    return FALSE;
}

void UVector::removeAllElements(void) {
    if (deleter != 0) {
        for (int32_t i=0; i<count; ++i) {
            if (elements[i].pointer != 0) {
                (*deleter)(elements[i].pointer);
            }
        }
    }
    count = 0;
}

UBool   UVector::equals(const UVector &other) const {
    int      i;

    if (this->count != other.count) {
        return FALSE;
    }
    if (comparer == 0) {
        for (i=0; i<count; i++) {
            if (elements[i].pointer != other.elements[i].pointer) {
                return FALSE;
            }
        }
    } else {
        UHashTok key;
        for (i=0; i<count; i++) {
            key.pointer = &other.elements[i];
            if (!(*comparer)(key, elements[i])) {
                return FALSE;
            }
        }
    }
    return TRUE;
}



int32_t UVector::indexOf(void* obj, int32_t startIndex) const {
    UHashTok key;
    key.pointer = obj;
    return indexOf(key, startIndex, HINT_KEY_POINTER);
}

int32_t UVector::indexOf(int32_t obj, int32_t startIndex) const {
    UHashTok key;
    key.integer = obj;
    return indexOf(key, startIndex, HINT_KEY_INTEGER);
}

// This only works if this object has a non-null comparer
int32_t UVector::indexOf(UHashTok key, int32_t startIndex, int8_t hint) const {
    int32_t i;
    if (comparer != 0) {
        for (i=startIndex; i<count; ++i) {
            if ((*comparer)(key, elements[i])) {
                return i;
            }
        }
    } else {
        for (i=startIndex; i<count; ++i) {
            /* Pointers are not always the same size as ints so to perform
             * a valid comparision we need to know whether we are being
             * provided an int or a pointer. */
            if (hint & HINT_KEY_POINTER) {
                if (key.pointer == elements[i].pointer) {
                    return i;
                }
            } else {
                if (key.integer == elements[i].integer) {
                    return i;
                }
            }
        }
    }
    return -1;
}

UBool UVector::ensureCapacity(int32_t minimumCapacity, UErrorCode &status) {
    if (capacity < minimumCapacity) {
        int32_t newCap = capacity * 2;
        if (newCap < minimumCapacity) {
            newCap = minimumCapacity;
        }
        UHashTok* newElems = (UHashTok *)uprv_realloc(elements, sizeof(UHashTok)*newCap);
        if (newElems == NULL) {
            // We keep the original contents on the memory failure on realloc.
            status = U_MEMORY_ALLOCATION_ERROR;
            return FALSE;
        }
        elements = newElems;
        capacity = newCap;
    }
    return TRUE;
}

/**
 * Change the size of this vector as follows: If newSize is smaller,
 * then truncate the array, possibly deleting held elements for i >=
 * newSize.  If newSize is larger, grow the array, filling in new
 * slots with NULL.
 */
void UVector::setSize(int32_t newSize, UErrorCode &status) {
    int32_t i;
    if (newSize < 0) {
        return;
    }
    if (newSize > count) {
        if (!ensureCapacity(newSize, status)) {
            return;
        }
        UHashTok empty;
        empty.pointer = NULL;
        empty.integer = 0;
        for (i=count; i<newSize; ++i) {
            elements[i] = empty;
        }
    } else {
        /* Most efficient to count down */
        for (i=count-1; i>=newSize; --i) {
            removeElementAt(i);
        }
    }
    count = newSize;
}

/**
 * Fill in the given array with all elements of this vector.
 */
void** UVector::toArray(void** result) const {
    void** a = result;
    for (int i=0; i<count; ++i) {
        *a++ = elements[i].pointer;
    }
    return result;
}

UObjectDeleter *UVector::setDeleter(UObjectDeleter *d) {
    UObjectDeleter *old = deleter;
    deleter = d;
    return old;
}

UKeyComparator *UVector::setComparer(UKeyComparator *d) {
    UKeyComparator *old = comparer;
    comparer = d;
    return old;
}

/**
 * Removes the element at the given index from this vector and
 * transfer ownership of it to the caller.  After this call, the
 * caller owns the result and must delete it and the vector entry
 * at 'index' is removed, shifting all subsequent entries back by
 * one index and shortening the size of the vector by one.  If the
 * index is out of range or if there is no item at the given index
 * then 0 is returned and the vector is unchanged.
 */
void* UVector::orphanElementAt(int32_t index) {
    void* e = 0;
    if (0 <= index && index < count) {
        e = elements[index].pointer;
        for (int32_t i=index; i<count-1; ++i) {
            elements[i] = elements[i+1];
        }
        --count;
    }
    /* else index out of range */
    return e;
}

/**
 * Insert the given object into this vector at its sorted position
 * as defined by 'compare'.  The current elements are assumed to
 * be sorted already.
 */
void UVector::sortedInsert(void* obj, USortComparator *compare, UErrorCode& ec) {
    UHashTok tok;
    tok.pointer = obj;
    sortedInsert(tok, compare, ec);
}

/**
 * Insert the given integer into this vector at its sorted position
 * as defined by 'compare'.  The current elements are assumed to
 * be sorted already.
 */
void UVector::sortedInsert(int32_t obj, USortComparator *compare, UErrorCode& ec) {
    UHashTok tok;
    tok.integer = obj;
    sortedInsert(tok, compare, ec);
}

// ASSUME elements[] IS CURRENTLY SORTED
void UVector::sortedInsert(UHashTok tok, USortComparator *compare, UErrorCode& ec) {
    // Perform a binary search for the location to insert tok at.  Tok
    // will be inserted between two elements a and b such that a <=
    // tok && tok < b, where there is a 'virtual' elements[-1] always
    // less than tok and a 'virtual' elements[count] always greater
    // than tok.
    int32_t min = 0, max = count;
    while (min != max) {
        int32_t probe = (min + max) / 2;
        int8_t c = (*compare)(elements[probe], tok);
        if (c > 0) {
            max = probe;
        } else {
            // assert(c <= 0);
            min = probe + 1;
        }
    }
    if (ensureCapacity(count + 1, ec)) {
        for (int32_t i=count; i>min; --i) {
            elements[i] = elements[i-1];
        }
        elements[min] = tok;
        ++count;
    }
}

/**
  *  Array sort comparator function.
  *  Used from UVector::sort()
  *  Conforms to function signature required for uprv_sortArray().
  *  This function is essentially just a wrapper, to make a
  *  UVector style comparator function usable with uprv_sortArray().
  *
  *  The context pointer to this function is a pointer back
  *  (with some extra indirection) to the user supplied comparator.
  *  
  */
static int32_t
#if defined (OS390)
 	__cdecl /* force to __cdecl for now */
#else
 	U_CALLCONV 
#endif
sortComparator(const void *context, const void *left, const void *right) {
    USortComparator *compare = *static_cast<USortComparator * const *>(context);
    UHashTok tok1 = *static_cast<const UHashTok *>(left);
    UHashTok tok2 = *static_cast<const UHashTok *>(right);
    int32_t result = (*compare)(tok1, tok2);
    return result;
}



/**
  *  Array sort comparison function for use from UVector::sorti()
  *  Compares int32_t vector elements.
  */
static int32_t
#if defined (OS390)
 	__cdecl /* force to __cdecl for now */
#else
 	U_CALLCONV 
#endif
sortiComparator(const void * /*context */, const void *left, const void *right) {
    const UHashTok *tok1 = static_cast<const UHashTok *>(left);
    const UHashTok *tok2 = static_cast<const UHashTok *>(right);
    int32_t result = tok1->integer < tok2->integer? -1 :
                     tok1->integer == tok2->integer? 0 : 1;
    return result;
}

/**
  * Sort the vector, assuming it constains ints.
  *     (A more general sort would take a comparison function, but it's
  *     not clear whether UVector's USortComparator or
  *     UComparator from uprv_sortAray would be more appropriate.)
  */
void UVector::sorti(UErrorCode &ec) {
    if (U_SUCCESS(ec)) {
        uprv_sortArray(elements, count, sizeof(UHashTok),
                       sortiComparator, NULL,  FALSE, &ec);
    }
}


/**
 *  Sort with a user supplied comparator.
 *
 *    The comparator function handling is confusing because the function type
 *    for UVector  (as defined for sortedInsert()) is different from the signature
 *    required by uprv_sortArray().  This is handled by passing the
 *    the UVector sort function pointer via the context pointer to a
 *    sortArray() comparator function, which can then call back to
 *    the original user functtion.
 *
 *    An additional twist is that it's not safe to pass a pointer-to-function
 *    as  a (void *) data pointer, so instead we pass a (data) pointer to a
 *    pointer-to-function variable.
 */
void UVector::sort(USortComparator *compare, UErrorCode &ec) {
    if (U_SUCCESS(ec)) {
        uprv_sortArray(elements, count, sizeof(UHashTok),
                       sortComparator, &compare, FALSE, &ec);
    }
}

U_NAMESPACE_END