/* ******************************************************************************* * * Copyright (C) 2009-2010, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: n2builder.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2009nov25 * created by: Markus W. Scherer * * Builds Normalizer2 data and writes a binary .nrm file. * For the file format see source/common/normalizer2impl.h. */ #include "unicode/utypes.h" #include "unicode/std_string.h" // U_HAVE_STD_STRING, #include <string> #include "n2builder.h" // UCONFIG_NO_NORMALIZATION=1 if !U_HAVE_STD_STRING #include <stdio.h> #include <stdlib.h> #include <string.h> #if U_HAVE_STD_STRING #include <vector> #endif #include "unicode/errorcode.h" #include "unicode/localpointer.h" #include "unicode/putil.h" #include "unicode/udata.h" #include "unicode/uniset.h" #include "unicode/unistr.h" #include "unicode/ustring.h" #include "hash.h" #include "normalizer2impl.h" #include "toolutil.h" #include "unewdata.h" #include "utrie2.h" #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) #if !UCONFIG_NO_NORMALIZATION /* UDataInfo cf. udata.h */ static UDataInfo dataInfo={ sizeof(UDataInfo), 0, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, U_SIZEOF_UCHAR, 0, { 0x4e, 0x72, 0x6d, 0x32 }, /* dataFormat="Nrm2" */ { 1, 0, 0, 0 }, /* formatVersion */ { 5, 2, 0, 0 } /* dataVersion (Unicode version) */ }; U_NAMESPACE_BEGIN class HangulIterator { public: struct Range { UChar32 start, limit; uint16_t norm16; }; HangulIterator() : rangeIndex(0) {} const Range *nextRange() { if(rangeIndex<LENGTHOF(ranges)) { return ranges+rangeIndex++; } else { return NULL; } } void reset() { rangeIndex=0; } private: static const Range ranges[4]; int32_t rangeIndex; }; const HangulIterator::Range HangulIterator::ranges[4]={ { Hangul::JAMO_L_BASE, Hangul::JAMO_L_BASE+Hangul::JAMO_L_COUNT, 1 }, { Hangul::JAMO_V_BASE, Hangul::JAMO_V_BASE+Hangul::JAMO_V_COUNT, Normalizer2Impl::JAMO_VT }, // JAMO_T_BASE+1: not U+11A7 { Hangul::JAMO_T_BASE+1, Hangul::JAMO_T_BASE+Hangul::JAMO_T_COUNT, Normalizer2Impl::JAMO_VT }, { Hangul::HANGUL_BASE, Hangul::HANGUL_BASE+Hangul::HANGUL_COUNT, 0 }, // will become minYesNo }; struct CompositionPair { CompositionPair(UChar32 t, UChar32 c) : trail(t), composite(c) {} UChar32 trail, composite; }; struct Norm { enum MappingType { NONE, REMOVED, ROUND_TRIP, ONE_WAY }; UBool hasMapping() const { return mappingType>REMOVED; } // Requires hasMapping() and well-formed mapping. void setMappingCP() { UChar32 c; if(!mapping->isEmpty() && mapping->length()==U16_LENGTH(c=mapping->char32At(0))) { mappingCP=c; } else { mappingCP=U_SENTINEL; } } UnicodeString *mapping; UChar32 mappingCP; // >=0 if mapping to 1 code point int32_t mappingPhase; MappingType mappingType; U_STD_NSQ vector<CompositionPair> *compositions; uint8_t cc; UBool combinesBack; UBool hasNoCompBoundaryAfter; enum OffsetType { OFFSET_NONE, OFFSET_MAYBE_YES, OFFSET_YES_YES, OFFSET_YES_NO, OFFSET_NO_NO, OFFSET_DELTA }; enum { OFFSET_SHIFT=4, OFFSET_MASK=(1<<OFFSET_SHIFT)-1 }; int32_t offset; }; class Normalizer2DBEnumerator { public: Normalizer2DBEnumerator(Normalizer2DataBuilder &b) : builder(b) {} virtual ~Normalizer2DBEnumerator() {} virtual UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) = 0; Normalizer2DBEnumerator *ptr() { return this; } protected: Normalizer2DataBuilder &builder; }; U_CDECL_BEGIN static UBool U_CALLCONV enumRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t value) { return ((Normalizer2DBEnumerator *)context)->rangeHandler(start, end, value); } U_CDECL_END Normalizer2DataBuilder::Normalizer2DataBuilder(UErrorCode &errorCode) : phase(0), overrideHandling(OVERRIDE_PREVIOUS), optimization(OPTIMIZE_NORMAL) { memset(unicodeVersion, 0, sizeof(unicodeVersion)); normTrie=utrie2_open(0, 0, &errorCode); normMem=utm_open("gennorm2 normalization structs", 10000, 0x110100, sizeof(Norm)); norms=allocNorm(); // unused Norm struct at index 0 memset(indexes, 0, sizeof(indexes)); } Normalizer2DataBuilder::~Normalizer2DataBuilder() { utrie2_close(normTrie); int32_t normsLength=utm_countItems(normMem); for(int32_t i=1; i<normsLength; ++i) { delete norms[i].mapping; delete norms[i].compositions; } utm_close(normMem); utrie2_close(norm16Trie); } void Normalizer2DataBuilder::setUnicodeVersion(const char *v) { u_versionFromString(unicodeVersion, v); } Norm *Normalizer2DataBuilder::allocNorm() { Norm *p=(Norm *)utm_alloc(normMem); norms=(Norm *)utm_getStart(normMem); // in case it got reallocated return p; } /* get an existing Norm unit */ Norm *Normalizer2DataBuilder::getNorm(UChar32 c) { uint32_t i=utrie2_get32(normTrie, c); if(i==0) { return NULL; } return norms+i; } const Norm &Normalizer2DataBuilder::getNormRef(UChar32 c) const { return norms[utrie2_get32(normTrie, c)]; } /* * get or create a Norm unit; * get or create the intermediate trie entries for it as well */ Norm *Normalizer2DataBuilder::createNorm(UChar32 c) { uint32_t i=utrie2_get32(normTrie, c); if(i!=0) { return norms+i; } else { /* allocate Norm */ Norm *p=allocNorm(); IcuToolErrorCode errorCode("gennorm2/createNorm()"); utrie2_set32(normTrie, c, (uint32_t)(p-norms), errorCode); return p; } } Norm *Normalizer2DataBuilder::checkNormForMapping(Norm *p, UChar32 c) { if(p!=NULL) { if(p->mappingType!=Norm::NONE) { if( overrideHandling==OVERRIDE_NONE || (overrideHandling==OVERRIDE_PREVIOUS && p->mappingPhase==phase) ) { fprintf(stderr, "error in gennorm2 phase %d: " "not permitted to override mapping for U+%04lX from phase %d\n", (int)phase, (long)c, (int)p->mappingPhase); exit(U_INVALID_FORMAT_ERROR); } delete p->mapping; p->mapping=NULL; } p->mappingPhase=phase; } return p; } void Normalizer2DataBuilder::setOverrideHandling(OverrideHandling oh) { overrideHandling=oh; ++phase; } void Normalizer2DataBuilder::setCC(UChar32 c, uint8_t cc) { createNorm(c)->cc=cc; } uint8_t Normalizer2DataBuilder::getCC(UChar32 c) const { return getNormRef(c).cc; } static UBool isWellFormed(const UnicodeString &s) { UErrorCode errorCode=U_ZERO_ERROR; u_strToUTF8(NULL, 0, NULL, s.getBuffer(), s.length(), &errorCode); return U_SUCCESS(errorCode) || errorCode==U_BUFFER_OVERFLOW_ERROR; } void Normalizer2DataBuilder::setOneWayMapping(UChar32 c, const UnicodeString &m) { if(!isWellFormed(m)) { fprintf(stderr, "error in gennorm2 phase %d: " "illegal one-way mapping from U+%04lX to malformed string\n", (int)phase, (long)c); exit(U_INVALID_FORMAT_ERROR); } Norm *p=checkNormForMapping(createNorm(c), c); p->mapping=new UnicodeString(m); p->mappingType=Norm::ONE_WAY; p->setMappingCP(); } void Normalizer2DataBuilder::setRoundTripMapping(UChar32 c, const UnicodeString &m) { if(U_IS_SURROGATE(c)) { fprintf(stderr, "error in gennorm2 phase %d: " "illegal round-trip mapping from surrogate code point U+%04lX\n", (int)phase, (long)c); exit(U_INVALID_FORMAT_ERROR); } if(!isWellFormed(m)) { fprintf(stderr, "error in gennorm2 phase %d: " "illegal round-trip mapping from U+%04lX to malformed string\n", (int)phase, (long)c); exit(U_INVALID_FORMAT_ERROR); } int32_t numCP=u_countChar32(m.getBuffer(), m.length()); if(numCP!=2) { fprintf(stderr, "error in gennorm2 phase %d: " "illegal round-trip mapping from U+%04lX to %d!=2 code points\n", (int)phase, (long)c, (int)numCP); exit(U_INVALID_FORMAT_ERROR); } Norm *p=checkNormForMapping(createNorm(c), c); p->mapping=new UnicodeString(m); p->mappingType=Norm::ROUND_TRIP; p->mappingCP=U_SENTINEL; } void Normalizer2DataBuilder::removeMapping(UChar32 c) { Norm *p=checkNormForMapping(getNorm(c), c); if(p!=NULL) { p->mappingType=Norm::REMOVED; } } class CompositionBuilder : public Normalizer2DBEnumerator { public: CompositionBuilder(Normalizer2DataBuilder &b) : Normalizer2DBEnumerator(b) {} virtual UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) { builder.addComposition(start, end, value); return TRUE; } }; void Normalizer2DataBuilder::addComposition(UChar32 start, UChar32 end, uint32_t value) { if(norms[value].mappingType==Norm::ROUND_TRIP) { if(start!=end) { fprintf(stderr, "gennorm2 error: same round-trip mapping for " "more than 1 code point U+%04lX..U+%04lX\n", (long)start, (long)end); exit(U_INVALID_FORMAT_ERROR); } if(norms[value].cc!=0) { fprintf(stderr, "gennorm2 error: " "U+%04lX has a round-trip mapping and ccc!=0, " "not possible in Unicode normalization\n", (long)start); exit(U_INVALID_FORMAT_ERROR); } // setRoundTripMapping() ensured that there are exactly two code points. const UnicodeString &m=*norms[value].mapping; UChar32 lead=m.char32At(0); UChar32 trail=m.char32At(m.length()-1); if(getCC(lead)!=0) { fprintf(stderr, "gennorm2 error: " "U+%04lX's round-trip mapping's starter U+%04lX has ccc!=0, " "not possible in Unicode normalization\n", (long)start, (long)lead); exit(U_INVALID_FORMAT_ERROR); } // Flag for trailing character. createNorm(trail)->combinesBack=TRUE; // Insert (trail, composite) pair into compositions list for the lead character. CompositionPair pair(trail, start); Norm *leadNorm=createNorm(lead); U_STD_NSQ vector<CompositionPair> *compositions=leadNorm->compositions; if(compositions==NULL) { compositions=leadNorm->compositions=new U_STD_NSQ vector<CompositionPair>; compositions->push_back(pair); } else { // Insertion sort, and check for duplicate trail characters. U_STD_NSQ vector<CompositionPair>::iterator it; for(it=compositions->begin(); it!=compositions->end(); ++it) { if(trail==it->trail) { fprintf(stderr, "gennorm2 error: same round-trip mapping for " "more than 1 code point (e.g., U+%04lX) to U+%04lX + U+%04lX\n", (long)start, (long)lead, (long)trail); exit(U_INVALID_FORMAT_ERROR); } if(trail<it->trail) { break; } } compositions->insert(it, pair); } } } UBool Normalizer2DataBuilder::combinesWithCCBetween(const Norm &norm, uint8_t lowCC, uint8_t highCC) const { const U_STD_NSQ vector<CompositionPair> *compositions=norm.compositions; if(compositions!=NULL && (highCC-lowCC)>=2) { U_STD_NSQ vector<CompositionPair>::const_iterator it; for(it=compositions->begin(); it!=compositions->end(); ++it) { uint8_t trailCC=getCC(it->trail); if(lowCC<trailCC && trailCC<highCC) { return TRUE; } } } return FALSE; } UChar32 Normalizer2DataBuilder::combine(const Norm &norm, UChar32 trail) const { const U_STD_NSQ vector<CompositionPair> *compositions=norm.compositions; if(compositions!=NULL) { U_STD_NSQ vector<CompositionPair>::const_iterator it; for(it=compositions->begin(); it!=compositions->end(); ++it) { if(trail==it->trail) { return it->composite; } if(trail<it->trail) { break; } } } return U_SENTINEL; } class Decomposer : public Normalizer2DBEnumerator { public: Decomposer(Normalizer2DataBuilder &b) : Normalizer2DBEnumerator(b), didDecompose(FALSE) {} virtual UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) { didDecompose|=builder.decompose(start, end, value); return TRUE; } UBool didDecompose; }; UBool Normalizer2DataBuilder::decompose(UChar32 start, UChar32 end, uint32_t value) { if(norms[value].hasMapping()) { const UnicodeString &m=*norms[value].mapping; UnicodeString *decomposed=NULL; const UChar *s=m.getBuffer(); int32_t length=m.length(); int32_t prev, i=0; UChar32 c; while(i<length) { prev=i; U16_NEXT(s, i, length, c); if(start<=c && c<=end) { fprintf(stderr, "gennorm2 error: U+%04lX maps to itself directly or indirectly\n", (long)c); exit(U_INVALID_FORMAT_ERROR); } const Norm &cNorm=getNormRef(c); if(cNorm.hasMapping()) { if(norms[value].mappingType==Norm::ROUND_TRIP) { if(prev==0) { if(cNorm.mappingType!=Norm::ROUND_TRIP) { fprintf(stderr, "gennorm2 error: " "U+%04lX's round-trip mapping's starter " "U+%04lX one-way-decomposes, " "not possible in Unicode normalization\n", (long)start, (long)c); exit(U_INVALID_FORMAT_ERROR); } uint8_t myTrailCC=getCC(m.char32At(i)); UChar32 cTrailChar=cNorm.mapping->char32At(cNorm.mapping->length()-1); uint8_t cTrailCC=getCC(cTrailChar); if(cTrailCC>myTrailCC) { fprintf(stderr, "gennorm2 error: " "U+%04lX's round-trip mapping's starter " "U+%04lX decomposes and the " "inner/earlier tccc=%hu > outer/following tccc=%hu, " "not possible in Unicode normalization\n", (long)start, (long)c, (short)cTrailCC, (short)myTrailCC); exit(U_INVALID_FORMAT_ERROR); } } else { fprintf(stderr, "gennorm2 error: " "U+%04lX's round-trip mapping's non-starter " "U+%04lX decomposes, " "not possible in Unicode normalization\n", (long)start, (long)c); exit(U_INVALID_FORMAT_ERROR); } } if(decomposed==NULL) { decomposed=new UnicodeString(m, 0, prev); } decomposed->append(*cNorm.mapping); } else if(Hangul::isHangul(c)) { UChar buffer[3]; int32_t hangulLength=Hangul::decompose(c, buffer); if(norms[value].mappingType==Norm::ROUND_TRIP && prev!=0) { fprintf(stderr, "gennorm2 error: " "U+%04lX's round-trip mapping's non-starter " "U+%04lX decomposes, " "not possible in Unicode normalization\n", (long)start, (long)c); exit(U_INVALID_FORMAT_ERROR); } if(decomposed==NULL) { decomposed=new UnicodeString(m, 0, prev); } decomposed->append(buffer, hangulLength); } else if(decomposed!=NULL) { decomposed->append(m, prev, i-prev); } } if(decomposed!=NULL) { delete norms[value].mapping; norms[value].mapping=decomposed; // Not norms[value].setMappingCP(); because the original mapping // is most likely to be encodable as a delta. return TRUE; } } return FALSE; } class BuilderReorderingBuffer { public: BuilderReorderingBuffer() : fLength(0), fLastStarterIndex(-1), fDidReorder(FALSE) {} void reset() { fLength=0; fLastStarterIndex=-1; fDidReorder=FALSE; } int32_t length() const { return fLength; } UBool isEmpty() const { return fLength==0; } int32_t lastStarterIndex() const { return fLastStarterIndex; } UChar32 charAt(int32_t i) const { return fArray[i]>>8; } uint8_t ccAt(int32_t i) const { return (uint8_t)fArray[i]; } UBool didReorder() const { return fDidReorder; } void append(UChar32 c, uint8_t cc) { if(cc==0 || fLength==0 || ccAt(fLength-1)<=cc) { if(cc==0) { fLastStarterIndex=fLength; } fArray[fLength++]=(c<<8)|cc; return; } // Let this character bubble back to its canonical order. int32_t i=fLength-1; while(i>fLastStarterIndex && ccAt(i)>cc) { --i; } ++i; // after the last starter or prevCC<=cc // Move this and the following characters forward one to make space. for(int32_t j=fLength; i<j; --j) { fArray[j]=fArray[j-1]; } fArray[i]=(c<<8)|cc; ++fLength; fDidReorder=TRUE; } void toString(UnicodeString &dest) { dest.remove(); for(int32_t i=0; i<fLength; ++i) { dest.append(charAt(i)); } } void setComposite(UChar32 composite, int32_t combMarkIndex) { fArray[fLastStarterIndex]=composite<<8; // Remove the combining mark that contributed to the composite. --fLength; while(combMarkIndex<fLength) { fArray[combMarkIndex]=fArray[combMarkIndex+1]; ++combMarkIndex; } } private: int32_t fArray[Normalizer2Impl::MAPPING_LENGTH_MASK]; int32_t fLength; int32_t fLastStarterIndex; UBool fDidReorder; }; void Normalizer2DataBuilder::reorder(Norm *p, BuilderReorderingBuffer &buffer) { UnicodeString &m=*p->mapping; int32_t length=m.length(); if(length>Normalizer2Impl::MAPPING_LENGTH_MASK) { return; // writeMapping() will complain about it and print the code point. } const UChar *s=m.getBuffer(); int32_t i=0; UChar32 c; while(i<length) { U16_NEXT(s, i, length, c); buffer.append(c, getCC(c)); } if(buffer.didReorder()) { buffer.toString(m); } } UBool Normalizer2DataBuilder::hasNoCompBoundaryAfter(BuilderReorderingBuffer &buffer) { if(buffer.isEmpty()) { return TRUE; // maps-to-empty string is no boundary of any kind } int32_t lastStarterIndex=buffer.lastStarterIndex(); if(lastStarterIndex<0) { return TRUE; // no starter } UChar32 starter=buffer.charAt(lastStarterIndex); if( Hangul::isJamoL(starter) || (Hangul::isJamoV(starter) && 0<lastStarterIndex && Hangul::isJamoL(buffer.charAt(lastStarterIndex-1))) ) { // A Jamo leading consonant or an LV pair combines-forward if it is at the end, // otherwise it is blocked. return lastStarterIndex==buffer.length()-1; } // no Hangul in fully decomposed mapping const Norm *starterNorm=&getNormRef(starter); if(starterNorm->compositions==NULL) { return FALSE; // the last starter does not combine forward } // Compose as far as possible, and see if further compositions are possible. uint8_t prevCC=0; for(int32_t combMarkIndex=lastStarterIndex+1; combMarkIndex<buffer.length();) { uint8_t cc=buffer.ccAt(combMarkIndex); // !=0 because after last starter if(combinesWithCCBetween(*starterNorm, prevCC, cc)) { return TRUE; } if( prevCC<cc && (starter=combine(*starterNorm, buffer.charAt(combMarkIndex)))>=0 ) { buffer.setComposite(starter, combMarkIndex); starterNorm=&getNormRef(starter); if(starterNorm->compositions==NULL) { return FALSE; // the composite does not combine further } } else { prevCC=cc; ++combMarkIndex; } } // TRUE if the final, forward-combining starter is at the end. return prevCC==0; } // Requires p->hasMapping(). void Normalizer2DataBuilder::writeMapping(UChar32 c, const Norm *p, UnicodeString &dataString) { UnicodeString &m=*p->mapping; int32_t length=m.length(); if(length>Normalizer2Impl::MAPPING_LENGTH_MASK) { fprintf(stderr, "gennorm2 error: " "mapping for U+%04lX longer than maximum of %d\n", (long)c, Normalizer2Impl::MAPPING_LENGTH_MASK); exit(U_INVALID_FORMAT_ERROR); } int32_t leadCC, trailCC; if(length==0) { leadCC=trailCC=0; } else { leadCC=getCC(m.char32At(0)); trailCC=getCC(m.char32At(length-1)); } if(c<Normalizer2Impl::MIN_CCC_LCCC_CP && (p->cc!=0 || leadCC!=0)) { fprintf(stderr, "gennorm2 error: " "U+%04lX below U+0300 has ccc!=0 or lccc!=0, not supported by ICU\n", (long)c); exit(U_INVALID_FORMAT_ERROR); } int32_t firstUnit=length|(trailCC<<8); int32_t secondUnit=p->cc|(leadCC<<8); if(secondUnit!=0) { firstUnit|=Normalizer2Impl::MAPPING_HAS_CCC_LCCC_WORD; } if(p->compositions!=NULL) { firstUnit|=Normalizer2Impl::MAPPING_PLUS_COMPOSITION_LIST; } if(p->hasNoCompBoundaryAfter) { firstUnit|=Normalizer2Impl::MAPPING_NO_COMP_BOUNDARY_AFTER; } dataString.append((UChar)firstUnit); if(secondUnit!=0) { dataString.append((UChar)secondUnit); } dataString.append(m); } // Requires p->compositions!=NULL. void Normalizer2DataBuilder::writeCompositions(UChar32 c, const Norm *p, UnicodeString &dataString) { if(p->cc!=0) { fprintf(stderr, "gennorm2 error: " "U+%04lX combines-forward and has ccc!=0, not possible in Unicode normalization\n", (long)c); exit(U_INVALID_FORMAT_ERROR); } int32_t length=p->compositions->size(); for(int32_t i=0; i<length; ++i) { CompositionPair &pair=p->compositions->at(i); // 22 bits for the composite character and whether it combines forward. UChar32 compositeAndFwd=pair.composite<<1; if(getNormRef(pair.composite).compositions!=NULL) { compositeAndFwd|=1; // The composite character also combines-forward. } // Encode most pairs in two units and some in three. int32_t firstUnit, secondUnit, thirdUnit; if(pair.trail<Normalizer2Impl::COMP_1_TRAIL_LIMIT) { if(compositeAndFwd<=0xffff) { firstUnit=pair.trail<<1; secondUnit=compositeAndFwd; thirdUnit=-1; } else { firstUnit=(pair.trail<<1)|Normalizer2Impl::COMP_1_TRIPLE; secondUnit=compositeAndFwd>>16; thirdUnit=compositeAndFwd; } } else { firstUnit=(Normalizer2Impl::COMP_1_TRAIL_LIMIT+ (pair.trail>>Normalizer2Impl::COMP_1_TRAIL_SHIFT))| Normalizer2Impl::COMP_1_TRIPLE; secondUnit=(pair.trail<<Normalizer2Impl::COMP_2_TRAIL_SHIFT)| (compositeAndFwd>>16); thirdUnit=compositeAndFwd; } // Set the high bit of the first unit if this is the last composition pair. if(i==(length-1)) { firstUnit|=Normalizer2Impl::COMP_1_LAST_TUPLE; } dataString.append((UChar)firstUnit).append((UChar)secondUnit); if(thirdUnit>=0) { dataString.append((UChar)thirdUnit); } } } class ExtraDataWriter : public Normalizer2DBEnumerator { public: ExtraDataWriter(Normalizer2DataBuilder &b) : Normalizer2DBEnumerator(b), yesYesCompositions(1000, (UChar32)0xffff, 2), // 0=inert, 1=Jamo L, 2=start of compositions yesNoData(1000, (UChar32)0, 1) {} // 0=Hangul, 1=start of normal data virtual UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) { if(value!=0) { if(start!=end) { fprintf(stderr, "gennorm2 error: unexpected shared data for " "multiple code points U+%04lX..U+%04lX\n", (long)start, (long)end); exit(U_INTERNAL_PROGRAM_ERROR); } builder.writeExtraData(start, value, *this); } return TRUE; } UnicodeString maybeYesCompositions; UnicodeString yesYesCompositions; UnicodeString yesNoData; UnicodeString noNoMappings; Hashtable previousNoNoMappings; // If constructed in runtime code, pass in UErrorCode. }; void Normalizer2DataBuilder::writeExtraData(UChar32 c, uint32_t value, ExtraDataWriter &writer) { Norm *p=norms+value; if(p->combinesBack) { if(p->hasMapping()) { fprintf(stderr, "gennorm2 error: " "U+%04lX combines-back and decomposes, not possible in Unicode normalization\n", (long)c); exit(U_INVALID_FORMAT_ERROR); } if(p->compositions!=NULL) { p->offset= (writer.maybeYesCompositions.length()<<Norm::OFFSET_SHIFT)| Norm::OFFSET_MAYBE_YES; writeCompositions(c, p, writer.maybeYesCompositions); } } else if(!p->hasMapping()) { if(p->compositions!=NULL) { p->offset= (writer.yesYesCompositions.length()<<Norm::OFFSET_SHIFT)| Norm::OFFSET_YES_YES; writeCompositions(c, p, writer.yesYesCompositions); } } else if(p->mappingType==Norm::ROUND_TRIP) { p->offset= (writer.yesNoData.length()<<Norm::OFFSET_SHIFT)| Norm::OFFSET_YES_NO; writeMapping(c, p, writer.yesNoData); if(p->compositions!=NULL) { writeCompositions(c, p, writer.yesNoData); } } else /* one-way */ { if(p->compositions!=NULL) { fprintf(stderr, "gennorm2 error: " "U+%04lX combines-forward and has a one-way mapping, " "not possible in Unicode normalization\n", (long)c); exit(U_INVALID_FORMAT_ERROR); } if(p->cc==0 && optimization!=OPTIMIZE_FAST) { // Try a compact, algorithmic encoding. // Only for ccc=0, because we can't store additional information. if(p->mappingCP>=0) { int32_t delta=p->mappingCP-c; if(-Normalizer2Impl::MAX_DELTA<=delta && delta<=Normalizer2Impl::MAX_DELTA) { p->offset=(delta<<Norm::OFFSET_SHIFT)|Norm::OFFSET_DELTA; } } } if(p->offset==0) { int32_t oldNoNoLength=writer.noNoMappings.length(); writeMapping(c, p, writer.noNoMappings); UnicodeString newMapping=writer.noNoMappings.tempSubString(oldNoNoLength); int32_t previousOffset=writer.previousNoNoMappings.geti(newMapping); if(previousOffset!=0) { // Duplicate, remove the new units and point to the old ones. writer.noNoMappings.truncate(oldNoNoLength); p->offset= ((previousOffset-1)<<Norm::OFFSET_SHIFT)| Norm::OFFSET_NO_NO; } else { // Enter this new mapping into the hashtable, avoiding value 0 which is "not found". IcuToolErrorCode errorCode("gennorm2/writeExtraData()/Hashtable.puti()"); writer.previousNoNoMappings.puti(newMapping, oldNoNoLength+1, errorCode); p->offset= (oldNoNoLength<<Norm::OFFSET_SHIFT)| Norm::OFFSET_NO_NO; } } } } class Norm16Writer : public Normalizer2DBEnumerator { public: Norm16Writer(Normalizer2DataBuilder &b) : Normalizer2DBEnumerator(b) {} virtual UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) { builder.writeNorm16(start, end, value); return TRUE; } }; void Normalizer2DataBuilder::writeNorm16(UChar32 start, UChar32 end, uint32_t value) { if(value!=0) { const Norm *p=norms+value; int32_t offset=p->offset>>Norm::OFFSET_SHIFT; int32_t norm16=0; UBool isDecompNo=FALSE; UBool isCompNoMaybe=FALSE; switch(p->offset&Norm::OFFSET_MASK) { case Norm::OFFSET_NONE: // No mapping, no compositions list. if(p->combinesBack) { norm16=Normalizer2Impl::MIN_NORMAL_MAYBE_YES+p->cc; isDecompNo=(UBool)(p->cc!=0); isCompNoMaybe=TRUE; } else if(p->cc!=0) { norm16=Normalizer2Impl::MIN_YES_YES_WITH_CC-1+p->cc; isDecompNo=isCompNoMaybe=TRUE; } break; case Norm::OFFSET_MAYBE_YES: norm16=indexes[Normalizer2Impl::IX_MIN_MAYBE_YES]+offset; isCompNoMaybe=TRUE; break; case Norm::OFFSET_YES_YES: norm16=offset; break; case Norm::OFFSET_YES_NO: norm16=indexes[Normalizer2Impl::IX_MIN_YES_NO]+offset; isDecompNo=TRUE; break; case Norm::OFFSET_NO_NO: norm16=indexes[Normalizer2Impl::IX_MIN_NO_NO]+offset; isDecompNo=isCompNoMaybe=TRUE; break; case Norm::OFFSET_DELTA: norm16=getCenterNoNoDelta()+offset; isDecompNo=isCompNoMaybe=TRUE; break; default: // Should not occur. exit(U_INTERNAL_PROGRAM_ERROR); } IcuToolErrorCode errorCode("gennorm2/writeNorm16()"); utrie2_setRange32(norm16Trie, start, end, (uint32_t)norm16, TRUE, errorCode); if(isDecompNo && start<indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]) { indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]=start; } if(isCompNoMaybe && start<indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]) { indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]=start; } } } void Normalizer2DataBuilder::setHangulData() { HangulIterator hi; const HangulIterator::Range *range; // Check that none of the Hangul/Jamo code points have data. while((range=hi.nextRange())!=NULL) { for(UChar32 c=range->start; c<range->limit; ++c) { if(utrie2_get32(norm16Trie, c)!=0) { fprintf(stderr, "gennorm2 error: " "illegal mapping/composition/ccc data for Hangul or Jamo U+%04lX\n", (long)c); exit(U_INVALID_FORMAT_ERROR); } } } // Set data for algorithmic runtime handling. IcuToolErrorCode errorCode("gennorm2/setHangulData()"); hi.reset(); while((range=hi.nextRange())!=NULL) { uint16_t norm16=range->norm16; if(norm16==0) { norm16=(uint16_t)indexes[Normalizer2Impl::IX_MIN_YES_NO]; // Hangul LV/LVT encoded as minYesNo if(range->start<indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]) { indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]=range->start; } } else { if(range->start<indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]) { // Jamo V/T are maybeYes indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]=range->start; } } utrie2_setRange32(norm16Trie, range->start, range->limit-1, norm16, TRUE, errorCode); errorCode.assertSuccess(); } } U_CDECL_BEGIN static UBool U_CALLCONV enumRangeMaxValue(const void *context, UChar32 /*start*/, UChar32 /*end*/, uint32_t value) { uint32_t *pMaxValue=(uint32_t *)context; if(value>*pMaxValue) { *pMaxValue=value; } return TRUE; } U_CDECL_END void Normalizer2DataBuilder::processData() { IcuToolErrorCode errorCode("gennorm2/processData()"); norm16Trie=utrie2_open(0, 0, errorCode); errorCode.assertSuccess(); utrie2_enum(normTrie, NULL, enumRangeHandler, CompositionBuilder(*this).ptr()); Decomposer decomposer(*this); do { decomposer.didDecompose=FALSE; utrie2_enum(normTrie, NULL, enumRangeHandler, &decomposer); } while(decomposer.didDecompose); BuilderReorderingBuffer buffer; int32_t normsLength=utm_countItems(normMem); for(int32_t i=1; i<normsLength; ++i) { if(norms[i].hasMapping()) { buffer.reset(); reorder(norms+i, buffer); norms[i].hasNoCompBoundaryAfter=hasNoCompBoundaryAfter(buffer); } } indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]=0x110000; indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]=0x110000; ExtraDataWriter extraDataWriter(*this); utrie2_enum(normTrie, NULL, enumRangeHandler, &extraDataWriter); extraData=extraDataWriter.maybeYesCompositions; extraData.append(extraDataWriter.yesYesCompositions). append(extraDataWriter.yesNoData). append(extraDataWriter.noNoMappings); // Pad to even length for 4-byte alignment of following data. if(extraData.length()&1) { extraData.append((UChar)0); } indexes[Normalizer2Impl::IX_MIN_YES_NO]= extraDataWriter.yesYesCompositions.length(); indexes[Normalizer2Impl::IX_MIN_NO_NO]= indexes[Normalizer2Impl::IX_MIN_YES_NO]+ extraDataWriter.yesNoData.length(); indexes[Normalizer2Impl::IX_LIMIT_NO_NO]= indexes[Normalizer2Impl::IX_MIN_NO_NO]+ extraDataWriter.noNoMappings.length(); indexes[Normalizer2Impl::IX_MIN_MAYBE_YES]= Normalizer2Impl::MIN_NORMAL_MAYBE_YES- extraDataWriter.maybeYesCompositions.length(); int32_t minNoNoDelta=getCenterNoNoDelta()-Normalizer2Impl::MAX_DELTA; if(indexes[Normalizer2Impl::IX_LIMIT_NO_NO]>minNoNoDelta) { fprintf(stderr, "gennorm2 error: " "data structure overflow, too much mapping composition data\n"); exit(U_BUFFER_OVERFLOW_ERROR); } utrie2_enum(normTrie, NULL, enumRangeHandler, Norm16Writer(*this).ptr()); setHangulData(); // Look for the "worst" norm16 value of any supplementary code point // corresponding to a lead surrogate, and set it as that surrogate's value. // Enables quick check inner loops to look at only code units. // // We could be more sophisticated: // We could collect a bit set for whether there are values in the different // norm16 ranges (yesNo, maybeYes, yesYesWithCC etc.) // and select the best value that only breaks the composition and/or decomposition // inner loops if necessary. // However, that seems like overkill for an optimization for supplementary characters. for(UChar lead=0xd800; lead<0xdc00; ++lead) { uint32_t maxValue=utrie2_get32(norm16Trie, lead); utrie2_enumForLeadSurrogate(norm16Trie, lead, NULL, enumRangeMaxValue, &maxValue); if( maxValue>=(uint32_t)indexes[Normalizer2Impl::IX_LIMIT_NO_NO] && maxValue>(uint32_t)indexes[Normalizer2Impl::IX_MIN_NO_NO] ) { // Set noNo ("worst" value) if it got into "less-bad" maybeYes or ccc!=0. // Otherwise it might end up at something like JAMO_VT which stays in // the inner decomposition quick check loop. maxValue=(uint32_t)indexes[Normalizer2Impl::IX_LIMIT_NO_NO]-1; } utrie2_set32ForLeadSurrogateCodeUnit(norm16Trie, lead, maxValue, errorCode); } // Adjust supplementary minimum code points to break quick check loops at their lead surrogates. // For an empty data file, minCP=0x110000 turns into 0xdc00 (first trail surrogate) // which is harmless. // As a result, the minimum code points are always BMP code points. int32_t minCP=indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]; if(minCP>=0x10000) { indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]=U16_LEAD(minCP); } minCP=indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]; if(minCP>=0x10000) { indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]=U16_LEAD(minCP); } } void Normalizer2DataBuilder::writeBinaryFile(const char *filename) { processData(); IcuToolErrorCode errorCode("gennorm2/writeBinaryFile()"); utrie2_freeze(norm16Trie, UTRIE2_16_VALUE_BITS, errorCode); int32_t norm16TrieLength=utrie2_serialize(norm16Trie, NULL, 0, errorCode); if(errorCode.get()!=U_BUFFER_OVERFLOW_ERROR) { fprintf(stderr, "gennorm2 error: unable to freeze/serialize the normalization trie - %s\n", errorCode.errorName()); exit(errorCode.reset()); } errorCode.reset(); LocalArray<uint8_t> norm16TrieBytes(new uint8_t[norm16TrieLength]); utrie2_serialize(norm16Trie, norm16TrieBytes.getAlias(), norm16TrieLength, errorCode); errorCode.assertSuccess(); int32_t offset=(int32_t)sizeof(indexes); indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET]=offset; offset+=norm16TrieLength; indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET]=offset; int32_t totalSize=offset+=extraData.length()*2; for(int32_t i=Normalizer2Impl::IX_RESERVED2_OFFSET; i<=Normalizer2Impl::IX_TOTAL_SIZE; ++i) { indexes[i]=totalSize; } if(beVerbose) { printf("size of normalization trie: %5ld bytes\n", (long)norm16TrieLength); printf("size of 16-bit extra data: %5ld uint16_t\n", (long)extraData.length()); printf("size of binary data file contents: %5ld bytes\n", (long)totalSize); printf("minDecompNoCodePoint: U+%04lX\n", (long)indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]); printf("minCompNoMaybeCodePoint: U+%04lX\n", (long)indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]); printf("minYesNo: 0x%04x\n", (int)indexes[Normalizer2Impl::IX_MIN_YES_NO]); printf("minNoNo: 0x%04x\n", (int)indexes[Normalizer2Impl::IX_MIN_NO_NO]); printf("limitNoNo: 0x%04x\n", (int)indexes[Normalizer2Impl::IX_LIMIT_NO_NO]); printf("minMaybeYes: 0x%04x\n", (int)indexes[Normalizer2Impl::IX_MIN_MAYBE_YES]); } memcpy(dataInfo.dataVersion, unicodeVersion, 4); UNewDataMemory *pData= udata_create(NULL, NULL, filename, &dataInfo, haveCopyright ? U_COPYRIGHT_STRING : NULL, errorCode); if(errorCode.isFailure()) { fprintf(stderr, "gennorm2 error: unable to create the output file %s - %s\n", filename, errorCode.errorName()); exit(errorCode.reset()); } udata_writeBlock(pData, indexes, sizeof(indexes)); udata_writeBlock(pData, norm16TrieBytes.getAlias(), norm16TrieLength); udata_writeUString(pData, extraData.getBuffer(), extraData.length()); int32_t writtenSize=udata_finish(pData, errorCode); if(errorCode.isFailure()) { fprintf(stderr, "gennorm2: error %s writing the output file\n", errorCode.errorName()); exit(errorCode.reset()); } if(writtenSize!=totalSize) { fprintf(stderr, "gennorm2 error: written size %ld != calculated size %ld\n", (long)writtenSize, (long)totalSize); exit(U_INTERNAL_PROGRAM_ERROR); } } U_NAMESPACE_END #endif /* #if !UCONFIG_NO_NORMALIZATION */ /* * Hey, Emacs, please set the following: * * Local Variables: * indent-tabs-mode: nil * End: */