// Copyright (c) 2006-2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/http/http_network_transaction.h" #include "base/format_macros.h" #include "base/scoped_ptr.h" #include "base/compiler_specific.h" #include "base/field_trial.h" #include "base/histogram.h" #include "base/stats_counters.h" #include "base/string_util.h" #include "base/trace_event.h" #include "build/build_config.h" #include "net/base/connection_type_histograms.h" #include "net/base/io_buffer.h" #include "net/base/load_flags.h" #include "net/base/net_errors.h" #include "net/base/net_util.h" #include "net/base/ssl_cert_request_info.h" #include "net/base/upload_data_stream.h" #include "net/flip/flip_session.h" #include "net/flip/flip_session_pool.h" #include "net/flip/flip_stream.h" #include "net/http/http_auth.h" #include "net/http/http_auth_handler.h" #include "net/http/http_basic_stream.h" #include "net/http/http_chunked_decoder.h" #include "net/http/http_network_session.h" #include "net/http/http_request_info.h" #include "net/http/http_response_headers.h" #include "net/http/http_response_info.h" #include "net/http/http_util.h" #include "net/socket/client_socket_factory.h" #include "net/socket/socks5_client_socket.h" #include "net/socket/socks_client_socket.h" #include "net/socket/ssl_client_socket.h" using base::Time; namespace net { namespace { void BuildRequestHeaders(const HttpRequestInfo* request_info, const std::string& authorization_headers, const UploadDataStream* upload_data_stream, bool using_proxy, std::string* request_headers) { const std::string path = using_proxy ? HttpUtil::SpecForRequest(request_info->url) : HttpUtil::PathForRequest(request_info->url); *request_headers = StringPrintf("%s %s HTTP/1.1\r\nHost: %s\r\n", request_info->method.c_str(), path.c_str(), GetHostAndOptionalPort(request_info->url).c_str()); // For compat with HTTP/1.0 servers and proxies: if (using_proxy) *request_headers += "Proxy-"; *request_headers += "Connection: keep-alive\r\n"; if (!request_info->user_agent.empty()) { StringAppendF(request_headers, "User-Agent: %s\r\n", request_info->user_agent.c_str()); } // Our consumer should have made sure that this is a safe referrer. See for // instance WebCore::FrameLoader::HideReferrer. if (request_info->referrer.is_valid()) StringAppendF(request_headers, "Referer: %s\r\n", request_info->referrer.spec().c_str()); // Add a content length header? if (upload_data_stream) { StringAppendF(request_headers, "Content-Length: %" PRIu64 "\r\n", upload_data_stream->size()); } else if (request_info->method == "POST" || request_info->method == "PUT" || request_info->method == "HEAD") { // An empty POST/PUT request still needs a content length. As for HEAD, // IE and Safari also add a content length header. Presumably it is to // support sending a HEAD request to an URL that only expects to be sent a // POST or some other method that normally would have a message body. *request_headers += "Content-Length: 0\r\n"; } // Honor load flags that impact proxy caches. if (request_info->load_flags & LOAD_BYPASS_CACHE) { *request_headers += "Pragma: no-cache\r\nCache-Control: no-cache\r\n"; } else if (request_info->load_flags & LOAD_VALIDATE_CACHE) { *request_headers += "Cache-Control: max-age=0\r\n"; } if (!authorization_headers.empty()) { *request_headers += authorization_headers; } // TODO(darin): Need to prune out duplicate headers. *request_headers += request_info->extra_headers; *request_headers += "\r\n"; } // The HTTP CONNECT method for establishing a tunnel connection is documented // in draft-luotonen-web-proxy-tunneling-01.txt and RFC 2817, Sections 5.2 and // 5.3. void BuildTunnelRequest(const HttpRequestInfo* request_info, const std::string& authorization_headers, std::string* request_headers) { // RFC 2616 Section 9 says the Host request-header field MUST accompany all // HTTP/1.1 requests. Add "Proxy-Connection: keep-alive" for compat with // HTTP/1.0 proxies such as Squid (required for NTLM authentication). *request_headers = StringPrintf( "CONNECT %s HTTP/1.1\r\nHost: %s\r\nProxy-Connection: keep-alive\r\n", GetHostAndPort(request_info->url).c_str(), GetHostAndOptionalPort(request_info->url).c_str()); if (!request_info->user_agent.empty()) StringAppendF(request_headers, "User-Agent: %s\r\n", request_info->user_agent.c_str()); if (!authorization_headers.empty()) { *request_headers += authorization_headers; } *request_headers += "\r\n"; } } // namespace //----------------------------------------------------------------------------- std::string* HttpNetworkTransaction::g_next_protos = NULL; HttpNetworkTransaction::HttpNetworkTransaction(HttpNetworkSession* session) : pending_auth_target_(HttpAuth::AUTH_NONE), ALLOW_THIS_IN_INITIALIZER_LIST( io_callback_(this, &HttpNetworkTransaction::OnIOComplete)), user_callback_(NULL), session_(session), request_(NULL), pac_request_(NULL), connection_(new ClientSocketHandle), reused_socket_(false), headers_valid_(false), logged_response_time(false), using_ssl_(false), proxy_mode_(kDirectConnection), establishing_tunnel_(false), embedded_identity_used_(false), read_buf_len_(0), next_state_(STATE_NONE) { session->ssl_config_service()->GetSSLConfig(&ssl_config_); if (g_next_protos) ssl_config_.next_protos = *g_next_protos; } // static void HttpNetworkTransaction::SetNextProtos(const std::string& next_protos) { delete g_next_protos; g_next_protos = new std::string(next_protos); } int HttpNetworkTransaction::Start(const HttpRequestInfo* request_info, CompletionCallback* callback, LoadLog* load_log) { SIMPLE_STATS_COUNTER("HttpNetworkTransaction.Count"); load_log_ = load_log; request_ = request_info; start_time_ = base::Time::Now(); next_state_ = STATE_RESOLVE_PROXY; int rv = DoLoop(OK); if (rv == ERR_IO_PENDING) user_callback_ = callback; return rv; } int HttpNetworkTransaction::RestartIgnoringLastError( CompletionCallback* callback) { if (connection_->socket()->IsConnectedAndIdle()) { next_state_ = STATE_SEND_REQUEST; } else { connection_->socket()->Disconnect(); connection_->Reset(); next_state_ = STATE_INIT_CONNECTION; } int rv = DoLoop(OK); if (rv == ERR_IO_PENDING) user_callback_ = callback; return rv; } int HttpNetworkTransaction::RestartWithCertificate( X509Certificate* client_cert, CompletionCallback* callback) { ssl_config_.client_cert = client_cert; if (client_cert) { session_->ssl_client_auth_cache()->Add(GetHostAndPort(request_->url), client_cert); } ssl_config_.send_client_cert = true; next_state_ = STATE_INIT_CONNECTION; // Reset the other member variables. // Note: this is necessary only with SSL renegotiation. ResetStateForRestart(); int rv = DoLoop(OK); if (rv == ERR_IO_PENDING) user_callback_ = callback; return rv; } int HttpNetworkTransaction::RestartWithAuth( const std::wstring& username, const std::wstring& password, CompletionCallback* callback) { HttpAuth::Target target = pending_auth_target_; if (target == HttpAuth::AUTH_NONE) { NOTREACHED(); return ERR_UNEXPECTED; } pending_auth_target_ = HttpAuth::AUTH_NONE; DCHECK(auth_identity_[target].invalid || (username.empty() && password.empty())); if (auth_identity_[target].invalid) { // Update the username/password. auth_identity_[target].source = HttpAuth::IDENT_SRC_EXTERNAL; auth_identity_[target].invalid = false; auth_identity_[target].username = username; auth_identity_[target].password = password; } PrepareForAuthRestart(target); DCHECK(user_callback_ == NULL); int rv = DoLoop(OK); if (rv == ERR_IO_PENDING) user_callback_ = callback; return rv; } void HttpNetworkTransaction::PrepareForAuthRestart(HttpAuth::Target target) { DCHECK(HaveAuth(target)); DCHECK(auth_identity_[target].source != HttpAuth::IDENT_SRC_PATH_LOOKUP); // Add the auth entry to the cache before restarting. We don't know whether // the identity is valid yet, but if it is valid we want other transactions // to know about it. If an entry for (origin, handler->realm()) already // exists, we update it. // // If auth_identity_[target].source is HttpAuth::IDENT_SRC_NONE, // auth_identity_[target] contains no identity because identity is not // required yet. // // TODO(wtc): For NTLM_SSPI, we add the same auth entry to the cache in // round 1 and round 2, which is redundant but correct. It would be nice // to add an auth entry to the cache only once, preferrably in round 1. // See http://crbug.com/21015. bool has_auth_identity = auth_identity_[target].source != HttpAuth::IDENT_SRC_NONE; if (has_auth_identity) { session_->auth_cache()->Add(AuthOrigin(target), auth_handler_[target], auth_identity_[target].username, auth_identity_[target].password, AuthPath(target)); } bool keep_alive = false; // Even if the server says the connection is keep-alive, we have to be // able to find the end of each response in order to reuse the connection. if (GetResponseHeaders()->IsKeepAlive() && http_stream_->CanFindEndOfResponse()) { // If the response body hasn't been completely read, we need to drain // it first. if (!http_stream_->IsResponseBodyComplete()) { next_state_ = STATE_DRAIN_BODY_FOR_AUTH_RESTART; read_buf_ = new IOBuffer(kDrainBodyBufferSize); // A bit bucket. read_buf_len_ = kDrainBodyBufferSize; return; } keep_alive = true; } // We don't need to drain the response body, so we act as if we had drained // the response body. DidDrainBodyForAuthRestart(keep_alive); } void HttpNetworkTransaction::DidDrainBodyForAuthRestart(bool keep_alive) { if (keep_alive && connection_->socket()->IsConnectedAndIdle()) { // We should call connection_->set_idle_time(), but this doesn't occur // often enough to be worth the trouble. next_state_ = STATE_SEND_REQUEST; connection_->set_is_reused(true); reused_socket_ = true; } else { next_state_ = STATE_INIT_CONNECTION; connection_->socket()->Disconnect(); connection_->Reset(); } // Reset the other member variables. ResetStateForRestart(); } int HttpNetworkTransaction::Read(IOBuffer* buf, int buf_len, CompletionCallback* callback) { DCHECK(buf); DCHECK_LT(0, buf_len); State next_state = STATE_NONE; // Are we using SPDY or HTTP? if (spdy_stream_.get()) { DCHECK(!http_stream_.get()); DCHECK(spdy_stream_->GetResponseInfo()->headers); next_state = STATE_SPDY_READ_BODY; } else { scoped_refptr<HttpResponseHeaders> headers = GetResponseHeaders(); DCHECK(headers.get()); next_state = STATE_READ_BODY; if (!connection_->is_initialized()) return 0; // connection_->has been reset. Treat like EOF. if (establishing_tunnel_) { // We're trying to read the body of the response but we're still trying // to establish an SSL tunnel through the proxy. We can't read these // bytes when establishing a tunnel because they might be controlled by // an active network attacker. We don't worry about this for HTTP // because an active network attacker can already control HTTP sessions. // We reach this case when the user cancels a 407 proxy auth prompt. // See http://crbug.com/8473. DCHECK_EQ(407, headers->response_code()); LogBlockedTunnelResponse(headers->response_code()); return ERR_TUNNEL_CONNECTION_FAILED; } } read_buf_ = buf; read_buf_len_ = buf_len; next_state_ = next_state; int rv = DoLoop(OK); if (rv == ERR_IO_PENDING) user_callback_ = callback; return rv; } const HttpResponseInfo* HttpNetworkTransaction::GetResponseInfo() const { return ((headers_valid_ && response_.headers) || response_.ssl_info.cert || response_.cert_request_info) ? &response_ : NULL; } LoadState HttpNetworkTransaction::GetLoadState() const { // TODO(wtc): Define a new LoadState value for the // STATE_INIT_CONNECTION_COMPLETE state, which delays the HTTP request. switch (next_state_) { case STATE_RESOLVE_PROXY_COMPLETE: return LOAD_STATE_RESOLVING_PROXY_FOR_URL; case STATE_INIT_CONNECTION_COMPLETE: return connection_->GetLoadState(); case STATE_SEND_REQUEST_COMPLETE: return LOAD_STATE_SENDING_REQUEST; case STATE_READ_HEADERS_COMPLETE: return LOAD_STATE_WAITING_FOR_RESPONSE; case STATE_READ_BODY_COMPLETE: return LOAD_STATE_READING_RESPONSE; default: return LOAD_STATE_IDLE; } } uint64 HttpNetworkTransaction::GetUploadProgress() const { if (!http_stream_.get()) return 0; return http_stream_->GetUploadProgress(); } HttpNetworkTransaction::~HttpNetworkTransaction() { // If we still have an open socket, then make sure to disconnect it so it // won't call us back and we don't try to reuse it later on. if (connection_.get() && connection_->is_initialized()) connection_->socket()->Disconnect(); if (pac_request_) session_->proxy_service()->CancelPacRequest(pac_request_); if (spdy_stream_.get()) spdy_stream_->Cancel(); } void HttpNetworkTransaction::DoCallback(int rv) { DCHECK(rv != ERR_IO_PENDING); DCHECK(user_callback_); // Since Run may result in Read being called, clear user_callback_ up front. CompletionCallback* c = user_callback_; user_callback_ = NULL; c->Run(rv); } void HttpNetworkTransaction::OnIOComplete(int result) { int rv = DoLoop(result); if (rv != ERR_IO_PENDING) DoCallback(rv); } int HttpNetworkTransaction::DoLoop(int result) { DCHECK(next_state_ != STATE_NONE); int rv = result; do { State state = next_state_; next_state_ = STATE_NONE; switch (state) { case STATE_RESOLVE_PROXY: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.resolve_proxy", request_, request_->url.spec()); rv = DoResolveProxy(); break; case STATE_RESOLVE_PROXY_COMPLETE: rv = DoResolveProxyComplete(rv); TRACE_EVENT_END("http.resolve_proxy", request_, request_->url.spec()); break; case STATE_INIT_CONNECTION: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.init_conn", request_, request_->url.spec()); rv = DoInitConnection(); break; case STATE_INIT_CONNECTION_COMPLETE: rv = DoInitConnectionComplete(rv); TRACE_EVENT_END("http.init_conn", request_, request_->url.spec()); break; case STATE_SOCKS_CONNECT: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.socks_connect", request_, request_->url.spec()); rv = DoSOCKSConnect(); break; case STATE_SOCKS_CONNECT_COMPLETE: rv = DoSOCKSConnectComplete(rv); TRACE_EVENT_END("http.socks_connect", request_, request_->url.spec()); break; case STATE_SSL_CONNECT: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.ssl_connect", request_, request_->url.spec()); rv = DoSSLConnect(); break; case STATE_SSL_CONNECT_COMPLETE: rv = DoSSLConnectComplete(rv); TRACE_EVENT_END("http.ssl_connect", request_, request_->url.spec()); break; case STATE_SEND_REQUEST: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.send_request", request_, request_->url.spec()); LoadLog::BeginEvent(load_log_, LoadLog::TYPE_HTTP_TRANSACTION_SEND_REQUEST); rv = DoSendRequest(); break; case STATE_SEND_REQUEST_COMPLETE: rv = DoSendRequestComplete(rv); TRACE_EVENT_END("http.send_request", request_, request_->url.spec()); LoadLog::EndEvent(load_log_, LoadLog::TYPE_HTTP_TRANSACTION_SEND_REQUEST); break; case STATE_READ_HEADERS: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.read_headers", request_, request_->url.spec()); LoadLog::BeginEvent(load_log_, LoadLog::TYPE_HTTP_TRANSACTION_READ_HEADERS); rv = DoReadHeaders(); break; case STATE_READ_HEADERS_COMPLETE: rv = DoReadHeadersComplete(rv); TRACE_EVENT_END("http.read_headers", request_, request_->url.spec()); LoadLog::EndEvent(load_log_, LoadLog::TYPE_HTTP_TRANSACTION_READ_HEADERS); break; case STATE_READ_BODY: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.read_body", request_, request_->url.spec()); LoadLog::BeginEvent(load_log_, LoadLog::TYPE_HTTP_TRANSACTION_READ_BODY); rv = DoReadBody(); break; case STATE_READ_BODY_COMPLETE: rv = DoReadBodyComplete(rv); TRACE_EVENT_END("http.read_body", request_, request_->url.spec()); LoadLog::EndEvent(load_log_, LoadLog::TYPE_HTTP_TRANSACTION_READ_BODY); break; case STATE_DRAIN_BODY_FOR_AUTH_RESTART: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.drain_body_for_auth_restart", request_, request_->url.spec()); LoadLog::BeginEvent( load_log_, LoadLog::TYPE_HTTP_TRANSACTION_DRAIN_BODY_FOR_AUTH_RESTART); rv = DoDrainBodyForAuthRestart(); break; case STATE_DRAIN_BODY_FOR_AUTH_RESTART_COMPLETE: rv = DoDrainBodyForAuthRestartComplete(rv); TRACE_EVENT_END("http.drain_body_for_auth_restart", request_, request_->url.spec()); LoadLog::EndEvent( load_log_, LoadLog::TYPE_HTTP_TRANSACTION_DRAIN_BODY_FOR_AUTH_RESTART); break; case STATE_SPDY_SEND_REQUEST: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.send_request", request_, request_->url.spec()); LoadLog::BeginEvent(load_log_, LoadLog::TYPE_FLIP_TRANSACTION_SEND_REQUEST); rv = DoSpdySendRequest(); break; case STATE_SPDY_SEND_REQUEST_COMPLETE: rv = DoSpdySendRequestComplete(rv); TRACE_EVENT_END("http.send_request", request_, request_->url.spec()); LoadLog::EndEvent(load_log_, LoadLog::TYPE_FLIP_TRANSACTION_SEND_REQUEST); break; case STATE_SPDY_READ_HEADERS: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.read_headers", request_, request_->url.spec()); LoadLog::BeginEvent(load_log_, LoadLog::TYPE_FLIP_TRANSACTION_READ_HEADERS); rv = DoSpdyReadHeaders(); break; case STATE_SPDY_READ_HEADERS_COMPLETE: rv = DoSpdyReadHeadersComplete(rv); TRACE_EVENT_END("http.read_headers", request_, request_->url.spec()); LoadLog::EndEvent(load_log_, LoadLog::TYPE_FLIP_TRANSACTION_READ_HEADERS); break; case STATE_SPDY_READ_BODY: DCHECK_EQ(OK, rv); TRACE_EVENT_BEGIN("http.read_body", request_, request_->url.spec()); LoadLog::BeginEvent(load_log_, LoadLog::TYPE_FLIP_TRANSACTION_READ_BODY); rv = DoSpdyReadBody(); break; case STATE_SPDY_READ_BODY_COMPLETE: rv = DoSpdyReadBodyComplete(rv); TRACE_EVENT_END("http.read_body", request_, request_->url.spec()); LoadLog::EndEvent(load_log_, LoadLog::TYPE_FLIP_TRANSACTION_READ_BODY); break; default: NOTREACHED() << "bad state"; rv = ERR_FAILED; break; } } while (rv != ERR_IO_PENDING && next_state_ != STATE_NONE); return rv; } int HttpNetworkTransaction::DoResolveProxy() { DCHECK(!pac_request_); next_state_ = STATE_RESOLVE_PROXY_COMPLETE; if (request_->load_flags & LOAD_BYPASS_PROXY) { proxy_info_.UseDirect(); return OK; } return session_->proxy_service()->ResolveProxy( request_->url, &proxy_info_, &io_callback_, &pac_request_, load_log_); } int HttpNetworkTransaction::DoResolveProxyComplete(int result) { pac_request_ = NULL; if (result != OK) { DLOG(ERROR) << "Failed to resolve proxy: " << result; // Fall-back to direct when there were runtime errors in the PAC script, // or some other failure with the settings. proxy_info_.UseDirect(); } // Remove unsupported proxies from the list. proxy_info_.RemoveProxiesWithoutScheme( ProxyServer::SCHEME_DIRECT | ProxyServer::SCHEME_HTTP | ProxyServer::SCHEME_SOCKS4 | ProxyServer::SCHEME_SOCKS5); // There are four possible outcomes of having run the ProxyService: // (1) The ProxyService decided we should connect through a proxy. // (2) The ProxyService decided we should direct-connect. // (3) The ProxyService decided we should give up, as there are no more // proxies to try (this is more likely to happen during // ReconsiderProxyAfterError()). // (4) The ProxyService failed (which can happen if the PAC script // we were configured with threw a runtime exception). // // It is important that we fail the connection in case (3) rather than // falling-back to a direct connection, since sending traffic through // a proxy may be integral to the user's privacy/security model. // // For example if a user had configured traffic to go through the TOR // anonymizing proxy to protect their privacy, it would be bad if we // silently fell-back to direct connect if the proxy server were to // become unreachable. // // In case (4) it is less obvious what the right thing to do is. On the // one hand, for consistency it would be natural to hard-fail as well. // However, both Firefox 3.5 and Internet Explorer 8 will silently fall-back // to DIRECT in this case, so we will do the same for compatibility. // // For more information, see: // http://www.chromium.org/developers/design-documents/proxy-settings-fallback if (proxy_info_.is_empty()) { // No proxies/direct to choose from. This happens when we don't support any // of the proxies in the returned list. return ERR_NO_SUPPORTED_PROXIES; } next_state_ = STATE_INIT_CONNECTION; return OK; } int HttpNetworkTransaction::DoInitConnection() { DCHECK(!connection_->is_initialized()); DCHECK(proxy_info_.proxy_server().is_valid()); next_state_ = STATE_INIT_CONNECTION_COMPLETE; using_ssl_ = request_->url.SchemeIs("https"); if (proxy_info_.is_direct()) proxy_mode_ = kDirectConnection; else if (proxy_info_.proxy_server().is_socks()) proxy_mode_ = kSOCKSProxy; else if (using_ssl_) proxy_mode_ = kHTTPProxyUsingTunnel; else proxy_mode_ = kHTTPProxy; // Build the string used to uniquely identify connections of this type. // Determine the host and port to connect to. std::string connection_group; std::string host; int port; if (proxy_mode_ != kDirectConnection) { ProxyServer proxy_server = proxy_info_.proxy_server(); connection_group = "proxy/" + proxy_server.ToURI() + "/"; host = proxy_server.HostNoBrackets(); port = proxy_server.port(); } else { host = request_->url.HostNoBrackets(); port = request_->url.EffectiveIntPort(); } // Use the fixed testing ports if they've been provided. if (using_ssl_) { if (session_->fixed_https_port() != 0) port = session_->fixed_https_port(); } else if (session_->fixed_http_port() != 0) { port = session_->fixed_http_port(); } // For a connection via HTTP proxy not using CONNECT, the connection // is to the proxy server only. For all other cases // (direct, HTTP proxy CONNECT, SOCKS), the connection is upto the // url endpoint. Hence we append the url data into the connection_group. if (proxy_mode_ != kHTTPProxy) connection_group.append(request_->url.GetOrigin().spec()); DCHECK(!connection_group.empty()); HostResolver::RequestInfo resolve_info(host, port); resolve_info.set_priority(request_->priority); // The referrer is used by the DNS prefetch system to correlate resolutions // with the page that triggered them. It doesn't impact the actual addresses // that we resolve to. resolve_info.set_referrer(request_->referrer); // If the user is refreshing the page, bypass the host cache. if (request_->load_flags & LOAD_BYPASS_CACHE || request_->load_flags & LOAD_DISABLE_CACHE) { resolve_info.set_allow_cached_response(false); } // Check first if we have a flip session for this group. If so, then go // straight to using that. if (session_->flip_session_pool()->HasSession(resolve_info)) return OK; int rv = connection_->Init(connection_group, resolve_info, request_->priority, &io_callback_, session_->tcp_socket_pool(), load_log_); return rv; } int HttpNetworkTransaction::DoInitConnectionComplete(int result) { if (result < 0) { UpdateConnectionTypeHistograms(CONNECTION_HTTP, false); return ReconsiderProxyAfterError(result); } DCHECK_EQ(OK, result); // If we don't have an initialized connection, that means we have a flip // connection waiting for us. if (!connection_->is_initialized()) { next_state_ = STATE_SPDY_SEND_REQUEST; return OK; } LogTCPConnectedMetrics(*connection_); // Set the reused_socket_ flag to indicate that we are using a keep-alive // connection. This flag is used to handle errors that occur while we are // trying to reuse a keep-alive connection. reused_socket_ = connection_->is_reused(); if (reused_socket_) { next_state_ = STATE_SEND_REQUEST; } else { // Now we have a TCP connected socket. Perform other connection setup as // needed. UpdateConnectionTypeHistograms(CONNECTION_HTTP, true); if (proxy_mode_ == kSOCKSProxy) next_state_ = STATE_SOCKS_CONNECT; else if (using_ssl_ && proxy_mode_ == kDirectConnection) { next_state_ = STATE_SSL_CONNECT; } else { next_state_ = STATE_SEND_REQUEST; if (proxy_mode_ == kHTTPProxyUsingTunnel) establishing_tunnel_ = true; } } return OK; } int HttpNetworkTransaction::DoSOCKSConnect() { DCHECK_EQ(kSOCKSProxy, proxy_mode_); next_state_ = STATE_SOCKS_CONNECT_COMPLETE; // Add a SOCKS connection on top of our existing transport socket. ClientSocket* s = connection_->release_socket(); HostResolver::RequestInfo req_info(request_->url.HostNoBrackets(), request_->url.EffectiveIntPort()); req_info.set_referrer(request_->referrer); req_info.set_priority(request_->priority); if (proxy_info_.proxy_server().scheme() == ProxyServer::SCHEME_SOCKS5) s = new SOCKS5ClientSocket(s, req_info); else s = new SOCKSClientSocket(s, req_info, session_->host_resolver()); connection_->set_socket(s); return connection_->socket()->Connect(&io_callback_, load_log_); } int HttpNetworkTransaction::DoSOCKSConnectComplete(int result) { DCHECK_EQ(kSOCKSProxy, proxy_mode_); if (result == OK) { if (using_ssl_) { next_state_ = STATE_SSL_CONNECT; } else { next_state_ = STATE_SEND_REQUEST; } } else { result = ReconsiderProxyAfterError(result); } return result; } int HttpNetworkTransaction::DoSSLConnect() { next_state_ = STATE_SSL_CONNECT_COMPLETE; if (request_->load_flags & LOAD_VERIFY_EV_CERT) ssl_config_.verify_ev_cert = true; ssl_connect_start_time_ = base::TimeTicks::Now(); // Add a SSL socket on top of our existing transport socket. ClientSocket* s = connection_->release_socket(); s = session_->socket_factory()->CreateSSLClientSocket( s, request_->url.HostNoBrackets(), ssl_config_); connection_->set_socket(s); return connection_->socket()->Connect(&io_callback_, load_log_); } int HttpNetworkTransaction::DoSSLConnectComplete(int result) { SSLClientSocket* ssl_socket = reinterpret_cast<SSLClientSocket*>(connection_->socket()); SSLClientSocket::NextProtoStatus status = SSLClientSocket::kNextProtoUnsupported; std::string proto; // GetNextProto will fail and and trigger a NOTREACHED if we pass in a socket // that hasn't had SSL_ImportFD called on it. If we get a certificate error // here, then we know that we called SSL_ImportFD. if (result == OK || IsCertificateError(result)) status = ssl_socket->GetNextProto(&proto); static const char kSpdyProto[] = "spdy"; const bool use_spdy = (status == SSLClientSocket::kNextProtoNegotiated && proto == kSpdyProto); if (IsCertificateError(result)) { if (use_spdy) { // TODO(agl/willchan/wtc): We currently ignore certificate errors for // spdy but we shouldn't. http://crbug.com/32020 result = OK; } else { result = HandleCertificateError(result); } } if (result == OK) { DCHECK(ssl_connect_start_time_ != base::TimeTicks()); base::TimeDelta connect_duration = base::TimeTicks::Now() - ssl_connect_start_time_; if (use_spdy) { UMA_HISTOGRAM_CUSTOM_TIMES("Net.SpdyConnectionLatency", connect_duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); UpdateConnectionTypeHistograms(CONNECTION_SPDY, true); next_state_ = STATE_SPDY_SEND_REQUEST; } else { UMA_HISTOGRAM_CUSTOM_TIMES("Net.SSL_Connection_Latency", connect_duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); next_state_ = STATE_SEND_REQUEST; } } else if (result == ERR_SSL_CLIENT_AUTH_CERT_NEEDED) { result = HandleCertificateRequest(result); } else { result = HandleSSLHandshakeError(result); } return result; } int HttpNetworkTransaction::DoSendRequest() { next_state_ = STATE_SEND_REQUEST_COMPLETE; UploadDataStream* request_body = NULL; if (!establishing_tunnel_ && request_->upload_data) request_body = new UploadDataStream(request_->upload_data); // This is constructed lazily (instead of within our Start method), so that // we have proxy info available. if (request_headers_.empty()) { // Figure out if we can/should add Proxy-Authentication & Authentication // headers. bool have_proxy_auth = ShouldApplyProxyAuth() && (HaveAuth(HttpAuth::AUTH_PROXY) || SelectPreemptiveAuth(HttpAuth::AUTH_PROXY)); bool have_server_auth = ShouldApplyServerAuth() && (HaveAuth(HttpAuth::AUTH_SERVER) || SelectPreemptiveAuth(HttpAuth::AUTH_SERVER)); std::string authorization_headers; // TODO(wtc): If BuildAuthorizationHeader fails (returns an authorization // header with no credentials), we should return an error to prevent // entering an infinite auth restart loop. See http://crbug.com/21050. if (have_proxy_auth) authorization_headers.append( BuildAuthorizationHeader(HttpAuth::AUTH_PROXY)); if (have_server_auth) authorization_headers.append( BuildAuthorizationHeader(HttpAuth::AUTH_SERVER)); if (establishing_tunnel_) { BuildTunnelRequest(request_, authorization_headers, &request_headers_); } else { BuildRequestHeaders(request_, authorization_headers, request_body, proxy_mode_ == kHTTPProxy, &request_headers_); } } headers_valid_ = false; http_stream_.reset(new HttpBasicStream(connection_.get(), load_log_)); return http_stream_->SendRequest(request_, request_headers_, request_body, &response_, &io_callback_); } int HttpNetworkTransaction::DoSendRequestComplete(int result) { if (result < 0) return HandleIOError(result); next_state_ = STATE_READ_HEADERS; return OK; } int HttpNetworkTransaction::DoReadHeaders() { next_state_ = STATE_READ_HEADERS_COMPLETE; return http_stream_->ReadResponseHeaders(&io_callback_); } int HttpNetworkTransaction::HandleConnectionClosedBeforeEndOfHeaders() { if (establishing_tunnel_) { // The connection was closed before the tunnel could be established. return ERR_TUNNEL_CONNECTION_FAILED; } if (!response_.headers) { // The connection was closed before any data was sent. Likely an error // rather than empty HTTP/0.9 response. return ERR_EMPTY_RESPONSE; } return OK; } int HttpNetworkTransaction::DoReadHeadersComplete(int result) { // We can get a certificate error or ERR_SSL_CLIENT_AUTH_CERT_NEEDED here // due to SSL renegotiation. if (using_ssl_) { if (IsCertificateError(result)) { // We don't handle a certificate error during SSL renegotiation, so we // have to return an error that's not in the certificate error range // (-2xx). LOG(ERROR) << "Got a server certificate with error " << result << " during SSL renegotiation"; result = ERR_CERT_ERROR_IN_SSL_RENEGOTIATION; } else if (result == ERR_SSL_CLIENT_AUTH_CERT_NEEDED) { result = HandleCertificateRequest(result); if (result == OK) return result; } } if (result < 0 && result != ERR_CONNECTION_CLOSED) return HandleIOError(result); if (result == ERR_CONNECTION_CLOSED && ShouldResendRequest(result)) { ResetConnectionAndRequestForResend(); return OK; } // After we call RestartWithAuth a new response_time will be recorded, and // we need to be cautious about incorrectly logging the duration across the // authentication activity. if (!logged_response_time) { LogTransactionConnectedMetrics(); logged_response_time = true; } if (result == ERR_CONNECTION_CLOSED) { int rv = HandleConnectionClosedBeforeEndOfHeaders(); if (rv != OK) return rv; // TODO(wtc): Traditionally this code has returned 0 when reading a closed // socket. That is partially corrected in classes that we call, but // callers need to be updated. result = 0; } if (response_.headers->GetParsedHttpVersion() < HttpVersion(1, 0)) { // Require the "HTTP/1.x" status line for SSL CONNECT. if (establishing_tunnel_) return ERR_TUNNEL_CONNECTION_FAILED; // HTTP/0.9 doesn't support the PUT method, so lack of response headers // indicates a buggy server. See: // https://bugzilla.mozilla.org/show_bug.cgi?id=193921 if (request_->method == "PUT") return ERR_METHOD_NOT_SUPPORTED; } if (establishing_tunnel_) { switch (response_.headers->response_code()) { case 200: // OK if (http_stream_->IsMoreDataBuffered()) { // The proxy sent extraneous data after the headers. return ERR_TUNNEL_CONNECTION_FAILED; } next_state_ = STATE_SSL_CONNECT; // Reset for the real request and response headers. request_headers_.clear(); http_stream_.reset(new HttpBasicStream(connection_.get(), load_log_)); headers_valid_ = false; establishing_tunnel_ = false; return OK; // We aren't able to CONNECT to the remote host through the proxy. We // need to be very suspicious about the response because an active network // attacker can force us into this state by masquerading as the proxy. // The only safe thing to do here is to fail the connection because our // client is expecting an SSL protected response. // See http://crbug.com/7338. case 407: // Proxy Authentication Required // We need this status code to allow proxy authentication. Our // authentication code is smart enough to avoid being tricked by an // active network attacker. break; default: // For all other status codes, we conservatively fail the CONNECT // request. // We lose something by doing this. We have seen proxy 403, 404, and // 501 response bodies that contain a useful error message. For // example, Squid uses a 404 response to report the DNS error: "The // domain name does not exist." LogBlockedTunnelResponse(response_.headers->response_code()); return ERR_TUNNEL_CONNECTION_FAILED; } } // Check for an intermediate 100 Continue response. An origin server is // allowed to send this response even if we didn't ask for it, so we just // need to skip over it. // We treat any other 1xx in this same way (although in practice getting // a 1xx that isn't a 100 is rare). if (response_.headers->response_code() / 100 == 1) { response_.headers = new HttpResponseHeaders(""); next_state_ = STATE_READ_HEADERS; return OK; } int rv = HandleAuthChallenge(); if (rv != OK) return rv; if (using_ssl_ && !establishing_tunnel_) { SSLClientSocket* ssl_socket = reinterpret_cast<SSLClientSocket*>(connection_->socket()); ssl_socket->GetSSLInfo(&response_.ssl_info); } headers_valid_ = true; return OK; } int HttpNetworkTransaction::DoReadBody() { DCHECK(read_buf_); DCHECK_GT(read_buf_len_, 0); DCHECK(connection_->is_initialized()); next_state_ = STATE_READ_BODY_COMPLETE; return http_stream_->ReadResponseBody(read_buf_, read_buf_len_, &io_callback_); } int HttpNetworkTransaction::DoReadBodyComplete(int result) { // We are done with the Read call. DCHECK(!establishing_tunnel_) << "We should never read a response body of a tunnel."; bool done = false, keep_alive = false; if (result < 0) { // Error or closed connection while reading the socket. done = true; // TODO(wtc): Traditionally this code has returned 0 when reading a closed // socket. That is partially corrected in classes that we call, but // callers need to be updated. if (result == ERR_CONNECTION_CLOSED) result = 0; } else if (http_stream_->IsResponseBodyComplete()) { done = true; keep_alive = GetResponseHeaders()->IsKeepAlive(); } // Clean up connection_->if we are done. if (done) { LogTransactionMetrics(); if (!keep_alive) connection_->socket()->Disconnect(); connection_->Reset(); // The next Read call will return 0 (EOF). } // Clear these to avoid leaving around old state. read_buf_ = NULL; read_buf_len_ = 0; return result; } int HttpNetworkTransaction::DoDrainBodyForAuthRestart() { // This method differs from DoReadBody only in the next_state_. So we just // call DoReadBody and override the next_state_. Perhaps there is a more // elegant way for these two methods to share code. int rv = DoReadBody(); DCHECK(next_state_ == STATE_READ_BODY_COMPLETE); next_state_ = STATE_DRAIN_BODY_FOR_AUTH_RESTART_COMPLETE; return rv; } // TODO(wtc): This method and the DoReadBodyComplete method are almost // the same. Figure out a good way for these two methods to share code. int HttpNetworkTransaction::DoDrainBodyForAuthRestartComplete(int result) { // keep_alive defaults to true because the very reason we're draining the // response body is to reuse the connection for auth restart. bool done = false, keep_alive = true; if (result < 0) { // Error or closed connection while reading the socket. done = true; keep_alive = false; } else if (http_stream_->IsResponseBodyComplete()) { done = true; } if (done) { DidDrainBodyForAuthRestart(keep_alive); } else { // Keep draining. next_state_ = STATE_DRAIN_BODY_FOR_AUTH_RESTART; } return OK; } int HttpNetworkTransaction::DoSpdySendRequest() { next_state_ = STATE_SPDY_SEND_REQUEST_COMPLETE; CHECK(!spdy_stream_.get()); // First we get a SPDY session. Theoretically, we've just negotiated one, but // if one already exists, then screw it, use the existing one! Otherwise, // use the existing TCP socket. HostResolver::RequestInfo req_info(request_->url.HostNoBrackets(), request_->url.EffectiveIntPort()); req_info.set_priority(request_->priority); const scoped_refptr<FlipSessionPool> spdy_pool = session_->flip_session_pool(); scoped_refptr<FlipSession> spdy_session; if (spdy_pool->HasSession(req_info)) { spdy_session = spdy_pool->Get(req_info, session_); } else { spdy_session = spdy_pool->GetFlipSessionFromSocket( req_info, session_, connection_.release()); } CHECK(spdy_session.get()); UploadDataStream* upload_data = request_->upload_data ? new UploadDataStream(request_->upload_data) : NULL; headers_valid_ = false; spdy_stream_ = spdy_session->GetOrCreateStream( *request_, upload_data, load_log_); return spdy_stream_->SendRequest(upload_data, &response_, &io_callback_); } int HttpNetworkTransaction::DoSpdySendRequestComplete(int result) { if (result < 0) return result; next_state_ = STATE_SPDY_READ_HEADERS; return OK; } int HttpNetworkTransaction::DoSpdyReadHeaders() { next_state_ = STATE_SPDY_READ_HEADERS_COMPLETE; return spdy_stream_->ReadResponseHeaders(&io_callback_); } int HttpNetworkTransaction::DoSpdyReadHeadersComplete(int result) { // TODO(willchan): Flesh out the support for HTTP authentication here. if (result == OK) headers_valid_ = true; return result; } int HttpNetworkTransaction::DoSpdyReadBody() { next_state_ = STATE_SPDY_READ_BODY_COMPLETE; return spdy_stream_->ReadResponseBody( read_buf_, read_buf_len_, &io_callback_); } int HttpNetworkTransaction::DoSpdyReadBodyComplete(int result) { read_buf_ = NULL; read_buf_len_ = 0; if (result <= 0) spdy_stream_ = NULL; return result; } void HttpNetworkTransaction::LogTCPConnectedMetrics( const ClientSocketHandle& handle) { const base::TimeDelta time_to_obtain_connected_socket = base::TimeTicks::Now() - handle.init_time(); static const bool use_late_binding_histogram = !FieldTrial::MakeName("", "SocketLateBinding").empty(); if (handle.reuse_type() == ClientSocketHandle::UNUSED) { UMA_HISTOGRAM_CUSTOM_TIMES( "Net.HttpConnectionLatency", time_to_obtain_connected_socket, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); } UMA_HISTOGRAM_ENUMERATION("Net.TCPSocketType", handle.reuse_type(), ClientSocketHandle::NUM_TYPES); if (use_late_binding_histogram) { UMA_HISTOGRAM_ENUMERATION( FieldTrial::MakeName("Net.TCPSocketType", "SocketLateBinding"), handle.reuse_type(), ClientSocketHandle::NUM_TYPES); } UMA_HISTOGRAM_CLIPPED_TIMES( "Net.TransportSocketRequestTime", time_to_obtain_connected_socket, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); if (use_late_binding_histogram) { UMA_HISTOGRAM_CUSTOM_TIMES( FieldTrial::MakeName("Net.TransportSocketRequestTime", "SocketLateBinding").data(), time_to_obtain_connected_socket, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); } switch (handle.reuse_type()) { case ClientSocketHandle::UNUSED: break; case ClientSocketHandle::UNUSED_IDLE: UMA_HISTOGRAM_CUSTOM_TIMES( "Net.SocketIdleTimeBeforeNextUse_UnusedSocket", handle.idle_time(), base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(6), 100); if (use_late_binding_histogram) { UMA_HISTOGRAM_CUSTOM_TIMES( FieldTrial::MakeName("Net.SocketIdleTimeBeforeNextUse_UnusedSocket", "SocketLateBinding").data(), handle.idle_time(), base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(6), 100); } break; case ClientSocketHandle::REUSED_IDLE: UMA_HISTOGRAM_CUSTOM_TIMES( "Net.SocketIdleTimeBeforeNextUse_ReusedSocket", handle.idle_time(), base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(6), 100); if (use_late_binding_histogram) { UMA_HISTOGRAM_CUSTOM_TIMES( FieldTrial::MakeName("Net.SocketIdleTimeBeforeNextUse_ReusedSocket", "SocketLateBinding").data(), handle.idle_time(), base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(6), 100); } break; default: NOTREACHED(); break; } } void HttpNetworkTransaction::LogIOErrorMetrics( const ClientSocketHandle& handle) { static const bool use_late_binding_histogram = !FieldTrial::MakeName("", "SocketLateBinding").empty(); UMA_HISTOGRAM_ENUMERATION("Net.IOError_SocketReuseType", handle.reuse_type(), ClientSocketHandle::NUM_TYPES); if (use_late_binding_histogram) { UMA_HISTOGRAM_ENUMERATION( FieldTrial::MakeName("Net.IOError_SocketReuseType", "SocketLateBinding"), handle.reuse_type(), ClientSocketHandle::NUM_TYPES); } switch (handle.reuse_type()) { case ClientSocketHandle::UNUSED: break; case ClientSocketHandle::UNUSED_IDLE: UMA_HISTOGRAM_CUSTOM_TIMES( "Net.SocketIdleTimeOnIOError2_UnusedSocket", handle.idle_time(), base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(6), 100); if (use_late_binding_histogram) { UMA_HISTOGRAM_CUSTOM_TIMES( FieldTrial::MakeName("Net.SocketIdleTimeOnIOError2_UnusedSocket", "SocketLateBinding").data(), handle.idle_time(), base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(6), 100); } break; case ClientSocketHandle::REUSED_IDLE: UMA_HISTOGRAM_CUSTOM_TIMES( "Net.SocketIdleTimeOnIOError2_ReusedSocket", handle.idle_time(), base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(6), 100); if (use_late_binding_histogram) { UMA_HISTOGRAM_CUSTOM_TIMES( FieldTrial::MakeName("Net.SocketIdleTimeOnIOError2_ReusedSocket", "SocketLateBinding").data(), handle.idle_time(), base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(6), 100); } break; default: NOTREACHED(); break; } } void HttpNetworkTransaction::LogTransactionConnectedMetrics() const { base::TimeDelta total_duration = response_.response_time - start_time_; UMA_HISTOGRAM_CLIPPED_TIMES( "Net.Transaction_Connected_Under_10", total_duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); static const bool use_late_binding_histogram = !FieldTrial::MakeName("", "SocketLateBinding").empty(); if (use_late_binding_histogram) { UMA_HISTOGRAM_CUSTOM_TIMES( FieldTrial::MakeName("Net.Transaction_Connected_Under_10", "SocketLateBinding").data(), total_duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); } if (!reused_socket_) { UMA_HISTOGRAM_CLIPPED_TIMES( "Net.Transaction_Connected_New", total_duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); } // Currently, non-zero priority requests are frame or sub-frame resource // types. This will change when we also prioritize certain subresources like // css, js, etc. if (request_->priority) { UMA_HISTOGRAM_CLIPPED_TIMES( "Net.Priority_High_Latency", total_duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); } else { UMA_HISTOGRAM_CLIPPED_TIMES( "Net.Priority_Low_Latency", total_duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); } } void HttpNetworkTransaction::LogTransactionMetrics() const { base::TimeDelta duration = base::Time::Now() - response_.request_time; if (60 < duration.InMinutes()) return; base::TimeDelta total_duration = base::Time::Now() - start_time_; UMA_HISTOGRAM_LONG_TIMES("Net.Transaction_Latency", duration); UMA_HISTOGRAM_CLIPPED_TIMES("Net.Transaction_Latency_Under_10", duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); UMA_HISTOGRAM_CLIPPED_TIMES("Net.Transaction_Latency_Total_Under_10", total_duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); if (!reused_socket_) { UMA_HISTOGRAM_CLIPPED_TIMES( "Net.Transaction_Latency_Total_New_Connection_Under_10", total_duration, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10), 100); } } void HttpNetworkTransaction::LogBlockedTunnelResponse( int response_code) const { LOG(WARNING) << "Blocked proxy response with status " << response_code << " to CONNECT request for " << GetHostAndPort(request_->url) << "."; } int HttpNetworkTransaction::HandleCertificateError(int error) { DCHECK(using_ssl_); const int kCertFlags = LOAD_IGNORE_CERT_COMMON_NAME_INVALID | LOAD_IGNORE_CERT_DATE_INVALID | LOAD_IGNORE_CERT_AUTHORITY_INVALID | LOAD_IGNORE_CERT_WRONG_USAGE; if (request_->load_flags & kCertFlags) { switch (error) { case ERR_CERT_COMMON_NAME_INVALID: if (request_->load_flags & LOAD_IGNORE_CERT_COMMON_NAME_INVALID) error = OK; break; case ERR_CERT_DATE_INVALID: if (request_->load_flags & LOAD_IGNORE_CERT_DATE_INVALID) error = OK; break; case ERR_CERT_AUTHORITY_INVALID: if (request_->load_flags & LOAD_IGNORE_CERT_AUTHORITY_INVALID) error = OK; break; } } if (error != OK) { SSLClientSocket* ssl_socket = reinterpret_cast<SSLClientSocket*>(connection_->socket()); ssl_socket->GetSSLInfo(&response_.ssl_info); // Add the bad certificate to the set of allowed certificates in the // SSL info object. This data structure will be consulted after calling // RestartIgnoringLastError(). And the user will be asked interactively // before RestartIgnoringLastError() is ever called. SSLConfig::CertAndStatus bad_cert; bad_cert.cert = response_.ssl_info.cert; bad_cert.cert_status = response_.ssl_info.cert_status; ssl_config_.allowed_bad_certs.push_back(bad_cert); } return error; } int HttpNetworkTransaction::HandleCertificateRequest(int error) { // Assert that the socket did not send a client certificate. // Note: If we got a reused socket, it was created with some other // transaction's ssl_config_, so we need to disable this assertion. We can // get a certificate request on a reused socket when the server requested // renegotiation (rehandshake). // TODO(wtc): add a GetSSLParams method to SSLClientSocket so we can query // the SSL parameters it was created with and get rid of the reused_socket_ // test. DCHECK(reused_socket_ || !ssl_config_.send_client_cert); response_.cert_request_info = new SSLCertRequestInfo; SSLClientSocket* ssl_socket = reinterpret_cast<SSLClientSocket*>(connection_->socket()); ssl_socket->GetSSLCertRequestInfo(response_.cert_request_info); // Close the connection while the user is selecting a certificate to send // to the server. connection_->socket()->Disconnect(); connection_->Reset(); // If the user selected one of the certificate in client_certs for this // server before, use it automatically. X509Certificate* client_cert = session_->ssl_client_auth_cache()-> Lookup(GetHostAndPort(request_->url)); if (client_cert) { const std::vector<scoped_refptr<X509Certificate> >& client_certs = response_.cert_request_info->client_certs; for (size_t i = 0; i < client_certs.size(); ++i) { if (client_cert->fingerprint().Equals(client_certs[i]->fingerprint())) { ssl_config_.client_cert = client_cert; ssl_config_.send_client_cert = true; next_state_ = STATE_INIT_CONNECTION; // Reset the other member variables. // Note: this is necessary only with SSL renegotiation. ResetStateForRestart(); return OK; } } } return error; } int HttpNetworkTransaction::HandleSSLHandshakeError(int error) { if (ssl_config_.send_client_cert && (error == ERR_SSL_PROTOCOL_ERROR || error == ERR_BAD_SSL_CLIENT_AUTH_CERT)) { session_->ssl_client_auth_cache()->Remove(GetHostAndPort(request_->url)); } switch (error) { case ERR_SSL_PROTOCOL_ERROR: case ERR_SSL_VERSION_OR_CIPHER_MISMATCH: if (ssl_config_.tls1_enabled) { // This could be a TLS-intolerant server or an SSL 3.0 server that // chose a TLS-only cipher suite. Turn off TLS 1.0 and retry. ssl_config_.tls1_enabled = false; connection_->socket()->Disconnect(); connection_->Reset(); next_state_ = STATE_INIT_CONNECTION; error = OK; } break; } return error; } // This method determines whether it is safe to resend the request after an // IO error. It can only be called in response to request header or body // write errors or response header read errors. It should not be used in // other cases, such as a Connect error. int HttpNetworkTransaction::HandleIOError(int error) { switch (error) { // If we try to reuse a connection that the server is in the process of // closing, we may end up successfully writing out our request (or a // portion of our request) only to find a connection error when we try to // read from (or finish writing to) the socket. case ERR_CONNECTION_RESET: case ERR_CONNECTION_CLOSED: case ERR_CONNECTION_ABORTED: LogIOErrorMetrics(*connection_); if (ShouldResendRequest(error)) { ResetConnectionAndRequestForResend(); error = OK; } break; } return error; } void HttpNetworkTransaction::ResetStateForRestart() { pending_auth_target_ = HttpAuth::AUTH_NONE; read_buf_ = NULL; read_buf_len_ = 0; http_stream_.reset(); headers_valid_ = false; request_headers_.clear(); response_ = HttpResponseInfo(); } HttpResponseHeaders* HttpNetworkTransaction::GetResponseHeaders() const { return response_.headers; } bool HttpNetworkTransaction::ShouldResendRequest(int error) const { // NOTE: we resend a request only if we reused a keep-alive connection. // This automatically prevents an infinite resend loop because we'll run // out of the cached keep-alive connections eventually. if (establishing_tunnel_ || !connection_->ShouldResendFailedRequest(error) || GetResponseHeaders()) { // We have received some response headers. return false; } return true; } void HttpNetworkTransaction::ResetConnectionAndRequestForResend() { connection_->socket()->Disconnect(); connection_->Reset(); // We need to clear request_headers_ because it contains the real request // headers, but we may need to resend the CONNECT request first to recreate // the SSL tunnel. request_headers_.clear(); next_state_ = STATE_INIT_CONNECTION; // Resend the request. } int HttpNetworkTransaction::ReconsiderProxyAfterError(int error) { DCHECK(!pac_request_); // A failure to resolve the hostname or any error related to establishing a // TCP connection could be grounds for trying a new proxy configuration. // // Why do this when a hostname cannot be resolved? Some URLs only make sense // to proxy servers. The hostname in those URLs might fail to resolve if we // are still using a non-proxy config. We need to check if a proxy config // now exists that corresponds to a proxy server that could load the URL. // switch (error) { case ERR_NAME_NOT_RESOLVED: case ERR_INTERNET_DISCONNECTED: case ERR_ADDRESS_UNREACHABLE: case ERR_CONNECTION_CLOSED: case ERR_CONNECTION_RESET: case ERR_CONNECTION_REFUSED: case ERR_CONNECTION_ABORTED: case ERR_TIMED_OUT: case ERR_TUNNEL_CONNECTION_FAILED: break; default: return error; } if (request_->load_flags & LOAD_BYPASS_PROXY) { return error; } int rv = session_->proxy_service()->ReconsiderProxyAfterError( request_->url, &proxy_info_, &io_callback_, &pac_request_, load_log_); if (rv == OK || rv == ERR_IO_PENDING) { // If the error was during connection setup, there is no socket to // disconnect. if (connection_->socket()) connection_->socket()->Disconnect(); connection_->Reset(); next_state_ = STATE_RESOLVE_PROXY_COMPLETE; } else { // If ReconsiderProxyAfterError() failed synchronously, it means // there was nothing left to fall-back to, so fail the transaction // with the last connection error we got. // TODO(eroman): This is a confusing contract, make it more obvious. rv = error; } return rv; } bool HttpNetworkTransaction::ShouldApplyProxyAuth() const { return (proxy_mode_ == kHTTPProxy) || establishing_tunnel_; } bool HttpNetworkTransaction::ShouldApplyServerAuth() const { return !establishing_tunnel_ && !(request_->load_flags & LOAD_DO_NOT_SEND_AUTH_DATA); } std::string HttpNetworkTransaction::BuildAuthorizationHeader( HttpAuth::Target target) const { DCHECK(HaveAuth(target)); // Add a Authorization/Proxy-Authorization header line. std::string credentials = auth_handler_[target]->GenerateCredentials( auth_identity_[target].username, auth_identity_[target].password, request_, &proxy_info_); return HttpAuth::GetAuthorizationHeaderName(target) + ": " + credentials + "\r\n"; } GURL HttpNetworkTransaction::AuthOrigin(HttpAuth::Target target) const { return target == HttpAuth::AUTH_PROXY ? GURL("http://" + proxy_info_.proxy_server().host_and_port()) : request_->url.GetOrigin(); } std::string HttpNetworkTransaction::AuthPath(HttpAuth::Target target) const { // Proxy authentication realms apply to all paths. So we will use // empty string in place of an absolute path. return target == HttpAuth::AUTH_PROXY ? std::string() : request_->url.path(); } // static std::string HttpNetworkTransaction::AuthTargetString( HttpAuth::Target target) { return target == HttpAuth::AUTH_PROXY ? "proxy" : "server"; } void HttpNetworkTransaction::InvalidateRejectedAuthFromCache( HttpAuth::Target target, const GURL& auth_origin) { DCHECK(HaveAuth(target)); // TODO(eroman): this short-circuit can be relaxed. If the realm of // the preemptively used auth entry matches the realm of the subsequent // challenge, then we can invalidate the preemptively used entry. // Otherwise as-is we may send the failed credentials one extra time. if (auth_identity_[target].source == HttpAuth::IDENT_SRC_PATH_LOOKUP) return; // Clear the cache entry for the identity we just failed on. // Note: we require the username/password to match before invalidating // since the entry in the cache may be newer than what we used last time. session_->auth_cache()->Remove(auth_origin, auth_handler_[target]->realm(), auth_identity_[target].username, auth_identity_[target].password); } bool HttpNetworkTransaction::SelectPreemptiveAuth(HttpAuth::Target target) { DCHECK(!HaveAuth(target)); // Don't do preemptive authorization if the URL contains a username/password, // since we must first be challenged in order to use the URL's identity. if (request_->url.has_username()) return false; // SelectPreemptiveAuth() is on the critical path for each request, so it // is expected to be fast. LookupByPath() is fast in the common case, since // the number of http auth cache entries is expected to be very small. // (For most users in fact, it will be 0.) HttpAuthCache::Entry* entry = session_->auth_cache()->LookupByPath( AuthOrigin(target), AuthPath(target)); // We don't support preemptive authentication for connection-based // authentication schemes because they can't reuse entry->handler(). // Hopefully we can remove this limitation in the future. if (entry && !entry->handler()->is_connection_based()) { auth_identity_[target].source = HttpAuth::IDENT_SRC_PATH_LOOKUP; auth_identity_[target].invalid = false; auth_identity_[target].username = entry->username(); auth_identity_[target].password = entry->password(); auth_handler_[target] = entry->handler(); return true; } return false; } bool HttpNetworkTransaction::SelectNextAuthIdentityToTry( HttpAuth::Target target, const GURL& auth_origin) { DCHECK(auth_handler_[target]); DCHECK(auth_identity_[target].invalid); // Try to use the username/password encoded into the URL first. if (target == HttpAuth::AUTH_SERVER && request_->url.has_username() && !embedded_identity_used_) { auth_identity_[target].source = HttpAuth::IDENT_SRC_URL; auth_identity_[target].invalid = false; // Extract the username:password from the URL. GetIdentityFromURL(request_->url, &auth_identity_[target].username, &auth_identity_[target].password); embedded_identity_used_ = true; // TODO(eroman): If the password is blank, should we also try combining // with a password from the cache? return true; } // Check the auth cache for a realm entry. HttpAuthCache::Entry* entry = session_->auth_cache()->LookupByRealm( auth_origin, auth_handler_[target]->realm()); if (entry) { // Disallow re-using of identity if the scheme of the originating challenge // does not match. This protects against the following situation: // 1. Browser prompts user to sign into DIGEST realm="Foo". // 2. Since the auth-scheme is not BASIC, the user is reasured that it // will not be sent over the wire in clear text. So they use their // most trusted password. // 3. Next, the browser receives a challenge for BASIC realm="Foo". This // is the same realm that we have a cached identity for. However if // we use that identity, it would get sent over the wire in // clear text (which isn't what the user agreed to when entering it). if (entry->handler()->scheme() != auth_handler_[target]->scheme()) { LOG(WARNING) << "The scheme of realm " << auth_handler_[target]->realm() << " has changed from " << entry->handler()->scheme() << " to " << auth_handler_[target]->scheme(); return false; } auth_identity_[target].source = HttpAuth::IDENT_SRC_REALM_LOOKUP; auth_identity_[target].invalid = false; auth_identity_[target].username = entry->username(); auth_identity_[target].password = entry->password(); return true; } return false; } std::string HttpNetworkTransaction::AuthChallengeLogMessage() const { std::string msg; std::string header_val; void* iter = NULL; scoped_refptr<HttpResponseHeaders> headers = GetResponseHeaders(); while (headers->EnumerateHeader(&iter, "proxy-authenticate", &header_val)) { msg.append("\n Has header Proxy-Authenticate: "); msg.append(header_val); } iter = NULL; while (headers->EnumerateHeader(&iter, "www-authenticate", &header_val)) { msg.append("\n Has header WWW-Authenticate: "); msg.append(header_val); } // RFC 4559 requires that a proxy indicate its support of NTLM/Negotiate // authentication with a "Proxy-Support: Session-Based-Authentication" // response header. iter = NULL; while (headers->EnumerateHeader(&iter, "proxy-support", &header_val)) { msg.append("\n Has header Proxy-Support: "); msg.append(header_val); } return msg; } int HttpNetworkTransaction::HandleAuthChallenge() { scoped_refptr<HttpResponseHeaders> headers = GetResponseHeaders(); DCHECK(headers); int status = headers->response_code(); if (status != 401 && status != 407) return OK; HttpAuth::Target target = status == 407 ? HttpAuth::AUTH_PROXY : HttpAuth::AUTH_SERVER; GURL auth_origin = AuthOrigin(target); LOG(INFO) << "The " << AuthTargetString(target) << " " << auth_origin << " requested auth" << AuthChallengeLogMessage(); if (target == HttpAuth::AUTH_PROXY && proxy_info_.is_direct()) return ERR_UNEXPECTED_PROXY_AUTH; // The auth we tried just failed, hence it can't be valid. Remove it from // the cache so it won't be used again. // TODO(wtc): IsFinalRound is not the right condition. In a multi-round // auth sequence, the server may fail the auth in round 1 if our first // authorization header is broken. We should inspect response_.headers to // determine if the server already failed the auth or wants us to continue. // See http://crbug.com/21015. if (HaveAuth(target) && auth_handler_[target]->IsFinalRound()) { InvalidateRejectedAuthFromCache(target, auth_origin); auth_handler_[target] = NULL; auth_identity_[target] = HttpAuth::Identity(); } auth_identity_[target].invalid = true; if (target != HttpAuth::AUTH_SERVER || !(request_->load_flags & LOAD_DO_NOT_SEND_AUTH_DATA)) { // Find the best authentication challenge that we support. HttpAuth::ChooseBestChallenge(headers, target, auth_origin, &auth_handler_[target]); } if (!auth_handler_[target]) { if (establishing_tunnel_) { LOG(ERROR) << "Can't perform auth to the " << AuthTargetString(target) << " " << auth_origin << " when establishing a tunnel" << AuthChallengeLogMessage(); // We are establishing a tunnel, we can't show the error page because an // active network attacker could control its contents. Instead, we just // fail to establish the tunnel. DCHECK(target == HttpAuth::AUTH_PROXY); return ERR_PROXY_AUTH_REQUESTED; } // We found no supported challenge -- let the transaction continue // so we end up displaying the error page. return OK; } if (auth_handler_[target]->NeedsIdentity()) { // Pick a new auth identity to try, by looking to the URL and auth cache. // If an identity to try is found, it is saved to auth_identity_[target]. SelectNextAuthIdentityToTry(target, auth_origin); } else { // Proceed with the existing identity or a null identity. // // TODO(wtc): Add a safeguard against infinite transaction restarts, if // the server keeps returning "NTLM". auth_identity_[target].invalid = false; } // Make a note that we are waiting for auth. This variable is inspected // when the client calls RestartWithAuth() to pick up where we left off. pending_auth_target_ = target; if (auth_identity_[target].invalid) { // We have exhausted all identity possibilities, all we can do now is // pass the challenge information back to the client. PopulateAuthChallenge(target, auth_origin); } return OK; } void HttpNetworkTransaction::PopulateAuthChallenge(HttpAuth::Target target, const GURL& auth_origin) { // Populates response_.auth_challenge with the authentication challenge info. // This info is consumed by URLRequestHttpJob::GetAuthChallengeInfo(). AuthChallengeInfo* auth_info = new AuthChallengeInfo; auth_info->is_proxy = target == HttpAuth::AUTH_PROXY; auth_info->host_and_port = ASCIIToWide(GetHostAndPort(auth_origin)); auth_info->scheme = ASCIIToWide(auth_handler_[target]->scheme()); // TODO(eroman): decode realm according to RFC 2047. auth_info->realm = ASCIIToWide(auth_handler_[target]->realm()); response_.auth_challenge = auth_info; } } // namespace net