/* * WPA Supplicant - Common definitions * Copyright (c) 2004-2008, Jouni Malinen <j@w1.fi> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Alternatively, this software may be distributed under the terms of BSD * license. * * See README and COPYING for more details. */ #ifndef DEFS_H #define DEFS_H #ifdef FALSE #undef FALSE #endif #ifdef TRUE #undef TRUE #endif typedef enum { FALSE = 0, TRUE = 1 } Boolean; #define WPA_CIPHER_NONE BIT(0) #define WPA_CIPHER_WEP40 BIT(1) #define WPA_CIPHER_WEP104 BIT(2) #define WPA_CIPHER_TKIP BIT(3) #define WPA_CIPHER_CCMP BIT(4) #ifdef CONFIG_IEEE80211W #define WPA_CIPHER_AES_128_CMAC BIT(5) #endif /* CONFIG_IEEE80211W */ #define WPA_KEY_MGMT_IEEE8021X BIT(0) #define WPA_KEY_MGMT_PSK BIT(1) #define WPA_KEY_MGMT_NONE BIT(2) #define WPA_KEY_MGMT_IEEE8021X_NO_WPA BIT(3) #define WPA_KEY_MGMT_WPA_NONE BIT(4) #define WPA_KEY_MGMT_FT_IEEE8021X BIT(5) #define WPA_KEY_MGMT_FT_PSK BIT(6) #define WPA_KEY_MGMT_IEEE8021X_SHA256 BIT(7) #define WPA_KEY_MGMT_PSK_SHA256 BIT(8) #define WPA_KEY_MGMT_WPS BIT(9) static inline int wpa_key_mgmt_wpa_ieee8021x(int akm) { return akm == WPA_KEY_MGMT_IEEE8021X || akm == WPA_KEY_MGMT_FT_IEEE8021X || akm == WPA_KEY_MGMT_IEEE8021X_SHA256; } static inline int wpa_key_mgmt_wpa_psk(int akm) { return akm == WPA_KEY_MGMT_PSK || akm == WPA_KEY_MGMT_FT_PSK || akm == WPA_KEY_MGMT_PSK_SHA256; } static inline int wpa_key_mgmt_ft(int akm) { return akm == WPA_KEY_MGMT_FT_PSK || akm == WPA_KEY_MGMT_FT_IEEE8021X; } static inline int wpa_key_mgmt_sha256(int akm) { return akm == WPA_KEY_MGMT_PSK_SHA256 || akm == WPA_KEY_MGMT_IEEE8021X_SHA256; } #define WPA_PROTO_WPA BIT(0) #define WPA_PROTO_RSN BIT(1) #define WPA_AUTH_ALG_OPEN BIT(0) #define WPA_AUTH_ALG_SHARED BIT(1) #define WPA_AUTH_ALG_LEAP BIT(2) typedef enum { WPA_ALG_NONE, WPA_ALG_WEP, WPA_ALG_TKIP, WPA_ALG_CCMP, WPA_ALG_IGTK, WPA_ALG_PMK } wpa_alg; typedef enum { CIPHER_NONE, CIPHER_WEP40, CIPHER_TKIP, CIPHER_CCMP, CIPHER_WEP104 } wpa_cipher; typedef enum { KEY_MGMT_802_1X, KEY_MGMT_PSK, KEY_MGMT_NONE, KEY_MGMT_802_1X_NO_WPA, KEY_MGMT_WPA_NONE, KEY_MGMT_FT_802_1X, KEY_MGMT_FT_PSK, KEY_MGMT_802_1X_SHA256, KEY_MGMT_PSK_SHA256, KEY_MGMT_WPS } wpa_key_mgmt; /** * enum wpa_states - wpa_supplicant state * * These enumeration values are used to indicate the current wpa_supplicant * state (wpa_s->wpa_state). The current state can be retrieved with * wpa_supplicant_get_state() function and the state can be changed by calling * wpa_supplicant_set_state(). In WPA state machine (wpa.c and preauth.c), the * wrapper functions wpa_sm_get_state() and wpa_sm_set_state() should be used * to access the state variable. */ typedef enum { /** * WPA_DISCONNECTED - Disconnected state * * This state indicates that client is not associated, but is likely to * start looking for an access point. This state is entered when a * connection is lost. */ WPA_DISCONNECTED, /** * WPA_INACTIVE - Inactive state (wpa_supplicant disabled) * * This state is entered if there are no enabled networks in the * configuration. wpa_supplicant is not trying to associate with a new * network and external interaction (e.g., ctrl_iface call to add or * enable a network) is needed to start association. */ WPA_INACTIVE, /** * WPA_SCANNING - Scanning for a network * * This state is entered when wpa_supplicant starts scanning for a * network. */ WPA_SCANNING, /** * WPA_ASSOCIATING - Trying to associate with a BSS/SSID * * This state is entered when wpa_supplicant has found a suitable BSS * to associate with and the driver is configured to try to associate * with this BSS in ap_scan=1 mode. When using ap_scan=2 mode, this * state is entered when the driver is configured to try to associate * with a network using the configured SSID and security policy. */ WPA_ASSOCIATING, /** * WPA_ASSOCIATED - Association completed * * This state is entered when the driver reports that association has * been successfully completed with an AP. If IEEE 802.1X is used * (with or without WPA/WPA2), wpa_supplicant remains in this state * until the IEEE 802.1X/EAPOL authentication has been completed. */ WPA_ASSOCIATED, /** * WPA_4WAY_HANDSHAKE - WPA 4-Way Key Handshake in progress * * This state is entered when WPA/WPA2 4-Way Handshake is started. In * case of WPA-PSK, this happens when receiving the first EAPOL-Key * frame after association. In case of WPA-EAP, this state is entered * when the IEEE 802.1X/EAPOL authentication has been completed. */ WPA_4WAY_HANDSHAKE, /** * WPA_GROUP_HANDSHAKE - WPA Group Key Handshake in progress * * This state is entered when 4-Way Key Handshake has been completed * (i.e., when the supplicant sends out message 4/4) and when Group * Key rekeying is started by the AP (i.e., when supplicant receives * message 1/2). */ WPA_GROUP_HANDSHAKE, /** * WPA_COMPLETED - All authentication completed * * This state is entered when the full authentication process is * completed. In case of WPA2, this happens when the 4-Way Handshake is * successfully completed. With WPA, this state is entered after the * Group Key Handshake; with IEEE 802.1X (non-WPA) connection is * completed after dynamic keys are received (or if not used, after * the EAP authentication has been completed). With static WEP keys and * plaintext connections, this state is entered when an association * has been completed. * * This state indicates that the supplicant has completed its * processing for the association phase and that data connection is * fully configured. */ WPA_COMPLETED #ifdef ANDROID /** * WPA_IDLE - Eeplicit disconnect was performed * * This state is entered when a disconnect command is issued to the * supplicant. In this case, the supplicant not only disassociates * from the current network, but it also stops trying to associate * with any AP until a subsequent reconnect or reassociate command * is issued. This state was added to distinguish it from the * WPA_DISCONNECTED state, which is now reserved for disconnects * that were not explicitly requested by a client. * This state is reported to clients, but it is not internally stored. */ , WPA_IDLE #endif /* ANDROID */ } wpa_states; #define MLME_SETPROTECTION_PROTECT_TYPE_NONE 0 #define MLME_SETPROTECTION_PROTECT_TYPE_RX 1 #define MLME_SETPROTECTION_PROTECT_TYPE_TX 2 #define MLME_SETPROTECTION_PROTECT_TYPE_RX_TX 3 #define MLME_SETPROTECTION_KEY_TYPE_GROUP 0 #define MLME_SETPROTECTION_KEY_TYPE_PAIRWISE 1 #endif /* DEFS_H */