/*
* WPA Supplicant - driver interaction with generic Linux Wireless Extensions
* Copyright (c) 2003-2007, Jouni Malinen <j@w1.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Alternatively, this software may be distributed under the terms of BSD
* license.
*
* See README and COPYING for more details.
*
* This file implements a driver interface for the Linux Wireless Extensions.
* When used with WE-18 or newer, this interface can be used as-is with number
* of drivers. In addition to this, some of the common functions in this file
* can be used by other driver interface implementations that use generic WE
* ioctls, but require private ioctls for some of the functionality.
*/
#include "includes.h"
#include <sys/ioctl.h>
#include <net/if_arp.h>
#include <net/if.h>
#include "wireless_copy.h"
#include "common.h"
#include "driver.h"
#include "l2_packet.h"
#include "eloop.h"
#include "wpa_supplicant.h"
#include "priv_netlink.h"
#include "driver_wext.h"
#include "wpa.h"
#include "wpa_ctrl.h"
#include "wpa_supplicant_i.h"
#include "config_ssid.h"
#ifdef CONFIG_CLIENT_MLME
#include <netpacket/packet.h>
#include <hostapd_ioctl.h>
#include <ieee80211_common.h>
/* from net/mac80211.h */
enum {
MODE_IEEE80211A = 0 /* IEEE 802.11a */,
MODE_IEEE80211B = 1 /* IEEE 802.11b only */,
MODE_ATHEROS_TURBO = 2 /* Atheros Turbo mode (2x.11a at 5 GHz) */,
MODE_IEEE80211G = 3 /* IEEE 802.11g (and 802.11b compatibility) */,
MODE_ATHEROS_TURBOG = 4 /* Atheros Turbo mode (2x.11g at 2.4 GHz) */,
NUM_IEEE80211_MODES = 5
};
#include "mlme.h"
#ifndef ETH_P_ALL
#define ETH_P_ALL 0x0003
#endif
#endif /* CONFIG_CLIENT_MLME */
struct wpa_driver_wext_data {
void *ctx;
int event_sock;
int ioctl_sock;
int mlme_sock;
char ifname[IFNAMSIZ + 1];
int ifindex;
int ifindex2;
int if_removed;
u8 *assoc_req_ies;
size_t assoc_req_ies_len;
u8 *assoc_resp_ies;
size_t assoc_resp_ies_len;
struct wpa_driver_capa capa;
int has_capability;
int we_version_compiled;
/* for set_auth_alg fallback */
int use_crypt;
int auth_alg_fallback;
int operstate;
char mlmedev[IFNAMSIZ + 1];
int scan_complete_events;
int errors;
};
static int wpa_driver_wext_flush_pmkid(void *priv);
static int wpa_driver_wext_get_range(void *priv);
static void wpa_driver_wext_finish_drv_init(struct wpa_driver_wext_data *drv);
static int wpa_driver_wext_send_oper_ifla(struct wpa_driver_wext_data *drv,
int linkmode, int operstate)
{
struct {
struct nlmsghdr hdr;
struct ifinfomsg ifinfo;
char opts[16];
} req;
struct rtattr *rta;
static int nl_seq;
ssize_t ret;
req.hdr.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
req.hdr.nlmsg_type = RTM_SETLINK;
req.hdr.nlmsg_flags = NLM_F_REQUEST;
req.hdr.nlmsg_seq = ++nl_seq;
req.hdr.nlmsg_pid = 0;
req.ifinfo.ifi_family = AF_UNSPEC;
req.ifinfo.ifi_type = 0;
req.ifinfo.ifi_index = drv->ifindex;
req.ifinfo.ifi_flags = 0;
req.ifinfo.ifi_change = 0;
if (linkmode != -1) {
rta = (struct rtattr *)
((char *) &req + NLMSG_ALIGN(req.hdr.nlmsg_len));
rta->rta_type = IFLA_LINKMODE;
rta->rta_len = RTA_LENGTH(sizeof(char));
*((char *) RTA_DATA(rta)) = linkmode;
req.hdr.nlmsg_len = NLMSG_ALIGN(req.hdr.nlmsg_len) +
RTA_LENGTH(sizeof(char));
}
if (operstate != -1) {
rta = (struct rtattr *)
((char *) &req + NLMSG_ALIGN(req.hdr.nlmsg_len));
rta->rta_type = IFLA_OPERSTATE;
rta->rta_len = RTA_LENGTH(sizeof(char));
*((char *) RTA_DATA(rta)) = operstate;
req.hdr.nlmsg_len = NLMSG_ALIGN(req.hdr.nlmsg_len) +
RTA_LENGTH(sizeof(char));
}
wpa_printf(MSG_DEBUG, "WEXT: Operstate: linkmode=%d, operstate=%d",
linkmode, operstate);
ret = send(drv->event_sock, &req, req.hdr.nlmsg_len, 0);
if (ret < 0) {
wpa_printf(MSG_DEBUG, "WEXT: Sending operstate IFLA failed: "
"%s (assume operstate is not supported)",
strerror(errno));
}
return ret < 0 ? -1 : 0;
}
static int wpa_driver_wext_set_auth_param(struct wpa_driver_wext_data *drv,
int idx, u32 value)
{
struct iwreq iwr;
int ret = 0;
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
iwr.u.param.flags = idx & IW_AUTH_INDEX;
iwr.u.param.value = value;
if (ioctl(drv->ioctl_sock, SIOCSIWAUTH, &iwr) < 0) {
if (errno != EOPNOTSUPP) {
wpa_printf(MSG_DEBUG, "WEXT: SIOCSIWAUTH(param %d "
"value 0x%x) failed: %s)",
idx, value, strerror(errno));
}
ret = errno == EOPNOTSUPP ? -2 : -1;
}
return ret;
}
/**
* wpa_driver_wext_get_bssid - Get BSSID, SIOCGIWAP
* @priv: Pointer to private wext data from wpa_driver_wext_init()
* @bssid: Buffer for BSSID
* Returns: 0 on success, -1 on failure
*/
int wpa_driver_wext_get_bssid(void *priv, u8 *bssid)
{
struct wpa_driver_wext_data *drv = priv;
struct iwreq iwr;
int ret = 0;
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
if (ioctl(drv->ioctl_sock, SIOCGIWAP, &iwr) < 0) {
perror("ioctl[SIOCGIWAP]");
ret = -1;
}
os_memcpy(bssid, iwr.u.ap_addr.sa_data, ETH_ALEN);
return ret;
}
/**
* wpa_driver_wext_set_bssid - Set BSSID, SIOCSIWAP
* @priv: Pointer to private wext data from wpa_driver_wext_init()
* @bssid: BSSID
* Returns: 0 on success, -1 on failure
*/
int wpa_driver_wext_set_bssid(void *priv, const u8 *bssid)
{
struct wpa_driver_wext_data *drv = priv;
struct iwreq iwr;
int ret = 0;
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
iwr.u.ap_addr.sa_family = ARPHRD_ETHER;
if (bssid)
os_memcpy(iwr.u.ap_addr.sa_data, bssid, ETH_ALEN);
else
os_memset(iwr.u.ap_addr.sa_data, 0, ETH_ALEN);
if (ioctl(drv->ioctl_sock, SIOCSIWAP, &iwr) < 0) {
perror("ioctl[SIOCSIWAP]");
ret = -1;
}
return ret;
}
/**
* wpa_driver_wext_get_ssid - Get SSID, SIOCGIWESSID
* @priv: Pointer to private wext data from wpa_driver_wext_init()
* @ssid: Buffer for the SSID; must be at least 32 bytes long
* Returns: SSID length on success, -1 on failure
*/
int wpa_driver_wext_get_ssid(void *priv, u8 *ssid)
{
struct wpa_driver_wext_data *drv = priv;
struct iwreq iwr;
int ret = 0;
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
iwr.u.essid.pointer = (caddr_t) ssid;
iwr.u.essid.length = 32;
if (ioctl(drv->ioctl_sock, SIOCGIWESSID, &iwr) < 0) {
perror("ioctl[SIOCGIWESSID]");
ret = -1;
} else {
ret = iwr.u.essid.length;
if (ret > 32)
ret = 32;
/* Some drivers include nul termination in the SSID, so let's
* remove it here before further processing. WE-21 changes this
* to explicitly require the length _not_ to include nul
* termination. */
if (ret > 0 && ssid[ret - 1] == '\0' &&
drv->we_version_compiled < 21)
ret--;
}
return ret;
}
/**
* wpa_driver_wext_set_ssid - Set SSID, SIOCSIWESSID
* @priv: Pointer to private wext data from wpa_driver_wext_init()
* @ssid: SSID
* @ssid_len: Length of SSID (0..32)
* Returns: 0 on success, -1 on failure
*/
int wpa_driver_wext_set_ssid(void *priv, const u8 *ssid, size_t ssid_len)
{
struct wpa_driver_wext_data *drv = priv;
struct iwreq iwr;
int ret = 0;
char buf[33];
if (ssid_len > 32)
return -1;
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
/* flags: 1 = ESSID is active, 0 = not (promiscuous) */
iwr.u.essid.flags = (ssid_len != 0);
os_memset(buf, 0, sizeof(buf));
os_memcpy(buf, ssid, ssid_len);
iwr.u.essid.pointer = (caddr_t) buf;
if (drv->we_version_compiled < 21) {
/* For historic reasons, set SSID length to include one extra
* character, C string nul termination, even though SSID is
* really an octet string that should not be presented as a C
* string. Some Linux drivers decrement the length by one and
* can thus end up missing the last octet of the SSID if the
* length is not incremented here. WE-21 changes this to
* explicitly require the length _not_ to include nul
* termination. */
if (ssid_len)
ssid_len++;
}
iwr.u.essid.length = ssid_len;
if (ioctl(drv->ioctl_sock, SIOCSIWESSID, &iwr) < 0) {
perror("ioctl[SIOCSIWESSID]");
ret = -1;
}
return ret;
}
/**
* wpa_driver_wext_set_freq - Set frequency/channel, SIOCSIWFREQ
* @priv: Pointer to private wext data from wpa_driver_wext_init()
* @freq: Frequency in MHz
* Returns: 0 on success, -1 on failure
*/
int wpa_driver_wext_set_freq(void *priv, int freq)
{
struct wpa_driver_wext_data *drv = priv;
struct iwreq iwr;
int ret = 0;
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
iwr.u.freq.m = freq * 100000;
iwr.u.freq.e = 1;
if (ioctl(drv->ioctl_sock, SIOCSIWFREQ, &iwr) < 0) {
perror("ioctl[SIOCSIWFREQ]");
ret = -1;
}
return ret;
}
static void
wpa_driver_wext_event_wireless_custom(void *ctx, char *custom)
{
union wpa_event_data data;
wpa_printf(MSG_MSGDUMP, "WEXT: Custom wireless event: '%s'",
custom);
os_memset(&data, 0, sizeof(data));
/* Host AP driver */
if (os_strncmp(custom, "MLME-MICHAELMICFAILURE.indication", 33) == 0) {
data.michael_mic_failure.unicast =
os_strstr(custom, " unicast ") != NULL;
/* TODO: parse parameters(?) */
wpa_supplicant_event(ctx, EVENT_MICHAEL_MIC_FAILURE, &data);
} else if (os_strncmp(custom, "ASSOCINFO(ReqIEs=", 17) == 0) {
char *spos;
int bytes;
spos = custom + 17;
bytes = strspn(spos, "0123456789abcdefABCDEF");
if (!bytes || (bytes & 1))
return;
bytes /= 2;
data.assoc_info.req_ies = os_malloc(bytes);
if (data.assoc_info.req_ies == NULL)
return;
data.assoc_info.req_ies_len = bytes;
hexstr2bin(spos, data.assoc_info.req_ies, bytes);
spos += bytes * 2;
data.assoc_info.resp_ies = NULL;
data.assoc_info.resp_ies_len = 0;
if (os_strncmp(spos, " RespIEs=", 9) == 0) {
spos += 9;
bytes = strspn(spos, "0123456789abcdefABCDEF");
if (!bytes || (bytes & 1))
goto done;
bytes /= 2;
data.assoc_info.resp_ies = os_malloc(bytes);
if (data.assoc_info.resp_ies == NULL)
goto done;
data.assoc_info.resp_ies_len = bytes;
hexstr2bin(spos, data.assoc_info.resp_ies, bytes);
}
wpa_supplicant_event(ctx, EVENT_ASSOCINFO, &data);
done:
os_free(data.assoc_info.resp_ies);
os_free(data.assoc_info.req_ies);
#ifdef CONFIG_PEERKEY
} else if (os_strncmp(custom, "STKSTART.request=", 17) == 0) {
if (hwaddr_aton(custom + 17, data.stkstart.peer)) {
wpa_printf(MSG_DEBUG, "WEXT: unrecognized "
"STKSTART.request '%s'", custom + 17);
return;
}
wpa_supplicant_event(ctx, EVENT_STKSTART, &data);
#endif /* CONFIG_PEERKEY */
#ifdef ANDROID
} else if (os_strncmp(custom, "STOP", 4) == 0) {
wpa_msg(ctx, MSG_INFO, WPA_EVENT_DRIVER_STATE "STOPPED");
} else if (os_strncmp(custom, "START", 5) == 0) {
wpa_msg(ctx, MSG_INFO, WPA_EVENT_DRIVER_STATE "STARTED");
#endif /* ANDROID */
}
}
static int wpa_driver_wext_event_wireless_michaelmicfailure(
void *ctx, const char *ev, size_t len)
{
const struct iw_michaelmicfailure *mic;
union wpa_event_data data;
if (len < sizeof(*mic))
return -1;
mic = (const struct iw_michaelmicfailure *) ev;
wpa_printf(MSG_DEBUG, "Michael MIC failure wireless event: "
"flags=0x%x src_addr=" MACSTR, mic->flags,
MAC2STR(mic->src_addr.sa_data));
os_memset(&data, 0, sizeof(data));
data.michael_mic_failure.unicast = !(mic->flags & IW_MICFAILURE_GROUP);
wpa_supplicant_event(ctx, EVENT_MICHAEL_MIC_FAILURE, &data);
return 0;
}
static int wpa_driver_wext_event_wireless_pmkidcand(
struct wpa_driver_wext_data *drv, const char *ev, size_t len)
{
const struct iw_pmkid_cand *cand;
union wpa_event_data data;
const u8 *addr;
if (len < sizeof(*cand))
return -1;
cand = (const struct iw_pmkid_cand *) ev;
addr = (const u8 *) cand->bssid.sa_data;
wpa_printf(MSG_DEBUG, "PMKID candidate wireless event: "
"flags=0x%x index=%d bssid=" MACSTR, cand->flags,
cand->index, MAC2STR(addr));
os_memset(&data, 0, sizeof(data));
os_memcpy(data.pmkid_candidate.bssid, addr, ETH_ALEN);
data.pmkid_candidate.index = cand->index;
data.pmkid_candidate.preauth = cand->flags & IW_PMKID_CAND_PREAUTH;
wpa_supplicant_event(drv->ctx, EVENT_PMKID_CANDIDATE, &data);
return 0;
}
static int wpa_driver_wext_event_wireless_assocreqie(
struct wpa_driver_wext_data *drv, const char *ev, int len)
{
if (len < 0)
return -1;
wpa_hexdump(MSG_DEBUG, "AssocReq IE wireless event", (const u8 *) ev,
len);
os_free(drv->assoc_req_ies);
drv->assoc_req_ies = os_malloc(len);
if (drv->assoc_req_ies == NULL) {
drv->assoc_req_ies_len = 0;
return -1;
}
os_memcpy(drv->assoc_req_ies, ev, len);
drv->assoc_req_ies_len = len;
return 0;
}
static int wpa_driver_wext_event_wireless_assocrespie(
struct wpa_driver_wext_data *drv, const char *ev, int len)
{
if (len < 0)
return -1;
wpa_hexdump(MSG_DEBUG, "AssocResp IE wireless event", (const u8 *) ev,
len);
os_free(drv->assoc_resp_ies);
drv->assoc_resp_ies = os_malloc(len);
if (drv->assoc_resp_ies == NULL) {
drv->assoc_resp_ies_len = 0;
return -1;
}
os_memcpy(drv->assoc_resp_ies, ev, len);
drv->assoc_resp_ies_len = len;
return 0;
}
static void wpa_driver_wext_event_assoc_ies(struct wpa_driver_wext_data *drv)
{
union wpa_event_data data;
if (drv->assoc_req_ies == NULL && drv->assoc_resp_ies == NULL)
return;
os_memset(&data, 0, sizeof(data));
if (drv->assoc_req_ies) {
data.assoc_info.req_ies = drv->assoc_req_ies;
drv->assoc_req_ies = NULL;
data.assoc_info.req_ies_len = drv->assoc_req_ies_len;
}
if (drv->assoc_resp_ies) {
data.assoc_info.resp_ies = drv->assoc_resp_ies;
drv->assoc_resp_ies = NULL;
data.assoc_info.resp_ies_len = drv->assoc_resp_ies_len;
}
wpa_supplicant_event(drv->ctx, EVENT_ASSOCINFO, &data);
os_free(data.assoc_info.req_ies);
os_free(data.assoc_info.resp_ies);
}
static void wpa_driver_wext_event_wireless(struct wpa_driver_wext_data *drv,
void *ctx, char *data, int len)
{
struct iw_event iwe_buf, *iwe = &iwe_buf;
char *pos, *end, *custom, *buf;
pos = data;
end = data + len;
while (pos + IW_EV_LCP_LEN <= end) {
/* Event data may be unaligned, so make a local, aligned copy
* before processing. */
os_memcpy(&iwe_buf, pos, IW_EV_LCP_LEN);
wpa_printf(MSG_DEBUG, "Wireless event: cmd=0x%x len=%d",
iwe->cmd, iwe->len);
if (iwe->len <= IW_EV_LCP_LEN)
return;
custom = pos + IW_EV_POINT_LEN;
if (drv->we_version_compiled > 18 &&
(iwe->cmd == IWEVMICHAELMICFAILURE ||
iwe->cmd == IWEVCUSTOM ||
iwe->cmd == IWEVASSOCREQIE ||
iwe->cmd == IWEVASSOCRESPIE ||
iwe->cmd == IWEVPMKIDCAND)) {
/* WE-19 removed the pointer from struct iw_point */
char *dpos = (char *) &iwe_buf.u.data.length;
int dlen = dpos - (char *) &iwe_buf;
os_memcpy(dpos, pos + IW_EV_LCP_LEN,
sizeof(struct iw_event) - dlen);
} else {
os_memcpy(&iwe_buf, pos, sizeof(struct iw_event));
custom += IW_EV_POINT_OFF;
}
switch (iwe->cmd) {
case SIOCGIWAP:
wpa_printf(MSG_DEBUG, "Wireless event: new AP: "
MACSTR,
MAC2STR((u8 *) iwe->u.ap_addr.sa_data));
if (os_memcmp(iwe->u.ap_addr.sa_data,
"\x00\x00\x00\x00\x00\x00", ETH_ALEN) ==
0 ||
os_memcmp(iwe->u.ap_addr.sa_data,
"\x44\x44\x44\x44\x44\x44", ETH_ALEN) ==
0) {
os_free(drv->assoc_req_ies);
drv->assoc_req_ies = NULL;
os_free(drv->assoc_resp_ies);
drv->assoc_resp_ies = NULL;
wpa_supplicant_event(ctx, EVENT_DISASSOC,
NULL);
} else {
wpa_driver_wext_event_assoc_ies(drv);
wpa_supplicant_event(ctx, EVENT_ASSOC, NULL);
}
break;
case IWEVMICHAELMICFAILURE:
if (custom + iwe->u.data.length > end) {
wpa_printf(MSG_DEBUG, "WEXT: Invalid "
"IWEVMICHAELMICFAILURE length");
return;
}
wpa_driver_wext_event_wireless_michaelmicfailure(
ctx, custom, iwe->u.data.length);
break;
case IWEVCUSTOM:
if (custom + iwe->u.data.length > end) {
wpa_printf(MSG_DEBUG, "WEXT: Invalid "
"IWEVCUSTOM length");
return;
}
buf = os_malloc(iwe->u.data.length + 1);
if (buf == NULL)
return;
os_memcpy(buf, custom, iwe->u.data.length);
buf[iwe->u.data.length] = '\0';
wpa_driver_wext_event_wireless_custom(ctx, buf);
os_free(buf);
break;
case SIOCGIWSCAN:
drv->scan_complete_events = 1;
eloop_cancel_timeout(wpa_driver_wext_scan_timeout,
drv, ctx);
wpa_supplicant_event(ctx, EVENT_SCAN_RESULTS, NULL);
break;
case IWEVASSOCREQIE:
if (custom + iwe->u.data.length > end) {
wpa_printf(MSG_DEBUG, "WEXT: Invalid "
"IWEVASSOCREQIE length");
return;
}
wpa_driver_wext_event_wireless_assocreqie(
drv, custom, iwe->u.data.length);
break;
case IWEVASSOCRESPIE:
if (custom + iwe->u.data.length > end) {
wpa_printf(MSG_DEBUG, "WEXT: Invalid "
"IWEVASSOCRESPIE length");
return;
}
wpa_driver_wext_event_wireless_assocrespie(
drv, custom, iwe->u.data.length);
break;
case IWEVPMKIDCAND:
if (custom + iwe->u.data.length > end) {
wpa_printf(MSG_DEBUG, "WEXT: Invalid "
"IWEVPMKIDCAND length");
return;
}
wpa_driver_wext_event_wireless_pmkidcand(
drv, custom, iwe->u.data.length);
break;
}
pos += iwe->len;
}
}
static void wpa_driver_wext_event_link(struct wpa_driver_wext_data *drv,
void *ctx, char *buf, size_t len,
int del)
{
union wpa_event_data event;
os_memset(&event, 0, sizeof(event));
if (len > sizeof(event.interface_status.ifname))
len = sizeof(event.interface_status.ifname) - 1;
os_memcpy(event.interface_status.ifname, buf, len);
event.interface_status.ievent = del ? EVENT_INTERFACE_REMOVED :
EVENT_INTERFACE_ADDED;
wpa_printf(MSG_DEBUG, "RTM_%sLINK, IFLA_IFNAME: Interface '%s' %s",
del ? "DEL" : "NEW",
event.interface_status.ifname,
del ? "removed" : "added");
if (os_strcmp(drv->ifname, event.interface_status.ifname) == 0) {
if (del)
drv->if_removed = 1;
else
drv->if_removed = 0;
}
wpa_supplicant_event(ctx, EVENT_INTERFACE_STATUS, &event);
}
static int wpa_driver_wext_own_ifname(struct wpa_driver_wext_data *drv,
struct nlmsghdr *h)
{
struct ifinfomsg *ifi;
int attrlen, nlmsg_len, rta_len;
struct rtattr *attr;
ifi = NLMSG_DATA(h);
nlmsg_len = NLMSG_ALIGN(sizeof(struct ifinfomsg));
attrlen = h->nlmsg_len - nlmsg_len;
if (attrlen < 0)
return 0;
attr = (struct rtattr *) (((char *) ifi) + nlmsg_len);
rta_len = RTA_ALIGN(sizeof(struct rtattr));
while (RTA_OK(attr, attrlen)) {
if (attr->rta_type == IFLA_IFNAME) {
if (os_strcmp(((char *) attr) + rta_len, drv->ifname)
== 0)
return 1;
else
break;
}
attr = RTA_NEXT(attr, attrlen);
}
return 0;
}
static int wpa_driver_wext_own_ifindex(struct wpa_driver_wext_data *drv,
int ifindex, struct nlmsghdr *h)
{
if (drv->ifindex == ifindex || drv->ifindex2 == ifindex)
return 1;
if (drv->if_removed && wpa_driver_wext_own_ifname(drv, h)) {
drv->ifindex = if_nametoindex(drv->ifname);
wpa_printf(MSG_DEBUG, "WEXT: Update ifindex for a removed "
"interface");
wpa_driver_wext_finish_drv_init(drv);
return 1;
}
return 0;
}
static void wpa_driver_wext_event_rtm_newlink(struct wpa_driver_wext_data *drv,
void *ctx, struct nlmsghdr *h,
size_t len)
{
struct ifinfomsg *ifi;
int attrlen, nlmsg_len, rta_len;
struct rtattr * attr;
if (len < sizeof(*ifi))
return;
ifi = NLMSG_DATA(h);
if (!wpa_driver_wext_own_ifindex(drv, ifi->ifi_index, h)) {
wpa_printf(MSG_DEBUG, "Ignore event for foreign ifindex %d",
ifi->ifi_index);
return;
}
wpa_printf(MSG_DEBUG, "RTM_NEWLINK: operstate=%d ifi_flags=0x%x "
"(%s%s%s%s)",
drv->operstate, ifi->ifi_flags,
(ifi->ifi_flags & IFF_UP) ? "[UP]" : "",
(ifi->ifi_flags & IFF_RUNNING) ? "[RUNNING]" : "",
(ifi->ifi_flags & IFF_LOWER_UP) ? "[LOWER_UP]" : "",
(ifi->ifi_flags & IFF_DORMANT) ? "[DORMANT]" : "");
/*
* Some drivers send the association event before the operup event--in
* this case, lifting operstate in wpa_driver_wext_set_operstate()
* fails. This will hit us when wpa_supplicant does not need to do
* IEEE 802.1X authentication
*/
if (drv->operstate == 1 &&
(ifi->ifi_flags & (IFF_LOWER_UP | IFF_DORMANT)) == IFF_LOWER_UP &&
!(ifi->ifi_flags & IFF_RUNNING))
wpa_driver_wext_send_oper_ifla(drv, -1, IF_OPER_UP);
nlmsg_len = NLMSG_ALIGN(sizeof(struct ifinfomsg));
attrlen = h->nlmsg_len - nlmsg_len;
if (attrlen < 0)
return;
attr = (struct rtattr *) (((char *) ifi) + nlmsg_len);
rta_len = RTA_ALIGN(sizeof(struct rtattr));
while (RTA_OK(attr, attrlen)) {
if (attr->rta_type == IFLA_WIRELESS) {
wpa_driver_wext_event_wireless(
drv, ctx, ((char *) attr) + rta_len,
attr->rta_len - rta_len);
} else if (attr->rta_type == IFLA_IFNAME) {
wpa_driver_wext_event_link(drv, ctx,
((char *) attr) + rta_len,
attr->rta_len - rta_len, 0);
}
attr = RTA_NEXT(attr, attrlen);
}
}
static void wpa_driver_wext_event_rtm_dellink(struct wpa_driver_wext_data *drv,
void *ctx, struct nlmsghdr *h,
size_t len)
{
struct ifinfomsg *ifi;
int attrlen, nlmsg_len, rta_len;
struct rtattr * attr;
if (len < sizeof(*ifi))
return;
ifi = NLMSG_DATA(h);
nlmsg_len = NLMSG_ALIGN(sizeof(struct ifinfomsg));
attrlen = h->nlmsg_len - nlmsg_len;
if (attrlen < 0)
return;
attr = (struct rtattr *) (((char *) ifi) + nlmsg_len);
rta_len = RTA_ALIGN(sizeof(struct rtattr));
while (RTA_OK(attr, attrlen)) {
if (attr->rta_type == IFLA_IFNAME) {
wpa_driver_wext_event_link(drv, ctx,
((char *) attr) + rta_len,
attr->rta_len - rta_len, 1);
}
attr = RTA_NEXT(attr, attrlen);
}
}
static void wpa_driver_wext_event_receive(int sock, void *eloop_ctx,
void *sock_ctx)
{
char buf[8192];
int left;
struct sockaddr_nl from;
socklen_t fromlen;
struct nlmsghdr *h;
int max_events = 10;
try_again:
fromlen = sizeof(from);
left = recvfrom(sock, buf, sizeof(buf), MSG_DONTWAIT,
(struct sockaddr *) &from, &fromlen);
if (left < 0) {
if (errno != EINTR && errno != EAGAIN)
perror("recvfrom(netlink)");
return;
}
h = (struct nlmsghdr *) buf;
while (left >= (int) sizeof(*h)) {
int len, plen;
len = h->nlmsg_len;
plen = len - sizeof(*h);
if (len > left || plen < 0) {
wpa_printf(MSG_DEBUG, "Malformed netlink message: "
"len=%d left=%d plen=%d",
len, left, plen);
break;
}
switch (h->nlmsg_type) {
case RTM_NEWLINK:
wpa_driver_wext_event_rtm_newlink(eloop_ctx, sock_ctx,
h, plen);
break;
case RTM_DELLINK:
wpa_driver_wext_event_rtm_dellink(eloop_ctx, sock_ctx,
h, plen);
break;
}
len = NLMSG_ALIGN(len);
left -= len;
h = (struct nlmsghdr *) ((char *) h + len);
}
if (left > 0) {
wpa_printf(MSG_DEBUG, "%d extra bytes in the end of netlink "
"message", left);
}
if (--max_events > 0) {
/*
* Try to receive all events in one eloop call in order to
* limit race condition on cases where AssocInfo event, Assoc
* event, and EAPOL frames are received more or less at the
* same time. We want to process the event messages first
* before starting EAPOL processing.
*/
goto try_again;
}
}
static int wpa_driver_wext_get_ifflags_ifname(struct wpa_driver_wext_data *drv,
const char *ifname, int *flags)
{
struct ifreq ifr;
os_memset(&ifr, 0, sizeof(ifr));
os_strncpy(ifr.ifr_name, ifname, IFNAMSIZ);
if (ioctl(drv->ioctl_sock, SIOCGIFFLAGS, (caddr_t) &ifr) < 0) {
perror("ioctl[SIOCGIFFLAGS]");
return -1;
}
*flags = ifr.ifr_flags & 0xffff;
return 0;
}
/**
* wpa_driver_wext_get_ifflags - Get interface flags (SIOCGIFFLAGS)
* @drv: driver_wext private data
* @flags: Pointer to returned flags value
* Returns: 0 on success, -1 on failure
*/
int wpa_driver_wext_get_ifflags(struct wpa_driver_wext_data *drv, int *flags)
{
return wpa_driver_wext_get_ifflags_ifname(drv, drv->ifname, flags);
}
static int wpa_driver_wext_set_ifflags_ifname(struct wpa_driver_wext_data *drv,
const char *ifname, int flags)
{
struct ifreq ifr;
os_memset(&ifr, 0, sizeof(ifr));
os_strncpy(ifr.ifr_name, ifname, IFNAMSIZ);
ifr.ifr_flags = flags & 0xffff;
if (ioctl(drv->ioctl_sock, SIOCSIFFLAGS, (caddr_t) &ifr) < 0) {
perror("SIOCSIFFLAGS");
return -1;
}
return 0;
}
/**
* wpa_driver_wext_set_ifflags - Set interface flags (SIOCSIFFLAGS)
* @drv: driver_wext private data
* @flags: New value for flags
* Returns: 0 on success, -1 on failure
*/
int wpa_driver_wext_set_ifflags(struct wpa_driver_wext_data *drv, int flags)
{
return wpa_driver_wext_set_ifflags_ifname(drv, drv->ifname, flags);
}
/**
* wpa_driver_wext_init - Initialize WE driver interface
* @ctx: context to be used when calling wpa_supplicant functions,
* e.g., wpa_supplicant_event()
* @ifname: interface name, e.g., wlan0
* Returns: Pointer to private data, %NULL on failure
*/
void * wpa_driver_wext_init(void *ctx, const char *ifname)
{
int s;
struct sockaddr_nl local;
struct wpa_driver_wext_data *drv;
drv = os_zalloc(sizeof(*drv));
if (drv == NULL)
return NULL;
drv->ctx = ctx;
os_strncpy(drv->ifname, ifname, sizeof(drv->ifname));
drv->ioctl_sock = socket(PF_INET, SOCK_DGRAM, 0);
if (drv->ioctl_sock < 0) {
perror("socket(PF_INET,SOCK_DGRAM)");
os_free(drv);
return NULL;
}
s = socket(PF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (s < 0) {
perror("socket(PF_NETLINK,SOCK_RAW,NETLINK_ROUTE)");
close(drv->ioctl_sock);
os_free(drv);
return NULL;
}
os_memset(&local, 0, sizeof(local));
local.nl_family = AF_NETLINK;
local.nl_groups = RTMGRP_LINK;
if (bind(s, (struct sockaddr *) &local, sizeof(local)) < 0) {
perror("bind(netlink)");
close(s);
close(drv->ioctl_sock);
os_free(drv);
return NULL;
}
eloop_register_read_sock(s, wpa_driver_wext_event_receive, drv, ctx);
drv->event_sock = s;
drv->mlme_sock = -1;
drv->errors = 0;
wpa_driver_wext_finish_drv_init(drv);
return drv;
}
static void wpa_driver_wext_finish_drv_init(struct wpa_driver_wext_data *drv)
{
int flags;
if (wpa_driver_wext_get_ifflags(drv, &flags) != 0 ||
wpa_driver_wext_set_ifflags(drv, flags | IFF_UP) != 0) {
printf("Could not set interface '%s' UP\n", drv->ifname);
}
#ifdef ANDROID
os_sleep(0, WPA_DRIVER_WEXT_WAIT_US);
#endif
/*
* Make sure that the driver does not have any obsolete PMKID entries.
*/
wpa_driver_wext_flush_pmkid(drv);
if (wpa_driver_wext_set_mode(drv, 0) < 0) {
printf("Could not configure driver to use managed mode\n");
}
wpa_driver_wext_get_range(drv);
drv->ifindex = if_nametoindex(drv->ifname);
if (os_strncmp(drv->ifname, "wlan", 4) == 0) {
/*
* Host AP driver may use both wlan# and wifi# interface in
* wireless events. Since some of the versions included WE-18
* support, let's add the alternative ifindex also from
* driver_wext.c for the time being. This may be removed at
* some point once it is believed that old versions of the
* driver are not in use anymore.
*/
char ifname2[IFNAMSIZ + 1];
os_strncpy(ifname2, drv->ifname, sizeof(ifname2));
os_memcpy(ifname2, "wifi", 4);
wpa_driver_wext_alternative_ifindex(drv, ifname2);
}
wpa_driver_wext_send_oper_ifla(drv, 1, IF_OPER_DORMANT);
}
/**
* wpa_driver_wext_deinit - Deinitialize WE driver interface
* @priv: Pointer to private wext data from wpa_driver_wext_init()
*
* Shut down driver interface and processing of driver events. Free
* private data buffer if one was allocated in wpa_driver_wext_init().
*/
void wpa_driver_wext_deinit(void *priv)
{
struct wpa_driver_wext_data *drv = priv;
int flags;
eloop_cancel_timeout(wpa_driver_wext_scan_timeout, drv, drv->ctx);
/*
* Clear possibly configured driver parameters in order to make it
* easier to use the driver after wpa_supplicant has been terminated.
*/
wpa_driver_wext_set_bssid(drv, (u8 *) "\x00\x00\x00\x00\x00\x00");
wpa_driver_wext_send_oper_ifla(priv, 0, IF_OPER_UP);
eloop_unregister_read_sock(drv->event_sock);
if (drv->mlme_sock >= 0)
eloop_unregister_read_sock(drv->mlme_sock);
if (wpa_driver_wext_get_ifflags(drv, &flags) == 0)
(void) wpa_driver_wext_set_ifflags(drv, flags & ~IFF_UP);
#ifdef CONFIG_CLIENT_MLME
if (drv->mlmedev[0] &&
wpa_driver_wext_get_ifflags_ifname(drv, drv->mlmedev, &flags) == 0)
(void) wpa_driver_wext_set_ifflags_ifname(drv, drv->mlmedev,
flags & ~IFF_UP);
#endif /* CONFIG_CLIENT_MLME */
close(drv->event_sock);
close(drv->ioctl_sock);
if (drv->mlme_sock >= 0)
close(drv->mlme_sock);
os_free(drv->assoc_req_ies);
os_free(drv->assoc_resp_ies);
os_free(drv);
}
/**
* wpa_driver_wext_scan_timeout - Scan timeout to report scan completion
* @eloop_ctx: Unused
* @timeout_ctx: ctx argument given to wpa_driver_wext_init()
*
* This function can be used as registered timeout when starting a scan to
* generate a scan completed event if the driver does not report this.
*/
void wpa_driver_wext_scan_timeout(void *eloop_ctx, void *timeout_ctx)
{
wpa_printf(MSG_DEBUG, "Scan timeout - try to get results");
wpa_supplicant_event(timeout_ctx, EVENT_SCAN_RESULTS, NULL);
}
/**
* wpa_driver_wext_scan - Request the driver to initiate scan
* @priv: Pointer to private wext data from wpa_driver_wext_init()
* @ssid: Specific SSID to scan for (ProbeReq) or %NULL to scan for
* all SSIDs (either active scan with broadcast SSID or passive
* scan
* @ssid_len: Length of the SSID
* Returns: 0 on success, -1 on failure
*/
int wpa_driver_wext_scan(void *priv, const u8 *ssid, size_t ssid_len)
{
struct wpa_driver_wext_data *drv = priv;
struct iwreq iwr;
int ret = 0, timeout;
struct iw_scan_req req;
#ifdef ANDROID
struct wpa_supplicant *wpa_s = (struct wpa_supplicant *)(drv->ctx);
int scan_probe_flag = 0;
#endif
if (ssid_len > IW_ESSID_MAX_SIZE) {
wpa_printf(MSG_DEBUG, "%s: too long SSID (%lu)",
__FUNCTION__, (unsigned long) ssid_len);
return -1;
}
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
#ifdef ANDROID
if (wpa_s->prev_scan_ssid != BROADCAST_SSID_SCAN) {
scan_probe_flag = wpa_s->prev_scan_ssid->scan_ssid;
}
if (scan_probe_flag && (ssid && ssid_len)) {
#else
if (ssid && ssid_len) {
#endif
os_memset(&req, 0, sizeof(req));
req.essid_len = ssid_len;
req.bssid.sa_family = ARPHRD_ETHER;
os_memset(req.bssid.sa_data, 0xff, ETH_ALEN);
os_memcpy(req.essid, ssid, ssid_len);
iwr.u.data.pointer = (caddr_t) &req;
iwr.u.data.length = sizeof(req);
iwr.u.data.flags = IW_SCAN_THIS_ESSID;
}
if (ioctl(drv->ioctl_sock, SIOCSIWSCAN, &iwr) < 0) {
perror("ioctl[SIOCSIWSCAN]");
ret = -1;
}
/* Not all drivers generate "scan completed" wireless event, so try to
* read results after a timeout. */
timeout = 5;
if (drv->scan_complete_events) {
/*
* The driver seems to deliver SIOCGIWSCAN events to notify
* when scan is complete, so use longer timeout to avoid race
* conditions with scanning and following association request.
*/
timeout = 30;
}
wpa_printf(MSG_DEBUG, "Scan requested (ret=%d) - scan timeout %d "
"seconds", ret, timeout);
eloop_cancel_timeout(wpa_driver_wext_scan_timeout, drv, drv->ctx);
eloop_register_timeout(timeout, 0, wpa_driver_wext_scan_timeout, drv,
drv->ctx);
return ret;
}
/* Compare function for sorting scan results. Return >0 if @b is considered
* better. */
static int wpa_scan_result_compar(const void *a, const void *b)
{
const struct wpa_scan_result *wa = a;
const struct wpa_scan_result *wb = b;
/* WPA/WPA2 support preferred */
if ((wb->wpa_ie_len || wb->rsn_ie_len) &&
!(wa->wpa_ie_len || wa->rsn_ie_len))
return 1;
if (!(wb->wpa_ie_len || wb->rsn_ie_len) &&
(wa->wpa_ie_len || wa->rsn_ie_len))
return -1;
/* privacy support preferred */
if ((wa->caps & IEEE80211_CAP_PRIVACY) == 0 &&
(wb->caps & IEEE80211_CAP_PRIVACY))
return 1;
if ((wa->caps & IEEE80211_CAP_PRIVACY) &&
(wb->caps & IEEE80211_CAP_PRIVACY) == 0)
return -1;
/* best/max rate preferred if signal level close enough XXX */
if (wa->maxrate != wb->maxrate && abs(wb->level - wa->level) < 5)
return wb->maxrate - wa->maxrate;
/* use freq for channel preference */
/* all things being equal, use signal level; if signal levels are
* identical, use quality values since some drivers may only report
* that value and leave the signal level zero */
if (wb->level == wa->level)
return wb->qual - wa->qual;
return wb->level - wa->level;
}
/**
* wpa_driver_wext_get_scan_results - Fetch the latest scan results
* @priv: Pointer to private wext data from wpa_driver_wext_init()
* @results: Pointer to buffer for scan results
* @max_size: Maximum number of entries (buffer size)
* Returns: Number of scan result entries used on success, -1 on
* failure
*
* If scan results include more than max_size BSSes, max_size will be
* returned and the remaining entries will not be included in the
* buffer.
*/
int wpa_driver_wext_get_scan_results(void *priv,
struct wpa_scan_result *results,
size_t max_size)
{
struct wpa_driver_wext_data *drv = priv;
struct iwreq iwr;
size_t ap_num = 0;
int first, maxrate;
u8 *res_buf;
struct iw_event iwe_buf, *iwe = &iwe_buf;
char *pos, *end, *custom, *genie, *gpos, *gend;
struct iw_param p;
size_t len, clen, res_buf_len;
os_memset(results, 0, max_size * sizeof(struct wpa_scan_result));
#ifdef ANDROID
/* To make sure correctly parse scan results which is impacted by wext
* version, first check range->we_version, if it is default value (0),
* update again here */
if (drv->we_version_compiled == 0)
wpa_driver_wext_get_range(drv);
#endif
res_buf_len = IW_SCAN_MAX_DATA;
for (;;) {
res_buf = os_malloc(res_buf_len);
if (res_buf == NULL)
return -1;
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
iwr.u.data.pointer = res_buf;
iwr.u.data.length = res_buf_len;
if (ioctl(drv->ioctl_sock, SIOCGIWSCAN, &iwr) == 0)
break;
if (errno == E2BIG && res_buf_len < 100000) {
os_free(res_buf);
res_buf = NULL;
res_buf_len *= 2;
wpa_printf(MSG_DEBUG, "Scan results did not fit - "
"trying larger buffer (%lu bytes)",
(unsigned long) res_buf_len);
} else {
perror("ioctl[SIOCGIWSCAN]");
os_free(res_buf);
return -1;
}
}
len = iwr.u.data.length;
ap_num = 0;
first = 1;
pos = (char *) res_buf;
end = (char *) res_buf + len;
while (pos + IW_EV_LCP_LEN <= end) {
int ssid_len;
/* Event data may be unaligned, so make a local, aligned copy
* before processing. */
os_memcpy(&iwe_buf, pos, IW_EV_LCP_LEN);
if (iwe->len <= IW_EV_LCP_LEN)
break;
custom = pos + IW_EV_POINT_LEN;
if (drv->we_version_compiled > 18 &&
(iwe->cmd == SIOCGIWESSID ||
iwe->cmd == SIOCGIWENCODE ||
iwe->cmd == IWEVGENIE ||
iwe->cmd == IWEVCUSTOM)) {
/* WE-19 removed the pointer from struct iw_point */
char *dpos = (char *) &iwe_buf.u.data.length;
int dlen = dpos - (char *) &iwe_buf;
os_memcpy(dpos, pos + IW_EV_LCP_LEN,
sizeof(struct iw_event) - dlen);
} else {
os_memcpy(&iwe_buf, pos, sizeof(struct iw_event));
custom += IW_EV_POINT_OFF;
}
switch (iwe->cmd) {
case SIOCGIWAP:
if (!first)
ap_num++;
first = 0;
if (ap_num < max_size) {
os_memcpy(results[ap_num].bssid,
iwe->u.ap_addr.sa_data, ETH_ALEN);
}
break;
case SIOCGIWMODE:
if (ap_num >= max_size)
break;
if (iwe->u.mode == IW_MODE_ADHOC)
results[ap_num].caps |= IEEE80211_CAP_IBSS;
else if (iwe->u.mode == IW_MODE_MASTER ||
iwe->u.mode == IW_MODE_INFRA)
results[ap_num].caps |= IEEE80211_CAP_ESS;
break;
case SIOCGIWESSID:
ssid_len = iwe->u.essid.length;
if (custom + ssid_len > end)
break;
if (iwe->u.essid.flags &&
ssid_len > 0 &&
ssid_len <= IW_ESSID_MAX_SIZE) {
if (ap_num < max_size) {
os_memcpy(results[ap_num].ssid, custom,
ssid_len);
results[ap_num].ssid_len = ssid_len;
}
}
break;
case SIOCGIWFREQ:
if (ap_num < max_size) {
int divi = 1000000, i;
if (iwe->u.freq.e == 0) {
/*
* Some drivers do not report
* frequency, but a channel. Try to map
* this to frequency by assuming they
* are using IEEE 802.11b/g. But don't
* overwrite a previously parsed
* frequency if the driver sends both
* frequency and channel, since the
* driver may be sending an A-band
* channel that we don't handle here.
*/
if (results[ap_num].freq)
break;
if (iwe->u.freq.m >= 1 &&
iwe->u.freq.m <= 13) {
results[ap_num].freq =
2407 +
5 * iwe->u.freq.m;
break;
} else if (iwe->u.freq.m == 14) {
results[ap_num].freq = 2484;
break;
}
}
if (iwe->u.freq.e > 6) {
wpa_printf(
MSG_DEBUG, "Invalid freq "
"in scan results (BSSID="
MACSTR ": m=%d e=%d\n",
MAC2STR(results[ap_num].bssid),
iwe->u.freq.m, iwe->u.freq.e);
break;
}
for (i = 0; i < iwe->u.freq.e; i++)
divi /= 10;
results[ap_num].freq = iwe->u.freq.m / divi;
}
break;
case IWEVQUAL:
if (ap_num < max_size) {
results[ap_num].qual = iwe->u.qual.qual;
results[ap_num].noise = iwe->u.qual.noise;
results[ap_num].level = iwe->u.qual.level;
}
break;
case SIOCGIWENCODE:
if (ap_num < max_size &&
!(iwe->u.data.flags & IW_ENCODE_DISABLED))
results[ap_num].caps |= IEEE80211_CAP_PRIVACY;
break;
case SIOCGIWRATE:
custom = pos + IW_EV_LCP_LEN;
clen = iwe->len;
if (custom + clen > end)
break;
maxrate = 0;
while (((ssize_t) clen) >=
(ssize_t) sizeof(struct iw_param)) {
/* Note: may be misaligned, make a local,
* aligned copy */
os_memcpy(&p, custom, sizeof(struct iw_param));
if (p.value > maxrate)
maxrate = p.value;
clen -= sizeof(struct iw_param);
custom += sizeof(struct iw_param);
}
if (ap_num < max_size)
results[ap_num].maxrate = maxrate;
break;
case IWEVGENIE:
if (ap_num >= max_size)
break;
gpos = genie = custom;
gend = genie + iwe->u.data.length;
if (gend > end) {
wpa_printf(MSG_INFO, "IWEVGENIE overflow");
break;
}
while (gpos + 1 < gend &&
gpos + 2 + (u8) gpos[1] <= gend) {
u8 ie = gpos[0], ielen = gpos[1] + 2;
if (ielen > SSID_MAX_WPA_IE_LEN) {
gpos += ielen;
continue;
}
switch (ie) {
case GENERIC_INFO_ELEM:
if (ielen < 2 + 4 ||
os_memcmp(&gpos[2],
"\x00\x50\xf2\x01", 4) !=
0)
break;
os_memcpy(results[ap_num].wpa_ie, gpos,
ielen);
results[ap_num].wpa_ie_len = ielen;
break;
case RSN_INFO_ELEM:
os_memcpy(results[ap_num].rsn_ie, gpos,
ielen);
results[ap_num].rsn_ie_len = ielen;
break;
}
gpos += ielen;
}
break;
case IWEVCUSTOM:
clen = iwe->u.data.length;
if (custom + clen > end)
break;
if (clen > 7 &&
os_strncmp(custom, "wpa_ie=", 7) == 0 &&
ap_num < max_size) {
char *spos;
int bytes;
spos = custom + 7;
bytes = custom + clen - spos;
if (bytes & 1)
break;
bytes /= 2;
if (bytes > SSID_MAX_WPA_IE_LEN) {
wpa_printf(MSG_INFO, "Too long WPA IE "
"(%d)", bytes);
break;
}
hexstr2bin(spos, results[ap_num].wpa_ie,
bytes);
results[ap_num].wpa_ie_len = bytes;
} else if (clen > 7 &&
os_strncmp(custom, "rsn_ie=", 7) == 0 &&
ap_num < max_size) {
char *spos;
int bytes;
spos = custom + 7;
bytes = custom + clen - spos;
if (bytes & 1)
break;
bytes /= 2;
if (bytes > SSID_MAX_WPA_IE_LEN) {
wpa_printf(MSG_INFO, "Too long RSN IE "
"(%d)", bytes);
break;
}
hexstr2bin(spos, results[ap_num].rsn_ie,
bytes);
results[ap_num].rsn_ie_len = bytes;
}
break;
}
pos += iwe->len;
}
os_free(res_buf);
res_buf = NULL;
if (!first)
ap_num++;
if (ap_num > max_size) {
wpa_printf(MSG_DEBUG, "Too small scan result buffer - "
"%lu BSSes but room only for %lu",
(unsigned long) ap_num,
(unsigned long) max_size);
ap_num = max_size;
}
qsort(results, ap_num, sizeof(struct wpa_scan_result),
wpa_scan_result_compar);
wpa_printf(MSG_DEBUG, "Received %lu bytes of scan results (%lu BSSes)",
(unsigned long) len, (unsigned long) ap_num);
return ap_num;
}
static int wpa_driver_wext_get_range(void *priv)
{
struct wpa_driver_wext_data *drv = priv;
struct iw_range *range;
struct iwreq iwr;
int minlen;
size_t buflen;
/*
* Use larger buffer than struct iw_range in order to allow the
* structure to grow in the future.
*/
buflen = sizeof(struct iw_range) + 500;
range = os_zalloc(buflen);
if (range == NULL)
return -1;
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
iwr.u.data.pointer = (caddr_t) range;
iwr.u.data.length = buflen;
minlen = ((char *) &range->enc_capa) - (char *) range +
sizeof(range->enc_capa);
if (ioctl(drv->ioctl_sock, SIOCGIWRANGE, &iwr) < 0) {
perror("ioctl[SIOCGIWRANGE]");
os_free(range);
return -1;
} else if (iwr.u.data.length >= minlen &&
range->we_version_compiled >= 18) {
wpa_printf(MSG_DEBUG, "SIOCGIWRANGE: WE(compiled)=%d "
"WE(source)=%d enc_capa=0x%x",
range->we_version_compiled,
range->we_version_source,
range->enc_capa);
drv->has_capability = 1;
drv->we_version_compiled = range->we_version_compiled;
if (range->enc_capa & IW_ENC_CAPA_WPA) {
drv->capa.key_mgmt |= WPA_DRIVER_CAPA_KEY_MGMT_WPA |
WPA_DRIVER_CAPA_KEY_MGMT_WPA_PSK;
}
if (range->enc_capa & IW_ENC_CAPA_WPA2) {
drv->capa.key_mgmt |= WPA_DRIVER_CAPA_KEY_MGMT_WPA2 |
WPA_DRIVER_CAPA_KEY_MGMT_WPA2_PSK;
}
drv->capa.enc |= WPA_DRIVER_CAPA_ENC_WEP40 |
WPA_DRIVER_CAPA_ENC_WEP104;
if (range->enc_capa & IW_ENC_CAPA_CIPHER_TKIP)
drv->capa.enc |= WPA_DRIVER_CAPA_ENC_TKIP;
if (range->enc_capa & IW_ENC_CAPA_CIPHER_CCMP)
drv->capa.enc |= WPA_DRIVER_CAPA_ENC_CCMP;
wpa_printf(MSG_DEBUG, " capabilities: key_mgmt 0x%x enc 0x%x",
drv->capa.key_mgmt, drv->capa.enc);
} else {
wpa_printf(MSG_DEBUG, "SIOCGIWRANGE: too old (short) data - "
"assuming WPA is not supported");
}
os_free(range);
return 0;
}
static int wpa_driver_wext_set_wpa(void *priv, int enabled)
{
struct wpa_driver_wext_data *drv = priv;
wpa_printf(MSG_DEBUG, "%s", __FUNCTION__);
return wpa_driver_wext_set_auth_param(drv, IW_AUTH_WPA_ENABLED,
enabled);
}
static int wpa_driver_wext_set_key_ext(void *priv, wpa_alg alg,
const u8 *addr, int key_idx,
int set_tx, const u8 *seq,
size_t seq_len,
const u8 *key, size_t key_len)
{
struct wpa_driver_wext_data *drv = priv;
struct iwreq iwr;
int ret = 0;
struct iw_encode_ext *ext;
if (seq_len > IW_ENCODE_SEQ_MAX_SIZE) {
wpa_printf(MSG_DEBUG, "%s: Invalid seq_len %lu",
__FUNCTION__, (unsigned long) seq_len);
return -1;
}
ext = os_zalloc(sizeof(*ext) + key_len);
if (ext == NULL)
return -1;
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
iwr.u.encoding.flags = key_idx + 1;
if (alg == WPA_ALG_NONE)
iwr.u.encoding.flags |= IW_ENCODE_DISABLED;
iwr.u.encoding.pointer = (caddr_t) ext;
iwr.u.encoding.length = sizeof(*ext) + key_len;
if (addr == NULL ||
os_memcmp(addr, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) == 0)
ext->ext_flags |= IW_ENCODE_EXT_GROUP_KEY;
if (set_tx)
ext->ext_flags |= IW_ENCODE_EXT_SET_TX_KEY;
ext->addr.sa_family = ARPHRD_ETHER;
if (addr)
os_memcpy(ext->addr.sa_data, addr, ETH_ALEN);
else
os_memset(ext->addr.sa_data, 0xff, ETH_ALEN);
if (key && key_len) {
os_memcpy(ext + 1, key, key_len);
ext->key_len = key_len;
}
switch (alg) {
case WPA_ALG_NONE:
ext->alg = IW_ENCODE_ALG_NONE;
break;
case WPA_ALG_WEP:
ext->alg = IW_ENCODE_ALG_WEP;
break;
case WPA_ALG_TKIP:
ext->alg = IW_ENCODE_ALG_TKIP;
break;
case WPA_ALG_CCMP:
ext->alg = IW_ENCODE_ALG_CCMP;
break;
default:
wpa_printf(MSG_DEBUG, "%s: Unknown algorithm %d",
__FUNCTION__, alg);
os_free(ext);
return -1;
}
if (seq && seq_len) {
ext->ext_flags |= IW_ENCODE_EXT_RX_SEQ_VALID;
os_memcpy(ext->rx_seq, seq, seq_len);
}
if (ioctl(drv->ioctl_sock, SIOCSIWENCODEEXT, &iwr) < 0) {
ret = errno == EOPNOTSUPP ? -2 : -1;
if (errno == ENODEV) {
/*
* ndiswrapper seems to be returning incorrect error
* code.. */
ret = -2;
}
perror("ioctl[SIOCSIWENCODEEXT]");
}
os_free(ext);
return ret;
}
/**
* wpa_driver_wext_set_key - Configure encryption key
* @priv: Pointer to private wext data from wpa_driver_wext_init()
* @priv: Private driver interface data
* @alg: Encryption algorithm (%WPA_ALG_NONE, %WPA_ALG_WEP,
* %WPA_ALG_TKIP, %WPA_ALG_CCMP); %WPA_ALG_NONE clears the key.
* @addr: Address of the peer STA or ff:ff:ff:ff:ff:ff for
* broadcast/default keys
* @key_idx: key index (0..3), usually 0 for unicast keys
* @set_tx: Configure this key as the default Tx key (only used when
* driver does not support separate unicast/individual key
* @seq: Sequence number/packet number, seq_len octets, the next
* packet number to be used for in replay protection; configured
* for Rx keys (in most cases, this is only used with broadcast
* keys and set to zero for unicast keys)
* @seq_len: Length of the seq, depends on the algorithm:
* TKIP: 6 octets, CCMP: 6 octets
* @key: Key buffer; TKIP: 16-byte temporal key, 8-byte Tx Mic key,
* 8-byte Rx Mic Key
* @key_len: Length of the key buffer in octets (WEP: 5 or 13,
* TKIP: 32, CCMP: 16)
* Returns: 0 on success, -1 on failure
*
* This function uses SIOCSIWENCODEEXT by default, but tries to use
* SIOCSIWENCODE if the extended ioctl fails when configuring a WEP key.
*/
int wpa_driver_wext_set_key(void *priv, wpa_alg alg,
const u8 *addr, int key_idx,
int set_tx, const u8 *seq, size_t seq_len,
const u8 *key, size_t key_len)
{
struct wpa_driver_wext_data *drv = priv;
struct iwreq iwr;
int ret = 0;
wpa_printf(MSG_DEBUG, "%s: alg=%d key_idx=%d set_tx=%d seq_len=%lu "
"key_len=%lu",
__FUNCTION__, alg, key_idx, set_tx,
(unsigned long) seq_len, (unsigned long) key_len);
ret = wpa_driver_wext_set_key_ext(drv, alg, addr, key_idx, set_tx,
seq, seq_len, key, key_len);
if (ret == 0)
return 0;
if (ret == -2 &&
(alg == WPA_ALG_NONE || alg == WPA_ALG_WEP)) {
wpa_printf(MSG_DEBUG, "Driver did not support "
"SIOCSIWENCODEEXT, trying SIOCSIWENCODE");
ret = 0;
} else {
wpa_printf(MSG_DEBUG, "Driver did not support "
"SIOCSIWENCODEEXT");
return ret;
}
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
iwr.u.encoding.flags = key_idx + 1;
if (alg == WPA_ALG_NONE)
iwr.u.encoding.flags |= IW_ENCODE_DISABLED;
iwr.u.encoding.pointer = (caddr_t) key;
iwr.u.encoding.length = key_len;
if (ioctl(drv->ioctl_sock, SIOCSIWENCODE, &iwr) < 0) {
perror("ioctl[SIOCSIWENCODE]");
ret = -1;
}
if (set_tx && alg != WPA_ALG_NONE) {
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
iwr.u.encoding.flags = key_idx + 1;
iwr.u.encoding.pointer = (caddr_t) NULL;
iwr.u.encoding.length = 0;
if (ioctl(drv->ioctl_sock, SIOCSIWENCODE, &iwr) < 0) {
perror("ioctl[SIOCSIWENCODE] (set_tx)");
ret = -1;
}
}
return ret;
}
static int wpa_driver_wext_set_countermeasures(void *priv,
int enabled)
{
struct wpa_driver_wext_data *drv = priv;
wpa_printf(MSG_DEBUG, "%s", __FUNCTION__);
return wpa_driver_wext_set_auth_param(drv,
IW_AUTH_TKIP_COUNTERMEASURES,
enabled);
}
static int wpa_driver_wext_set_drop_unencrypted(void *priv,
int enabled)
{
struct wpa_driver_wext_data *drv = priv;
wpa_printf(MSG_DEBUG, "%s", __FUNCTION__);
drv->use_crypt = enabled;
return wpa_driver_wext_set_auth_param(drv, IW_AUTH_DROP_UNENCRYPTED,
enabled);
}
static int wpa_driver_wext_mlme(struct wpa_driver_wext_data *drv,
const u8 *addr, int cmd, int reason_code)
{
struct iwreq iwr;
struct iw_mlme mlme;
int ret = 0;
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
os_memset(&mlme, 0, sizeof(mlme));
mlme.cmd = cmd;
mlme.reason_code = reason_code;
mlme.addr.sa_family = ARPHRD_ETHER;
os_memcpy(mlme.addr.sa_data, addr, ETH_ALEN);
iwr.u.data.pointer = (caddr_t) &mlme;
iwr.u.data.length = sizeof(mlme);
if (ioctl(drv->ioctl_sock, SIOCSIWMLME, &iwr) < 0) {
perror("ioctl[SIOCSIWMLME]");
ret = -1;
}
return ret;
}
static int wpa_driver_wext_deauthenticate(void *priv, const u8 *addr,
int reason_code)
{
struct wpa_driver_wext_data *drv = priv;
wpa_printf(MSG_DEBUG, "%s", __FUNCTION__);
return wpa_driver_wext_mlme(drv, addr, IW_MLME_DEAUTH, reason_code);
}
static int wpa_driver_wext_disassociate(void *priv, const u8 *addr,
int reason_code)
{
struct wpa_driver_wext_data *drv = priv;
wpa_printf(MSG_DEBUG, "%s", __FUNCTION__);
return wpa_driver_wext_mlme(drv, addr, IW_MLME_DISASSOC,
reason_code);
}
static int wpa_driver_wext_set_gen_ie(void *priv, const u8 *ie,
size_t ie_len)
{
struct wpa_driver_wext_data *drv = priv;
struct iwreq iwr;
int ret = 0;
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
iwr.u.data.pointer = (caddr_t) ie;
iwr.u.data.length = ie_len;
if (ioctl(drv->ioctl_sock, SIOCSIWGENIE, &iwr) < 0) {
perror("ioctl[SIOCSIWGENIE]");
ret = -1;
}
return ret;
}
static int wpa_driver_wext_cipher2wext(int cipher)
{
switch (cipher) {
case CIPHER_NONE:
return IW_AUTH_CIPHER_NONE;
case CIPHER_WEP40:
return IW_AUTH_CIPHER_WEP40;
case CIPHER_TKIP:
return IW_AUTH_CIPHER_TKIP;
case CIPHER_CCMP:
return IW_AUTH_CIPHER_CCMP;
case CIPHER_WEP104:
return IW_AUTH_CIPHER_WEP104;
default:
return 0;
}
}
static int wpa_driver_wext_keymgmt2wext(int keymgmt)
{
switch (keymgmt) {
case KEY_MGMT_802_1X:
case KEY_MGMT_802_1X_NO_WPA:
return IW_AUTH_KEY_MGMT_802_1X;
case KEY_MGMT_PSK:
return IW_AUTH_KEY_MGMT_PSK;
default:
return 0;
}
}
static int
wpa_driver_wext_auth_alg_fallback(struct wpa_driver_wext_data *drv,
struct wpa_driver_associate_params *params)
{
struct iwreq iwr;
int ret = 0;
wpa_printf(MSG_DEBUG, "WEXT: Driver did not support "
"SIOCSIWAUTH for AUTH_ALG, trying SIOCSIWENCODE");
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
/* Just changing mode, not actual keys */
iwr.u.encoding.flags = 0;
iwr.u.encoding.pointer = (caddr_t) NULL;
iwr.u.encoding.length = 0;
/*
* Note: IW_ENCODE_{OPEN,RESTRICTED} can be interpreted to mean two
* different things. Here they are used to indicate Open System vs.
* Shared Key authentication algorithm. However, some drivers may use
* them to select between open/restricted WEP encrypted (open = allow
* both unencrypted and encrypted frames; restricted = only allow
* encrypted frames).
*/
if (!drv->use_crypt) {
iwr.u.encoding.flags |= IW_ENCODE_DISABLED;
} else {
if (params->auth_alg & AUTH_ALG_OPEN_SYSTEM)
iwr.u.encoding.flags |= IW_ENCODE_OPEN;
if (params->auth_alg & AUTH_ALG_SHARED_KEY)
iwr.u.encoding.flags |= IW_ENCODE_RESTRICTED;
}
if (ioctl(drv->ioctl_sock, SIOCSIWENCODE, &iwr) < 0) {
perror("ioctl[SIOCSIWENCODE]");
ret = -1;
}
return ret;
}
static int
wpa_driver_wext_associate(void *priv,
struct wpa_driver_associate_params *params)
{
struct wpa_driver_wext_data *drv = priv;
int ret = 0;
int allow_unencrypted_eapol;
int value, flags;
wpa_printf(MSG_DEBUG, "%s", __FUNCTION__);
if (wpa_driver_wext_get_ifflags(drv, &flags) == 0) {
if (!(flags & IFF_UP)) {
wpa_driver_wext_set_ifflags(drv, flags | IFF_UP);
}
}
/*
* If the driver did not support SIOCSIWAUTH, fallback to
* SIOCSIWENCODE here.
*/
if (drv->auth_alg_fallback &&
wpa_driver_wext_auth_alg_fallback(drv, params) < 0)
ret = -1;
if (!params->bssid &&
wpa_driver_wext_set_bssid(drv, NULL) < 0)
ret = -1;
if (wpa_driver_wext_set_mode(drv, params->mode) < 0)
ret = -1;
/* TODO: should consider getting wpa version and cipher/key_mgmt suites
* from configuration, not from here, where only the selected suite is
* available */
if (wpa_driver_wext_set_gen_ie(drv, params->wpa_ie, params->wpa_ie_len)
< 0)
ret = -1;
if (params->wpa_ie == NULL || params->wpa_ie_len == 0)
value = IW_AUTH_WPA_VERSION_DISABLED;
else if (params->wpa_ie[0] == RSN_INFO_ELEM)
value = IW_AUTH_WPA_VERSION_WPA2;
else
value = IW_AUTH_WPA_VERSION_WPA;
if (wpa_driver_wext_set_auth_param(drv,
IW_AUTH_WPA_VERSION, value) < 0)
ret = -1;
value = wpa_driver_wext_cipher2wext(params->pairwise_suite);
if (wpa_driver_wext_set_auth_param(drv,
IW_AUTH_CIPHER_PAIRWISE, value) < 0)
ret = -1;
value = wpa_driver_wext_cipher2wext(params->group_suite);
if (wpa_driver_wext_set_auth_param(drv,
IW_AUTH_CIPHER_GROUP, value) < 0)
ret = -1;
value = wpa_driver_wext_keymgmt2wext(params->key_mgmt_suite);
if (wpa_driver_wext_set_auth_param(drv,
IW_AUTH_KEY_MGMT, value) < 0)
ret = -1;
value = params->key_mgmt_suite != KEY_MGMT_NONE ||
params->pairwise_suite != CIPHER_NONE ||
params->group_suite != CIPHER_NONE ||
params->wpa_ie_len;
if (wpa_driver_wext_set_auth_param(drv,
IW_AUTH_PRIVACY_INVOKED, value) < 0)
ret = -1;
/* Allow unencrypted EAPOL messages even if pairwise keys are set when
* not using WPA. IEEE 802.1X specifies that these frames are not
* encrypted, but WPA encrypts them when pairwise keys are in use. */
if (params->key_mgmt_suite == KEY_MGMT_802_1X ||
params->key_mgmt_suite == KEY_MGMT_PSK)
allow_unencrypted_eapol = 0;
else
allow_unencrypted_eapol = 1;
if (wpa_driver_wext_set_auth_param(drv,
IW_AUTH_RX_UNENCRYPTED_EAPOL,
allow_unencrypted_eapol) < 0)
ret = -1;
if (params->freq && wpa_driver_wext_set_freq(drv, params->freq) < 0)
ret = -1;
if (wpa_driver_wext_set_ssid(drv, params->ssid, params->ssid_len) < 0)
ret = -1;
if (params->bssid &&
wpa_driver_wext_set_bssid(drv, params->bssid) < 0)
ret = -1;
return ret;
}
static int wpa_driver_wext_set_auth_alg(void *priv, int auth_alg)
{
struct wpa_driver_wext_data *drv = priv;
int algs = 0, res;
if (auth_alg & AUTH_ALG_OPEN_SYSTEM)
algs |= IW_AUTH_ALG_OPEN_SYSTEM;
if (auth_alg & AUTH_ALG_SHARED_KEY)
algs |= IW_AUTH_ALG_SHARED_KEY;
if (auth_alg & AUTH_ALG_LEAP)
algs |= IW_AUTH_ALG_LEAP;
if (algs == 0) {
/* at least one algorithm should be set */
algs = IW_AUTH_ALG_OPEN_SYSTEM;
}
res = wpa_driver_wext_set_auth_param(drv, IW_AUTH_80211_AUTH_ALG,
algs);
drv->auth_alg_fallback = res == -2;
return res;
}
/**
* wpa_driver_wext_set_mode - Set wireless mode (infra/adhoc), SIOCSIWMODE
* @priv: Pointer to private wext data from wpa_driver_wext_init()
* @mode: 0 = infra/BSS (associate with an AP), 1 = adhoc/IBSS
* Returns: 0 on success, -1 on failure
*/
int wpa_driver_wext_set_mode(void *priv, int mode)
{
struct wpa_driver_wext_data *drv = priv;
struct iwreq iwr;
int ret = -1, flags;
unsigned int new_mode = mode ? IW_MODE_ADHOC : IW_MODE_INFRA;
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
iwr.u.mode = new_mode;
if (ioctl(drv->ioctl_sock, SIOCSIWMODE, &iwr) == 0) {
ret = 0;
goto done;
}
if (errno != EBUSY) {
perror("ioctl[SIOCSIWMODE]");
goto done;
}
/* mac80211 doesn't allow mode changes while the device is up, so if
* the device isn't in the mode we're about to change to, take device
* down, try to set the mode again, and bring it back up.
*/
if (ioctl(drv->ioctl_sock, SIOCGIWMODE, &iwr) < 0) {
perror("ioctl[SIOCGIWMODE]");
goto done;
}
if (iwr.u.mode == new_mode) {
ret = 0;
goto done;
}
if (wpa_driver_wext_get_ifflags(drv, &flags) == 0) {
(void) wpa_driver_wext_set_ifflags(drv, flags & ~IFF_UP);
/* Try to set the mode again while the interface is down */
iwr.u.mode = new_mode;
if (ioctl(drv->ioctl_sock, SIOCSIWMODE, &iwr) < 0)
perror("ioctl[SIOCSIWMODE]");
else
ret = 0;
/* Ignore return value of get_ifflags to ensure that the device
* is always up like it was before this function was called.
*/
(void) wpa_driver_wext_get_ifflags(drv, &flags);
(void) wpa_driver_wext_set_ifflags(drv, flags | IFF_UP);
}
done:
return ret;
}
static int wpa_driver_wext_pmksa(struct wpa_driver_wext_data *drv,
u32 cmd, const u8 *bssid, const u8 *pmkid)
{
struct iwreq iwr;
struct iw_pmksa pmksa;
int ret = 0;
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
os_memset(&pmksa, 0, sizeof(pmksa));
pmksa.cmd = cmd;
pmksa.bssid.sa_family = ARPHRD_ETHER;
if (bssid)
os_memcpy(pmksa.bssid.sa_data, bssid, ETH_ALEN);
if (pmkid)
os_memcpy(pmksa.pmkid, pmkid, IW_PMKID_LEN);
iwr.u.data.pointer = (caddr_t) &pmksa;
iwr.u.data.length = sizeof(pmksa);
if (ioctl(drv->ioctl_sock, SIOCSIWPMKSA, &iwr) < 0) {
if (errno != EOPNOTSUPP)
perror("ioctl[SIOCSIWPMKSA]");
ret = -1;
}
return ret;
}
static int wpa_driver_wext_add_pmkid(void *priv, const u8 *bssid,
const u8 *pmkid)
{
struct wpa_driver_wext_data *drv = priv;
return wpa_driver_wext_pmksa(drv, IW_PMKSA_ADD, bssid, pmkid);
}
static int wpa_driver_wext_remove_pmkid(void *priv, const u8 *bssid,
const u8 *pmkid)
{
struct wpa_driver_wext_data *drv = priv;
return wpa_driver_wext_pmksa(drv, IW_PMKSA_REMOVE, bssid, pmkid);
}
static int wpa_driver_wext_flush_pmkid(void *priv)
{
struct wpa_driver_wext_data *drv = priv;
return wpa_driver_wext_pmksa(drv, IW_PMKSA_FLUSH, NULL, NULL);
}
static int wpa_driver_wext_get_capa(void *priv, struct wpa_driver_capa *capa)
{
struct wpa_driver_wext_data *drv = priv;
if (!drv->has_capability)
return -1;
os_memcpy(capa, &drv->capa, sizeof(*capa));
return 0;
}
int wpa_driver_wext_alternative_ifindex(struct wpa_driver_wext_data *drv,
const char *ifname)
{
if (ifname == NULL) {
drv->ifindex2 = -1;
return 0;
}
drv->ifindex2 = if_nametoindex(ifname);
if (drv->ifindex2 <= 0)
return -1;
wpa_printf(MSG_DEBUG, "Added alternative ifindex %d (%s) for "
"wireless events", drv->ifindex2, ifname);
return 0;
}
int wpa_driver_wext_set_operstate(void *priv, int state)
{
struct wpa_driver_wext_data *drv = priv;
wpa_printf(MSG_DEBUG, "%s: operstate %d->%d (%s)",
__func__, drv->operstate, state, state ? "UP" : "DORMANT");
drv->operstate = state;
return wpa_driver_wext_send_oper_ifla(
drv, -1, state ? IF_OPER_UP : IF_OPER_DORMANT);
}
#ifdef CONFIG_CLIENT_MLME
static int hostapd_ioctl(struct wpa_driver_wext_data *drv,
struct prism2_hostapd_param *param, int len)
{
struct iwreq iwr;
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
iwr.u.data.pointer = (caddr_t) param;
iwr.u.data.length = len;
if (ioctl(drv->ioctl_sock, PRISM2_IOCTL_HOSTAPD, &iwr) < 0) {
perror("ioctl[PRISM2_IOCTL_HOSTAPD]");
return -1;
}
return 0;
}
static struct wpa_hw_modes *
wpa_driver_wext_get_hw_feature_data(void *priv, u16 *num_modes, u16 *flags)
{
struct wpa_driver_wext_data *drv = priv;
struct prism2_hostapd_param *param;
u8 *pos, *end;
struct wpa_hw_modes *modes = NULL;
int i;
param = os_zalloc(PRISM2_HOSTAPD_MAX_BUF_SIZE);
if (param == NULL)
return NULL;
param->cmd = PRISM2_HOSTAPD_GET_HW_FEATURES;
if (hostapd_ioctl(drv, param, PRISM2_HOSTAPD_MAX_BUF_SIZE) < 0) {
perror("ioctl[PRISM2_IOCTL_HOSTAPD]");
goto out;
}
*num_modes = param->u.hw_features.num_modes;
*flags = param->u.hw_features.flags;
pos = param->u.hw_features.data;
end = pos + PRISM2_HOSTAPD_MAX_BUF_SIZE -
(param->u.hw_features.data - (u8 *) param);
modes = os_zalloc(*num_modes * sizeof(struct wpa_hw_modes));
if (modes == NULL)
goto out;
for (i = 0; i < *num_modes; i++) {
struct hostapd_ioctl_hw_modes_hdr *hdr;
struct wpa_hw_modes *feature;
int clen, rlen;
hdr = (struct hostapd_ioctl_hw_modes_hdr *) pos;
pos = (u8 *) (hdr + 1);
clen = hdr->num_channels * sizeof(struct wpa_channel_data);
rlen = hdr->num_rates * sizeof(struct wpa_rate_data);
feature = &modes[i];
switch (hdr->mode) {
case MODE_IEEE80211A:
feature->mode = WPA_MODE_IEEE80211A;
break;
case MODE_IEEE80211B:
feature->mode = WPA_MODE_IEEE80211B;
break;
case MODE_IEEE80211G:
feature->mode = WPA_MODE_IEEE80211G;
break;
case MODE_ATHEROS_TURBO:
case MODE_ATHEROS_TURBOG:
wpa_printf(MSG_ERROR, "Skip unsupported hw_mode=%d in "
"get_hw_features data", hdr->mode);
pos += clen + rlen;
continue;
default:
wpa_printf(MSG_ERROR, "Unknown hw_mode=%d in "
"get_hw_features data", hdr->mode);
ieee80211_sta_free_hw_features(modes, *num_modes);
modes = NULL;
break;
}
feature->num_channels = hdr->num_channels;
feature->num_rates = hdr->num_rates;
feature->channels = os_malloc(clen);
feature->rates = os_malloc(rlen);
if (!feature->channels || !feature->rates ||
pos + clen + rlen > end) {
ieee80211_sta_free_hw_features(modes, *num_modes);
modes = NULL;
break;
}
os_memcpy(feature->channels, pos, clen);
pos += clen;
os_memcpy(feature->rates, pos, rlen);
pos += rlen;
}
out:
os_free(param);
return modes;
}
int wpa_driver_wext_set_channel(void *priv, wpa_hw_mode phymode, int chan,
int freq)
{
return wpa_driver_wext_set_freq(priv, freq);
}
static void wpa_driver_wext_mlme_read(int sock, void *eloop_ctx,
void *sock_ctx)
{
struct wpa_driver_wext_data *drv = eloop_ctx;
int len;
unsigned char buf[3000];
struct ieee80211_frame_info *fi;
struct ieee80211_rx_status rx_status;
len = recv(sock, buf, sizeof(buf), 0);
if (len < 0) {
perror("recv[MLME]");
return;
}
if (len < (int) sizeof(struct ieee80211_frame_info)) {
wpa_printf(MSG_DEBUG, "WEXT: Too short MLME frame (len=%d)",
len);
return;
}
fi = (struct ieee80211_frame_info *) buf;
if (ntohl(fi->version) != IEEE80211_FI_VERSION) {
wpa_printf(MSG_DEBUG, "WEXT: Invalid MLME frame info version "
"0x%x", ntohl(fi->version));
return;
}
os_memset(&rx_status, 0, sizeof(rx_status));
rx_status.ssi = ntohl(fi->ssi_signal);
rx_status.channel = ntohl(fi->channel);
ieee80211_sta_rx(drv->ctx, buf + sizeof(struct ieee80211_frame_info),
len - sizeof(struct ieee80211_frame_info),
&rx_status);
}
static int wpa_driver_wext_open_mlme(struct wpa_driver_wext_data *drv)
{
int flags, ifindex, s, *i;
struct sockaddr_ll addr;
struct iwreq iwr;
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
i = (int *) iwr.u.name;
*i++ = PRISM2_PARAM_USER_SPACE_MLME;
*i++ = 1;
if (ioctl(drv->ioctl_sock, PRISM2_IOCTL_PRISM2_PARAM, &iwr) < 0) {
wpa_printf(MSG_ERROR, "WEXT: Failed to configure driver to "
"use user space MLME");
return -1;
}
ifindex = if_nametoindex(drv->mlmedev);
if (ifindex == 0) {
wpa_printf(MSG_ERROR, "WEXT: mlmedev='%s' not found",
drv->mlmedev);
return -1;
}
if (wpa_driver_wext_get_ifflags_ifname(drv, drv->mlmedev, &flags) != 0
|| wpa_driver_wext_set_ifflags_ifname(drv, drv->mlmedev,
flags | IFF_UP) != 0) {
wpa_printf(MSG_ERROR, "WEXT: Could not set interface "
"'%s' UP", drv->mlmedev);
return -1;
}
s = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
if (s < 0) {
perror("socket[PF_PACKET,SOCK_RAW]");
return -1;
}
os_memset(&addr, 0, sizeof(addr));
addr.sll_family = AF_PACKET;
addr.sll_ifindex = ifindex;
if (bind(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
perror("bind(MLME)");
return -1;
}
if (eloop_register_read_sock(s, wpa_driver_wext_mlme_read, drv, NULL))
{
wpa_printf(MSG_ERROR, "WEXT: Could not register MLME read "
"socket");
close(s);
return -1;
}
return s;
}
static int wpa_driver_wext_send_mlme(void *priv, const u8 *data,
size_t data_len)
{
struct wpa_driver_wext_data *drv = priv;
int ret;
ret = send(drv->mlme_sock, data, data_len, 0);
if (ret < 0) {
perror("send[MLME]");
return -1;
}
return 0;
}
static int wpa_driver_wext_mlme_add_sta(void *priv, const u8 *addr,
const u8 *supp_rates,
size_t supp_rates_len)
{
struct wpa_driver_wext_data *drv = priv;
struct prism2_hostapd_param param;
size_t len;
os_memset(¶m, 0, sizeof(param));
param.cmd = PRISM2_HOSTAPD_ADD_STA;
os_memcpy(param.sta_addr, addr, ETH_ALEN);
len = supp_rates_len;
if (len > sizeof(param.u.add_sta.supp_rates))
len = sizeof(param.u.add_sta.supp_rates);
os_memcpy(param.u.add_sta.supp_rates, supp_rates, len);
return hostapd_ioctl(drv, ¶m, sizeof(param));
}
static int wpa_driver_wext_mlme_remove_sta(void *priv, const u8 *addr)
{
struct wpa_driver_wext_data *drv = priv;
struct prism2_hostapd_param param;
os_memset(¶m, 0, sizeof(param));
param.cmd = PRISM2_HOSTAPD_REMOVE_STA;
os_memcpy(param.sta_addr, addr, ETH_ALEN);
return hostapd_ioctl(drv, ¶m, sizeof(param));
}
#endif /* CONFIG_CLIENT_MLME */
static int wpa_driver_wext_set_param(void *priv, const char *param)
{
#ifdef CONFIG_CLIENT_MLME
struct wpa_driver_wext_data *drv = priv;
const char *pos, *pos2;
size_t len;
if (param == NULL)
return 0;
wpa_printf(MSG_DEBUG, "%s: param='%s'", __func__, param);
pos = os_strstr(param, "mlmedev=");
if (pos) {
pos += 8;
pos2 = os_strchr(pos, ' ');
if (pos2)
len = pos2 - pos;
else
len = os_strlen(pos);
if (len + 1 > sizeof(drv->mlmedev))
return -1;
os_memcpy(drv->mlmedev, pos, len);
drv->mlmedev[len] = '\0';
wpa_printf(MSG_DEBUG, "WEXT: Using user space MLME with "
"mlmedev='%s'", drv->mlmedev);
drv->capa.flags |= WPA_DRIVER_FLAGS_USER_SPACE_MLME;
drv->mlme_sock = wpa_driver_wext_open_mlme(drv);
if (drv->mlme_sock < 0)
return -1;
}
#endif /* CONFIG_CLIENT_MLME */
return 0;
}
int wpa_driver_wext_get_version(struct wpa_driver_wext_data *drv)
{
return drv->we_version_compiled;
}
#ifdef ANDROID
static char *wpa_driver_get_country_code(int channels)
{
char *country = "US"; /* WEXT_NUMBER_SCAN_CHANNELS_FCC */
if (channels == WEXT_NUMBER_SCAN_CHANNELS_ETSI)
country = "EU";
else if( channels == WEXT_NUMBER_SCAN_CHANNELS_MKK1)
country = "JP";
return country;
}
static int wpa_driver_priv_driver_cmd(void *priv, char *cmd, char *buf, size_t buf_len)
{
struct wpa_driver_wext_data *drv = priv;
struct wpa_supplicant *wpa_s = (struct wpa_supplicant *)(drv->ctx);
struct iwreq iwr;
int ret = 0, flags;
wpa_printf(MSG_DEBUG, "%s %s len = %d", __func__, cmd, buf_len);
if (os_strcasecmp(cmd, "RSSI-APPROX") == 0) {
os_strncpy(cmd, "RSSI", MAX_DRV_CMD_SIZE);
}
else if( os_strncasecmp(cmd, "SCAN-CHANNELS", 13) == 0 ) {
int no_of_chan;
no_of_chan = atoi(cmd + 13);
os_snprintf(cmd, MAX_DRV_CMD_SIZE, "COUNTRY %s",
wpa_driver_get_country_code(no_of_chan));
}
else if (os_strcasecmp(cmd, "STOP") == 0) {
if ((wpa_driver_wext_get_ifflags(drv, &flags) == 0) &&
(flags & IFF_UP)) {
wpa_printf(MSG_ERROR, "WEXT: %s when iface is UP", cmd);
wpa_driver_wext_set_ifflags(drv, flags & ~IFF_UP);
}
}
else if( os_strcasecmp(cmd, "RELOAD") == 0 ) {
wpa_printf(MSG_DEBUG,"Reload command");
wpa_msg(drv->ctx, MSG_INFO, WPA_EVENT_DRIVER_STATE "HANGED");
return ret;
}
os_memset(&iwr, 0, sizeof(iwr));
os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);
os_memcpy(buf, cmd, strlen(cmd) + 1);
iwr.u.data.pointer = buf;
iwr.u.data.length = buf_len;
if ((ret = ioctl(drv->ioctl_sock, SIOCSIWPRIV, &iwr)) < 0) {
perror("ioctl[SIOCSIWPRIV]");
}
if (ret < 0) {
wpa_printf(MSG_ERROR, "%s failed", __func__);
drv->errors++;
if (drv->errors > WEXT_NUMBER_SEQUENTIAL_ERRORS) {
drv->errors = 0;
wpa_msg(drv->ctx, MSG_INFO, WPA_EVENT_DRIVER_STATE "HANGED");
}
}
else {
drv->errors = 0;
ret = 0;
if ((os_strcasecmp(cmd, "RSSI") == 0) ||
(os_strcasecmp(cmd, "LINKSPEED") == 0) ||
(os_strcasecmp(cmd, "MACADDR") == 0)) {
ret = strlen(buf);
}
/* else if (os_strcasecmp(cmd, "START") == 0) {
os_sleep(0, WPA_DRIVER_WEXT_WAIT_US);
wpa_msg(drv->ctx, MSG_INFO, WPA_EVENT_DRIVER_STATE "STARTED");
}
else if (os_strcasecmp(cmd, "STOP") == 0) {
wpa_msg(drv->ctx, MSG_INFO, WPA_EVENT_DRIVER_STATE "STOPPED");
}*/
wpa_printf(MSG_DEBUG, "%s %s len = %d, %d", __func__, buf, ret, strlen(buf));
}
return ret;
}
#endif
const struct wpa_driver_ops wpa_driver_wext_ops = {
.name = "wext",
.desc = "Linux wireless extensions (generic)",
.get_bssid = wpa_driver_wext_get_bssid,
.get_ssid = wpa_driver_wext_get_ssid,
.set_wpa = wpa_driver_wext_set_wpa,
.set_key = wpa_driver_wext_set_key,
.set_countermeasures = wpa_driver_wext_set_countermeasures,
.set_drop_unencrypted = wpa_driver_wext_set_drop_unencrypted,
.scan = wpa_driver_wext_scan,
.get_scan_results = wpa_driver_wext_get_scan_results,
.deauthenticate = wpa_driver_wext_deauthenticate,
.disassociate = wpa_driver_wext_disassociate,
.associate = wpa_driver_wext_associate,
.set_auth_alg = wpa_driver_wext_set_auth_alg,
.init = wpa_driver_wext_init,
.deinit = wpa_driver_wext_deinit,
.set_param = wpa_driver_wext_set_param,
.add_pmkid = wpa_driver_wext_add_pmkid,
.remove_pmkid = wpa_driver_wext_remove_pmkid,
.flush_pmkid = wpa_driver_wext_flush_pmkid,
.get_capa = wpa_driver_wext_get_capa,
.set_operstate = wpa_driver_wext_set_operstate,
#ifdef CONFIG_CLIENT_MLME
.get_hw_feature_data = wpa_driver_wext_get_hw_feature_data,
.set_channel = wpa_driver_wext_set_channel,
.set_ssid = wpa_driver_wext_set_ssid,
.set_bssid = wpa_driver_wext_set_bssid,
.send_mlme = wpa_driver_wext_send_mlme,
.mlme_add_sta = wpa_driver_wext_mlme_add_sta,
.mlme_remove_sta = wpa_driver_wext_mlme_remove_sta,
#endif /* CONFIG_CLIENT_MLME */
#ifdef ANDROID
.driver_cmd = wpa_driver_priv_driver_cmd,
#endif
};