/* ********************************************************************** * Copyright (C) 2008-2009, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** */ #include "unicode/utypes.h" #include "unicode/uspoof.h" #include "unicode/unorm.h" #include "unicode/uchar.h" #include "unicode/uniset.h" #include "utrie2.h" #include "cmemory.h" #include "cstring.h" #include "udatamem.h" #include "umutex.h" #include "udataswp.h" #include "uassert.h" #include "uspoof_impl.h" #if !UCONFIG_NO_NORMALIZATION U_NAMESPACE_BEGIN UOBJECT_DEFINE_RTTI_IMPLEMENTATION(SpoofImpl) SpoofImpl::SpoofImpl(SpoofData *data, UErrorCode &status) : fMagic(0), fSpoofData(NULL), fAllowedCharsSet(NULL) , fAllowedLocales(NULL) { if (U_FAILURE(status)) { return; } fMagic = USPOOF_MAGIC; fSpoofData = data; fChecks = USPOOF_ALL_CHECKS; UnicodeSet *allowedCharsSet = new UnicodeSet(0, 0x10ffff); if (allowedCharsSet == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } allowedCharsSet->freeze(); fAllowedCharsSet = allowedCharsSet; fAllowedLocales = uprv_strdup(""); } SpoofImpl::SpoofImpl() { fMagic = USPOOF_MAGIC; fSpoofData = NULL; fChecks = USPOOF_ALL_CHECKS; UnicodeSet *allowedCharsSet = new UnicodeSet(0, 0x10ffff); allowedCharsSet->freeze(); fAllowedCharsSet = allowedCharsSet; fAllowedLocales = uprv_strdup(""); } // Copy Constructor, used by the user level clone() function. SpoofImpl::SpoofImpl(const SpoofImpl &src, UErrorCode &status) : fMagic(0), fSpoofData(NULL), fAllowedCharsSet(NULL) { if (U_FAILURE(status)) { return; } fMagic = src.fMagic; fChecks = src.fChecks; if (src.fSpoofData != NULL) { fSpoofData = src.fSpoofData->addReference(); } fCheckMask = src.fCheckMask; fAllowedCharsSet = static_cast<const UnicodeSet *>(src.fAllowedCharsSet->clone()); if (fAllowedCharsSet == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } fAllowedLocales = uprv_strdup(src.fAllowedLocales); } SpoofImpl::~SpoofImpl() { fMagic = 0; // head off application errors by preventing use of // of deleted objects. if (fSpoofData != NULL) { fSpoofData->removeReference(); // Will delete if refCount goes to zero. } delete fAllowedCharsSet; uprv_free((void *)fAllowedLocales); } // // Incoming parameter check on Status and the SpoofChecker object // received from the C API. // const SpoofImpl *SpoofImpl::validateThis(const USpoofChecker *sc, UErrorCode &status) { if (U_FAILURE(status)) { return NULL; } if (sc == NULL) { status = U_ILLEGAL_ARGUMENT_ERROR; return NULL; }; SpoofImpl *This = (SpoofImpl *)sc; if (This->fMagic != USPOOF_MAGIC || This->fSpoofData == NULL) { status = U_INVALID_FORMAT_ERROR; return NULL; } if (!SpoofData::validateDataVersion(This->fSpoofData->fRawData, status)) { return NULL; } return This; } SpoofImpl *SpoofImpl::validateThis(USpoofChecker *sc, UErrorCode &status) { return const_cast<SpoofImpl *> (SpoofImpl::validateThis(const_cast<const USpoofChecker *>(sc), status)); } //-------------------------------------------------------------------------------------- // // confusableLookup() This is the heart of the confusable skeleton generation // implementation. // // Given a source character, produce the corresponding // replacement character(s) // //--------------------------------------------------------------------------------------- int32_t SpoofImpl::confusableLookup(UChar32 inChar, int32_t tableMask, UChar *destBuf) const { // Binary search the spoof data key table for the inChar int32_t *low = fSpoofData->fCFUKeys; int32_t *mid = NULL; int32_t *limit = low + fSpoofData->fRawData->fCFUKeysSize; UChar midc; do { int32_t delta = (limit-low)/2; mid = low + delta; midc = *mid & 0x1fffff; if (inChar == midc) { goto foundChar; } else if (inChar < midc) { limit = mid; } else { low = mid; } } while (low < limit-1); mid = low; midc = *mid & 0x1fffff; if (inChar != midc) { // Char not found. It maps to itself. int i = 0; U16_APPEND_UNSAFE(destBuf, i, inChar) return i; } foundChar: int32_t keyFlags = *mid & 0xff000000; if ((keyFlags & tableMask) == 0) { // We found the right key char, but the entry doesn't pertain to the // table we need. See if there is an adjacent key that does if (keyFlags & USPOOF_KEY_MULTIPLE_VALUES) { int32_t *altMid; for (altMid = mid-1; (*altMid&0x00ffffff) == inChar; altMid--) { keyFlags = *altMid & 0xff000000; if (keyFlags & tableMask) { mid = altMid; goto foundKey; } } for (altMid = mid+1; (*altMid&0x00ffffff) == inChar; altMid++) { keyFlags = *altMid & 0xff000000; if (keyFlags & tableMask) { mid = altMid; goto foundKey; } } } // No key entry for this char & table. // The input char maps to itself. int i = 0; U16_APPEND_UNSAFE(destBuf, i, inChar) return i; } foundKey: int32_t stringLen = USPOOF_KEY_LENGTH_FIELD(keyFlags) + 1; int32_t keyTableIndex = mid - fSpoofData->fCFUKeys; // Value is either a UChar (for strings of length 1) or // an index into the string table (for longer strings) uint16_t value = fSpoofData->fCFUValues[keyTableIndex]; if (stringLen == 1) { destBuf[0] = value; return 1; } // String length of 4 from the above lookup is used for all strings of length >= 4. // For these, get the real length from the string lengths table, // which maps string table indexes to lengths. // All strings of the same length are stored contiguously in the string table. // 'value' from the lookup above is the starting index for the desired string. int32_t ix; if (stringLen == 4) { int32_t stringLengthsLimit = fSpoofData->fRawData->fCFUStringLengthsSize; for (ix = 0; ix < stringLengthsLimit; ix++) { if (fSpoofData->fCFUStringLengths[ix].fLastString >= value) { stringLen = fSpoofData->fCFUStringLengths[ix].fStrLength; break; } } U_ASSERT(ix < stringLengthsLimit); } U_ASSERT(value + stringLen < fSpoofData->fRawData->fCFUStringTableLen); UChar *src = &fSpoofData->fCFUStrings[value]; for (ix=0; ix<stringLen; ix++) { destBuf[ix] = src[ix]; } return stringLen; } //--------------------------------------------------------------------------------------- // // wholeScriptCheck() // // Input text is already normalized to NFKD // Return the set of scripts, each of which can represent something that is // confusable with the input text. The script of the input text // is included; input consisting of characters from a single script will // always produce a result consisting of a set containing that script. // //--------------------------------------------------------------------------------------- void SpoofImpl::wholeScriptCheck( const UChar *text, int32_t length, ScriptSet *result, UErrorCode &status) const { int32_t inputIdx = 0; UChar32 c; UTrie2 *table = (fChecks & USPOOF_ANY_CASE) ? fSpoofData->fAnyCaseTrie : fSpoofData->fLowerCaseTrie; result->setAll(); while (inputIdx < length) { U16_NEXT(text, inputIdx, length, c); uint32_t index = utrie2_get32(table, c); if (index == 0) { // No confusables in another script for this char. // TODO: we should change the data to have sets with just the single script // bit for the script of this char. Gets rid of this special case. // Until then, grab the script from the char and intersect it with the set. UScriptCode cpScript = uscript_getScript(c, &status); U_ASSERT(cpScript > USCRIPT_INHERITED); result->intersect(cpScript); } else if (index == 1) { // Script == Common or Inherited. Nothing to do. } else { result->intersect(fSpoofData->fScriptSets[index]); } } } void SpoofImpl::setAllowedLocales(const char *localesList, UErrorCode &status) { UnicodeSet allowedChars; UnicodeSet *tmpSet = NULL; const char *locStart = localesList; const char *locEnd = NULL; const char *localesListEnd = localesList + uprv_strlen(localesList); int32_t localeListCount = 0; // Number of locales provided by caller. // Loop runs once per locale from the localesList, a comma separated list of locales. do { locEnd = uprv_strchr(locStart, ','); if (locEnd == NULL) { locEnd = localesListEnd; } while (*locStart == ' ') { locStart++; } const char *trimmedEnd = locEnd-1; while (trimmedEnd > locStart && *trimmedEnd == ' ') { trimmedEnd--; } if (trimmedEnd <= locStart) { break; } const char *locale = uprv_strndup(locStart, trimmedEnd + 1 - locStart); localeListCount++; // We have one locale from the locales list. // Add the script chars for this locale to the accumulating set of allowed chars. // If the locale is no good, we will be notified back via status. addScriptChars(locale, &allowedChars, status); uprv_free((void *)locale); if (U_FAILURE(status)) { break; } locStart = locEnd + 1; } while (locStart < localesListEnd); // If our caller provided an empty list of locales, we disable the allowed characters checking if (localeListCount == 0) { uprv_free((void *)fAllowedLocales); fAllowedLocales = uprv_strdup(""); tmpSet = new UnicodeSet(0, 0x10ffff); if (fAllowedLocales == NULL || tmpSet == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } tmpSet->freeze(); delete fAllowedCharsSet; fAllowedCharsSet = tmpSet; fCheckMask &= ~USPOOF_CHAR_LIMIT; return; } // Add all common and inherited characters to the set of allowed chars. UnicodeSet tempSet; tempSet.applyIntPropertyValue(UCHAR_SCRIPT, USCRIPT_COMMON, status); allowedChars.addAll(tempSet); tempSet.applyIntPropertyValue(UCHAR_SCRIPT, USCRIPT_INHERITED, status); allowedChars.addAll(tempSet); // If anything went wrong, we bail out without changing // the state of the spoof checker. if (U_FAILURE(status)) { return; } // Store the updated spoof checker state. tmpSet = static_cast<UnicodeSet *>(allowedChars.clone()); const char *tmpLocalesList = uprv_strdup(localesList); if (tmpSet == NULL || tmpLocalesList == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } uprv_free((void *)fAllowedLocales); fAllowedLocales = tmpLocalesList; tmpSet->freeze(); delete fAllowedCharsSet; fAllowedCharsSet = tmpSet; fCheckMask |= USPOOF_CHAR_LIMIT; } const char * SpoofImpl::getAllowedLocales(UErrorCode &/*status*/) { return fAllowedLocales; } // Given a locale (a language), add all the characters from all of the scripts used with that language // to the allowedChars UnicodeSet void SpoofImpl::addScriptChars(const char *locale, UnicodeSet *allowedChars, UErrorCode &status) { UScriptCode scripts[30]; int32_t numScripts = uscript_getCode(locale, scripts, sizeof(scripts)/sizeof(UScriptCode), &status); if (U_FAILURE(status)) { return; } if (status == U_USING_DEFAULT_WARNING) { status = U_ILLEGAL_ARGUMENT_ERROR; return; } UnicodeSet tmpSet; int32_t i; for (i=0; i<numScripts; i++) { tmpSet.applyIntPropertyValue(UCHAR_SCRIPT, scripts[i], status); allowedChars->addAll(tmpSet); } } int32_t SpoofImpl::scriptScan (const UChar *text, int32_t length, int32_t &pos, UErrorCode &status) const { if (U_FAILURE(status)) { return 0; } int32_t inputIdx = 0; UChar32 c; int32_t scriptCount = 0; UScriptCode lastScript = USCRIPT_INVALID_CODE; UScriptCode sc = USCRIPT_INVALID_CODE; while ((inputIdx < length || length == -1) && scriptCount < 2) { U16_NEXT(text, inputIdx, length, c); if (c == 0 && length == -1) { break; } sc = uscript_getScript(c, &status); if (sc == USCRIPT_COMMON || sc == USCRIPT_INHERITED || sc == USCRIPT_UNKNOWN) { continue; } if (sc != lastScript) { scriptCount++; lastScript = sc; } } if (scriptCount == 2) { pos = inputIdx; } return scriptCount; } // Convert a text format hex number. Utility function used by builder code. Static. // Input: UChar *string text. Output: a UChar32 // Input has been pre-checked, and will have no non-hex chars. // The number must fall in the code point range of 0..0x10ffff // Static Function. UChar32 SpoofImpl::ScanHex(const UChar *s, int32_t start, int32_t limit, UErrorCode &status) { if (U_FAILURE(status)) { return 0; } U_ASSERT(limit-start > 0); uint32_t val = 0; int i; for (i=start; i<limit; i++) { int digitVal = s[i] - 0x30; if (digitVal>9) { digitVal = 0xa + (s[i] - 0x41); // Upper Case 'A' } if (digitVal>15) { digitVal = 0xa + (s[i] - 0x61); // Lower Case 'a' } U_ASSERT(digitVal <= 0xf); val <<= 4; val += digitVal; } if (val > 0x10ffff) { status = U_PARSE_ERROR; val = 0; } return (UChar32)val; } //---------------------------------------------------------------------------------------------- // // class SpoofData Implementation // //---------------------------------------------------------------------------------------------- UBool SpoofData::validateDataVersion(const SpoofDataHeader *rawData, UErrorCode &status) { if (U_FAILURE(status) || rawData == NULL || rawData->fMagic != USPOOF_MAGIC || rawData->fFormatVersion[0] > 1 || rawData->fFormatVersion[1] > 0) { status = U_INVALID_FORMAT_ERROR; return FALSE; } return TRUE; } // // SpoofData::getDefault() - return a wrapper around the spoof data that is // baked into the default ICU data. // SpoofData *SpoofData::getDefault(UErrorCode &status) { // TODO: Cache it. Lazy create, keep until cleanup. UDataMemory *udm = udata_open(NULL, "cfu", "confusables", &status); if (U_FAILURE(status)) { return NULL; } SpoofData *This = new SpoofData(udm, status); if (U_FAILURE(status)) { delete This; return NULL; } if (This == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } return This; } SpoofData::SpoofData(UDataMemory *udm, UErrorCode &status) { reset(); if (U_FAILURE(status)) { return; } fRawData = reinterpret_cast<SpoofDataHeader *> ((char *)(udm->pHeader) + udm->pHeader->dataHeader.headerSize); fUDM = udm; validateDataVersion(fRawData, status); initPtrs(status); } SpoofData::SpoofData(const void *data, int32_t length, UErrorCode &status) { reset(); if (U_FAILURE(status)) { return; } if ((size_t)length < sizeof(SpoofDataHeader)) { status = U_INVALID_FORMAT_ERROR; return; } void *ncData = const_cast<void *>(data); fRawData = static_cast<SpoofDataHeader *>(ncData); if (length < fRawData->fLength) { status = U_INVALID_FORMAT_ERROR; return; } validateDataVersion(fRawData, status); initPtrs(status); } // Spoof Data constructor for use from data builder. // Initializes a new, empty data area that will be populated later. SpoofData::SpoofData(UErrorCode &status) { reset(); if (U_FAILURE(status)) { return; } fDataOwned = true; fRefCount = 1; // The spoof header should already be sized to be a multiple of 16 bytes. // Just in case it's not, round it up. uint32_t initialSize = (sizeof(SpoofDataHeader) + 15) & ~15; U_ASSERT(initialSize == sizeof(SpoofDataHeader)); fRawData = static_cast<SpoofDataHeader *>(uprv_malloc(initialSize)); fMemLimit = initialSize; if (fRawData == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } uprv_memset(fRawData, 0, initialSize); fRawData->fMagic = USPOOF_MAGIC; fRawData->fFormatVersion[0] = 1; fRawData->fFormatVersion[1] = 0; fRawData->fFormatVersion[2] = 0; fRawData->fFormatVersion[3] = 0; initPtrs(status); } // reset() - initialize all fields. // Should be updated if any new fields are added. // Called by constructors to put things in a known initial state. void SpoofData::reset() { fRawData = NULL; fDataOwned = FALSE; fUDM = NULL; fMemLimit = 0; fRefCount = 1; fCFUKeys = NULL; fCFUValues = NULL; fCFUStringLengths = NULL; fCFUStrings = NULL; fAnyCaseTrie = NULL; fLowerCaseTrie = NULL; fScriptSets = NULL; } // SpoofData::initPtrs() // Initialize the pointers to the various sections of the raw data. // // This function is used both during the Trie building process (multiple // times, as the individual data sections are added), and // during the opening of a Spoof Checker from prebuilt data. // // The pointers for non-existent data sections (identified by an offset of 0) // are set to NULL. // // Note: During building the data, adding each new data section // reallocs the raw data area, which likely relocates it, which // in turn requires reinitializing all of the pointers into it, hence // multiple calls to this function during building. // void SpoofData::initPtrs(UErrorCode &status) { fCFUKeys = NULL; fCFUValues = NULL; fCFUStringLengths = NULL; fCFUStrings = NULL; if (U_FAILURE(status)) { return; } if (fRawData->fCFUKeys != 0) { fCFUKeys = (int32_t *)((char *)fRawData + fRawData->fCFUKeys); } if (fRawData->fCFUStringIndex != 0) { fCFUValues = (uint16_t *)((char *)fRawData + fRawData->fCFUStringIndex); } if (fRawData->fCFUStringLengths != 0) { fCFUStringLengths = (SpoofStringLengthsElement *)((char *)fRawData + fRawData->fCFUStringLengths); } if (fRawData->fCFUStringTable != 0) { fCFUStrings = (UChar *)((char *)fRawData + fRawData->fCFUStringTable); } if (fAnyCaseTrie == NULL && fRawData->fAnyCaseTrie != 0) { fAnyCaseTrie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS, (char *)fRawData + fRawData->fAnyCaseTrie, fRawData->fAnyCaseTrieLength, NULL, &status); } if (fLowerCaseTrie == NULL && fRawData->fLowerCaseTrie != 0) { fLowerCaseTrie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS, (char *)fRawData + fRawData->fLowerCaseTrie, fRawData->fLowerCaseTrieLength, NULL, &status); } if (fRawData->fScriptSets != 0) { fScriptSets = (ScriptSet *)((char *)fRawData + fRawData->fScriptSets); } } SpoofData::~SpoofData() { utrie2_close(fAnyCaseTrie); fAnyCaseTrie = NULL; utrie2_close(fLowerCaseTrie); fLowerCaseTrie = NULL; if (fDataOwned) { uprv_free(fRawData); } fRawData = NULL; if (fUDM != NULL) { udata_close(fUDM); } fUDM = NULL; } void SpoofData::removeReference() { if (umtx_atomic_dec(&fRefCount) == 0) { delete this; } } SpoofData *SpoofData::addReference() { umtx_atomic_inc(&fRefCount); return this; } void *SpoofData::reserveSpace(int32_t numBytes, UErrorCode &status) { if (U_FAILURE(status)) { return NULL; } if (!fDataOwned) { U_ASSERT(FALSE); status = U_INTERNAL_PROGRAM_ERROR; return NULL; } numBytes = (numBytes + 15) & ~15; // Round up to a multiple of 16 uint32_t returnOffset = fMemLimit; fMemLimit += numBytes; fRawData = static_cast<SpoofDataHeader *>(uprv_realloc(fRawData, fMemLimit)); fRawData->fLength = fMemLimit; uprv_memset((char *)fRawData + returnOffset, 0, numBytes); initPtrs(status); return (char *)fRawData + returnOffset; } //---------------------------------------------------------------------------- // // ScriptSet implementation // //---------------------------------------------------------------------------- ScriptSet::ScriptSet() { for (uint32_t i=0; i<sizeof(bits)/sizeof(uint32_t); i++) { bits[i] = 0; } } ScriptSet::~ScriptSet() { } UBool ScriptSet::operator == (const ScriptSet &other) { for (uint32_t i=0; i<sizeof(bits)/sizeof(uint32_t); i++) { if (bits[i] != other.bits[i]) { return FALSE; } } return TRUE; } void ScriptSet::Union(UScriptCode script) { uint32_t index = script / 32; uint32_t bit = 1 << (script & 31); U_ASSERT(index < sizeof(bits)*4); bits[index] |= bit; } void ScriptSet::Union(const ScriptSet &other) { for (uint32_t i=0; i<sizeof(bits)/sizeof(uint32_t); i++) { bits[i] |= other.bits[i]; } } void ScriptSet::intersect(const ScriptSet &other) { for (uint32_t i=0; i<sizeof(bits)/sizeof(uint32_t); i++) { bits[i] &= other.bits[i]; } } void ScriptSet::intersect(UScriptCode script) { uint32_t index = script / 32; uint32_t bit = 1 << (script & 31); U_ASSERT(index < sizeof(bits)*4); uint32_t i; for (i=0; i<index; i++) { bits[i] = 0; } bits[index] &= bit; for (i=index+1; i<sizeof(bits)/sizeof(uint32_t); i++) { bits[i] = 0; } } ScriptSet & ScriptSet::operator =(const ScriptSet &other) { for (uint32_t i=0; i<sizeof(bits)/sizeof(uint32_t); i++) { bits[i] = other.bits[i]; } return *this; } void ScriptSet::setAll() { for (uint32_t i=0; i<sizeof(bits)/sizeof(uint32_t); i++) { bits[i] = 0xffffffffu; } } void ScriptSet::resetAll() { for (uint32_t i=0; i<sizeof(bits)/sizeof(uint32_t); i++) { bits[i] = 0; } } int32_t ScriptSet::countMembers() { // This bit counter is good for sparse numbers of '1's, which is // very much the case that we will usually have. int32_t count = 0; for (uint32_t i=0; i<sizeof(bits)/sizeof(uint32_t); i++) { uint32_t x = bits[i]; while (x > 0) { count++; x &= (x - 1); // and off the least significant one bit. } } return count; } //----------------------------------------------------------------------------- // // NFKDBuffer Implementation. // //----------------------------------------------------------------------------- NFKDBuffer::NFKDBuffer(const UChar *text, int32_t length, UErrorCode &status) { fNormalizedText = NULL; fNormalizedTextLength = 0; fOriginalText = text; if (U_FAILURE(status)) { return; } fNormalizedText = fSmallBuf; fNormalizedTextLength = unorm_normalize( text, length, UNORM_NFKD, 0, fNormalizedText, USPOOF_STACK_BUFFER_SIZE, &status); if (status == U_BUFFER_OVERFLOW_ERROR) { status = U_ZERO_ERROR; fNormalizedText = (UChar *)uprv_malloc((fNormalizedTextLength+1)*sizeof(UChar)); if (fNormalizedText == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } else { fNormalizedTextLength = unorm_normalize(text, length, UNORM_NFKD, 0, fNormalizedText, fNormalizedTextLength+1, &status); } } } NFKDBuffer::~NFKDBuffer() { if (fNormalizedText != fSmallBuf) { uprv_free(fNormalizedText); } fNormalizedText = 0; } const UChar *NFKDBuffer::getBuffer() { return fNormalizedText; } int32_t NFKDBuffer::getLength() { return fNormalizedTextLength; } U_NAMESPACE_END U_NAMESPACE_USE //----------------------------------------------------------------------------- // // uspoof_swap - byte swap and char encoding swap of spoof data // //----------------------------------------------------------------------------- U_CAPI int32_t U_EXPORT2 uspoof_swap(const UDataSwapper *ds, const void *inData, int32_t length, void *outData, UErrorCode *status) { if (status == NULL || U_FAILURE(*status)) { return 0; } if(ds==NULL || inData==NULL || length<-1 || (length>0 && outData==NULL)) { *status=U_ILLEGAL_ARGUMENT_ERROR; return 0; } // // Check that the data header is for spoof data. // (Header contents are defined in gencfu.cpp) // const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData+4); if(!( pInfo->dataFormat[0]==0x43 && /* dataFormat="Cfu " */ pInfo->dataFormat[1]==0x66 && pInfo->dataFormat[2]==0x75 && pInfo->dataFormat[3]==0x20 && pInfo->formatVersion[0]==1 )) { udata_printError(ds, "uspoof_swap(): data format %02x.%02x.%02x.%02x " "(format version %02x %02x %02x %02x) is not recognized\n", pInfo->dataFormat[0], pInfo->dataFormat[1], pInfo->dataFormat[2], pInfo->dataFormat[3], pInfo->formatVersion[0], pInfo->formatVersion[1], pInfo->formatVersion[2], pInfo->formatVersion[3]); *status=U_UNSUPPORTED_ERROR; return 0; } // // Swap the data header. (This is the generic ICU Data Header, not the uspoof Specific // header). This swap also conveniently gets us // the size of the ICU d.h., which lets us locate the start // of the uspoof specific data. // int32_t headerSize=udata_swapDataHeader(ds, inData, length, outData, status); // // Get the Spoof Data Header, and check that it appears to be OK. // // const uint8_t *inBytes =(const uint8_t *)inData+headerSize; SpoofDataHeader *spoofDH = (SpoofDataHeader *)inBytes; if (ds->readUInt32(spoofDH->fMagic) != USPOOF_MAGIC || ds->readUInt32(spoofDH->fLength) < sizeof(SpoofDataHeader)) { udata_printError(ds, "uspoof_swap(): Spoof Data header is invalid.\n"); *status=U_UNSUPPORTED_ERROR; return 0; } // // Prefight operation? Just return the size // int32_t spoofDataLength = ds->readUInt32(spoofDH->fLength); int32_t totalSize = headerSize + spoofDataLength; if (length < 0) { return totalSize; } // // Check that length passed in is consistent with length from Spoof data header. // if (length < totalSize) { udata_printError(ds, "uspoof_swap(): too few bytes (%d after ICU Data header) for spoof data.\n", spoofDataLength); *status=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } // // Swap the Data. Do the data itself first, then the Spoof Data Header, because // we need to reference the header to locate the data, and an // inplace swap of the header leaves it unusable. // uint8_t *outBytes = (uint8_t *)outData + headerSize; SpoofDataHeader *outputDH = (SpoofDataHeader *)outBytes; int32_t sectionStart; int32_t sectionLength; // // If not swapping in place, zero out the output buffer before starting. // Gaps may exist between the individual sections, and these must be zeroed in // the output buffer. The simplest way to do that is to just zero the whole thing. // if (inBytes != outBytes) { uprv_memset(outBytes, 0, spoofDataLength); } // Confusables Keys Section (fCFUKeys) sectionStart = ds->readUInt32(spoofDH->fCFUKeys); sectionLength = ds->readUInt32(spoofDH->fCFUKeysSize) * 4; ds->swapArray32(ds, inBytes+sectionStart, sectionLength, outBytes+sectionStart, status); // String Index Section sectionStart = ds->readUInt32(spoofDH->fCFUStringIndex); sectionLength = ds->readUInt32(spoofDH->fCFUStringIndexSize) * 2; ds->swapArray16(ds, inBytes+sectionStart, sectionLength, outBytes+sectionStart, status); // String Table Section sectionStart = ds->readUInt32(spoofDH->fCFUStringTable); sectionLength = ds->readUInt32(spoofDH->fCFUStringTableLen) * 2; ds->swapArray16(ds, inBytes+sectionStart, sectionLength, outBytes+sectionStart, status); // String Lengths Section sectionStart = ds->readUInt32(spoofDH->fCFUStringLengths); sectionLength = ds->readUInt32(spoofDH->fCFUStringLengthsSize) * 4; ds->swapArray16(ds, inBytes+sectionStart, sectionLength, outBytes+sectionStart, status); // Any Case Trie sectionStart = ds->readUInt32(spoofDH->fAnyCaseTrie); sectionLength = ds->readUInt32(spoofDH->fAnyCaseTrieLength); utrie2_swap(ds, inBytes+sectionStart, sectionLength, outBytes+sectionStart, status); // Lower Case Trie sectionStart = ds->readUInt32(spoofDH->fLowerCaseTrie); sectionLength = ds->readUInt32(spoofDH->fLowerCaseTrieLength); utrie2_swap(ds, inBytes+sectionStart, sectionLength, outBytes+sectionStart, status); // Script Sets. The data is an array of int32_t sectionStart = ds->readUInt32(spoofDH->fScriptSets); sectionLength = ds->readUInt32(spoofDH->fScriptSetsLength) * 4; ds->swapArray32(ds, inBytes+sectionStart, sectionLength, outBytes+sectionStart, status); // And, last, swap the header itself. // int32_t fMagic // swap this // uint8_t fFormatVersion[4] // Do not swap this // int32_t all the rest // Swap the rest, all is 32 bit stuff. // uint32_t magic = ds->readUInt32(spoofDH->fMagic); ds->writeUInt32((uint32_t *)&outputDH->fMagic, magic); ds->swapArray32(ds, &spoofDH->fLength, sizeof(SpoofDataHeader)-8, &outputDH->fLength, status); return totalSize; } #endif