// // Copyright 2010 The Android Open Source Project // #include <ui/InputReader.h> #include <utils/List.h> #include <gtest/gtest.h> #include <math.h> namespace android { // An arbitrary time value. static const nsecs_t ARBITRARY_TIME = 1234; // Arbitrary display properties. static const int32_t DISPLAY_ID = 0; static const int32_t DISPLAY_WIDTH = 480; static const int32_t DISPLAY_HEIGHT = 800; // Error tolerance for floating point assertions. static const float EPSILON = 0.001f; template<typename T> static inline T min(T a, T b) { return a < b ? a : b; } static inline float avg(float x, float y) { return (x + y) / 2; } // --- FakeInputReaderPolicy --- class FakeInputReaderPolicy : public InputReaderPolicyInterface { struct DisplayInfo { int32_t width; int32_t height; int32_t orientation; }; KeyedVector<int32_t, DisplayInfo> mDisplayInfos; bool mFilterTouchEvents; bool mFilterJumpyTouchEvents; KeyedVector<String8, Vector<VirtualKeyDefinition> > mVirtualKeyDefinitions; KeyedVector<String8, InputDeviceCalibration> mInputDeviceCalibrations; Vector<String8> mExcludedDeviceNames; protected: virtual ~FakeInputReaderPolicy() { } public: FakeInputReaderPolicy() : mFilterTouchEvents(false), mFilterJumpyTouchEvents(false) { } void removeDisplayInfo(int32_t displayId) { mDisplayInfos.removeItem(displayId); } void setDisplayInfo(int32_t displayId, int32_t width, int32_t height, int32_t orientation) { removeDisplayInfo(displayId); DisplayInfo info; info.width = width; info.height = height; info.orientation = orientation; mDisplayInfos.add(displayId, info); } void setFilterTouchEvents(bool enabled) { mFilterTouchEvents = enabled; } void setFilterJumpyTouchEvents(bool enabled) { mFilterJumpyTouchEvents = enabled; } void addInputDeviceCalibration(const String8& deviceName, const InputDeviceCalibration& calibration) { mInputDeviceCalibrations.add(deviceName, calibration); } void addInputDeviceCalibrationProperty(const String8& deviceName, const String8& key, const String8& value) { ssize_t index = mInputDeviceCalibrations.indexOfKey(deviceName); if (index < 0) { index = mInputDeviceCalibrations.add(deviceName, InputDeviceCalibration()); } mInputDeviceCalibrations.editValueAt(index).addProperty(key, value); } void addVirtualKeyDefinition(const String8& deviceName, const VirtualKeyDefinition& definition) { if (mVirtualKeyDefinitions.indexOfKey(deviceName) < 0) { mVirtualKeyDefinitions.add(deviceName, Vector<VirtualKeyDefinition>()); } mVirtualKeyDefinitions.editValueFor(deviceName).push(definition); } void addExcludedDeviceName(const String8& deviceName) { mExcludedDeviceNames.push(deviceName); } private: virtual bool getDisplayInfo(int32_t displayId, int32_t* width, int32_t* height, int32_t* orientation) { ssize_t index = mDisplayInfos.indexOfKey(displayId); if (index >= 0) { const DisplayInfo& info = mDisplayInfos.valueAt(index); if (width) { *width = info.width; } if (height) { *height = info.height; } if (orientation) { *orientation = info.orientation; } return true; } return false; } virtual bool filterTouchEvents() { return mFilterTouchEvents; } virtual bool filterJumpyTouchEvents() { return mFilterJumpyTouchEvents; } virtual void getVirtualKeyDefinitions(const String8& deviceName, Vector<VirtualKeyDefinition>& outVirtualKeyDefinitions) { ssize_t index = mVirtualKeyDefinitions.indexOfKey(deviceName); if (index >= 0) { outVirtualKeyDefinitions.appendVector(mVirtualKeyDefinitions.valueAt(index)); } } virtual void getInputDeviceCalibration(const String8& deviceName, InputDeviceCalibration& outCalibration) { ssize_t index = mInputDeviceCalibrations.indexOfKey(deviceName); if (index >= 0) { outCalibration = mInputDeviceCalibrations.valueAt(index); } } virtual void getExcludedDeviceNames(Vector<String8>& outExcludedDeviceNames) { outExcludedDeviceNames.appendVector(mExcludedDeviceNames); } }; // --- FakeInputDispatcher --- class FakeInputDispatcher : public InputDispatcherInterface { public: struct NotifyConfigurationChangedArgs { nsecs_t eventTime; }; struct NotifyKeyArgs { nsecs_t eventTime; int32_t deviceId; int32_t source; uint32_t policyFlags; int32_t action; int32_t flags; int32_t keyCode; int32_t scanCode; int32_t metaState; nsecs_t downTime; }; struct NotifyMotionArgs { nsecs_t eventTime; int32_t deviceId; int32_t source; uint32_t policyFlags; int32_t action; int32_t flags; int32_t metaState; int32_t edgeFlags; uint32_t pointerCount; Vector<int32_t> pointerIds; Vector<PointerCoords> pointerCoords; float xPrecision; float yPrecision; nsecs_t downTime; }; struct NotifySwitchArgs { nsecs_t when; int32_t switchCode; int32_t switchValue; uint32_t policyFlags; }; private: List<NotifyConfigurationChangedArgs> mNotifyConfigurationChangedArgs; List<NotifyKeyArgs> mNotifyKeyArgs; List<NotifyMotionArgs> mNotifyMotionArgs; List<NotifySwitchArgs> mNotifySwitchArgs; protected: virtual ~FakeInputDispatcher() { } public: FakeInputDispatcher() { } void assertNotifyConfigurationChangedWasCalled(NotifyConfigurationChangedArgs* outArgs = NULL) { ASSERT_FALSE(mNotifyConfigurationChangedArgs.empty()) << "Expected notifyConfigurationChanged() to have been called."; if (outArgs) { *outArgs = *mNotifyConfigurationChangedArgs.begin(); } mNotifyConfigurationChangedArgs.erase(mNotifyConfigurationChangedArgs.begin()); } void assertNotifyKeyWasCalled(NotifyKeyArgs* outArgs = NULL) { ASSERT_FALSE(mNotifyKeyArgs.empty()) << "Expected notifyKey() to have been called."; if (outArgs) { *outArgs = *mNotifyKeyArgs.begin(); } mNotifyKeyArgs.erase(mNotifyKeyArgs.begin()); } void assertNotifyKeyWasNotCalled() { ASSERT_TRUE(mNotifyKeyArgs.empty()) << "Expected notifyKey() to not have been called."; } void assertNotifyMotionWasCalled(NotifyMotionArgs* outArgs = NULL) { ASSERT_FALSE(mNotifyMotionArgs.empty()) << "Expected notifyMotion() to have been called."; if (outArgs) { *outArgs = *mNotifyMotionArgs.begin(); } mNotifyMotionArgs.erase(mNotifyMotionArgs.begin()); } void assertNotifyMotionWasNotCalled() { ASSERT_TRUE(mNotifyMotionArgs.empty()) << "Expected notifyMotion() to not have been called."; } void assertNotifySwitchWasCalled(NotifySwitchArgs* outArgs = NULL) { ASSERT_FALSE(mNotifySwitchArgs.empty()) << "Expected notifySwitch() to have been called."; if (outArgs) { *outArgs = *mNotifySwitchArgs.begin(); } mNotifySwitchArgs.erase(mNotifySwitchArgs.begin()); } private: virtual void notifyConfigurationChanged(nsecs_t eventTime) { NotifyConfigurationChangedArgs args; args.eventTime = eventTime; mNotifyConfigurationChangedArgs.push_back(args); } virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState, nsecs_t downTime) { NotifyKeyArgs args; args.eventTime = eventTime; args.deviceId = deviceId; args.source = source; args.policyFlags = policyFlags; args.action = action; args.flags = flags; args.keyCode = keyCode; args.scanCode = scanCode; args.metaState = metaState; args.downTime = downTime; mNotifyKeyArgs.push_back(args); } virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action, int32_t flags, int32_t metaState, int32_t edgeFlags, uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords, float xPrecision, float yPrecision, nsecs_t downTime) { NotifyMotionArgs args; args.eventTime = eventTime; args.deviceId = deviceId; args.source = source; args.policyFlags = policyFlags; args.action = action; args.flags = flags; args.metaState = metaState; args.edgeFlags = edgeFlags; args.pointerCount = pointerCount; args.pointerIds.clear(); args.pointerIds.appendArray(pointerIds, pointerCount); args.pointerCoords.clear(); args.pointerCoords.appendArray(pointerCoords, pointerCount); args.xPrecision = xPrecision; args.yPrecision = yPrecision; args.downTime = downTime; mNotifyMotionArgs.push_back(args); } virtual void notifySwitch(nsecs_t when, int32_t switchCode, int32_t switchValue, uint32_t policyFlags) { NotifySwitchArgs args; args.when = when; args.switchCode = switchCode; args.switchValue = switchValue; args.policyFlags = policyFlags; mNotifySwitchArgs.push_back(args); } virtual void dump(String8& dump) { ADD_FAILURE() << "Should never be called by input reader."; } virtual void dispatchOnce() { ADD_FAILURE() << "Should never be called by input reader."; } virtual int32_t injectInputEvent(const InputEvent* event, int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis) { ADD_FAILURE() << "Should never be called by input reader."; return INPUT_EVENT_INJECTION_FAILED; } virtual void setInputWindows(const Vector<InputWindow>& inputWindows) { ADD_FAILURE() << "Should never be called by input reader."; } virtual void setFocusedApplication(const InputApplication* inputApplication) { ADD_FAILURE() << "Should never be called by input reader."; } virtual void setInputDispatchMode(bool enabled, bool frozen) { ADD_FAILURE() << "Should never be called by input reader."; } virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel, bool monitor) { ADD_FAILURE() << "Should never be called by input reader."; return 0; } virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel) { ADD_FAILURE() << "Should never be called by input reader."; return 0; } }; // --- FakeEventHub --- class FakeEventHub : public EventHubInterface { struct KeyInfo { int32_t keyCode; uint32_t flags; }; struct Device { String8 name; uint32_t classes; KeyedVector<int, RawAbsoluteAxisInfo> axes; KeyedVector<int32_t, int32_t> keyCodeStates; KeyedVector<int32_t, int32_t> scanCodeStates; KeyedVector<int32_t, int32_t> switchStates; KeyedVector<int32_t, KeyInfo> keys; Device(const String8& name, uint32_t classes) : name(name), classes(classes) { } }; KeyedVector<int32_t, Device*> mDevices; Vector<String8> mExcludedDevices; List<RawEvent> mEvents; protected: virtual ~FakeEventHub() { for (size_t i = 0; i < mDevices.size(); i++) { delete mDevices.valueAt(i); } } public: FakeEventHub() { } void addDevice(int32_t deviceId, const String8& name, uint32_t classes) { Device* device = new Device(name, classes); mDevices.add(deviceId, device); enqueueEvent(ARBITRARY_TIME, deviceId, EventHubInterface::DEVICE_ADDED, 0, 0, 0, 0); } void removeDevice(int32_t deviceId) { delete mDevices.valueFor(deviceId); mDevices.removeItem(deviceId); enqueueEvent(ARBITRARY_TIME, deviceId, EventHubInterface::DEVICE_REMOVED, 0, 0, 0, 0); } void finishDeviceScan() { enqueueEvent(ARBITRARY_TIME, 0, EventHubInterface::FINISHED_DEVICE_SCAN, 0, 0, 0, 0); } void addAxis(int32_t deviceId, int axis, int32_t minValue, int32_t maxValue, int flat, int fuzz) { Device* device = getDevice(deviceId); RawAbsoluteAxisInfo info; info.valid = true; info.minValue = minValue; info.maxValue = maxValue; info.flat = flat; info.fuzz = fuzz; device->axes.add(axis, info); } void setKeyCodeState(int32_t deviceId, int32_t keyCode, int32_t state) { Device* device = getDevice(deviceId); device->keyCodeStates.replaceValueFor(keyCode, state); } void setScanCodeState(int32_t deviceId, int32_t scanCode, int32_t state) { Device* device = getDevice(deviceId); device->scanCodeStates.replaceValueFor(scanCode, state); } void setSwitchState(int32_t deviceId, int32_t switchCode, int32_t state) { Device* device = getDevice(deviceId); device->switchStates.replaceValueFor(switchCode, state); } void addKey(int32_t deviceId, int32_t scanCode, int32_t keyCode, uint32_t flags) { Device* device = getDevice(deviceId); KeyInfo info; info.keyCode = keyCode; info.flags = flags; device->keys.add(scanCode, info); } Vector<String8>& getExcludedDevices() { return mExcludedDevices; } void enqueueEvent(nsecs_t when, int32_t deviceId, int32_t type, int32_t scanCode, int32_t keyCode, int32_t value, uint32_t flags) { RawEvent event; event.when = when; event.deviceId = deviceId; event.type = type; event.scanCode = scanCode; event.keyCode = keyCode; event.value = value; event.flags = flags; mEvents.push_back(event); } void assertQueueIsEmpty() { ASSERT_EQ(size_t(0), mEvents.size()) << "Expected the event queue to be empty (fully consumed)."; } private: Device* getDevice(int32_t deviceId) const { ssize_t index = mDevices.indexOfKey(deviceId); return index >= 0 ? mDevices.valueAt(index) : NULL; } virtual uint32_t getDeviceClasses(int32_t deviceId) const { Device* device = getDevice(deviceId); return device ? device->classes : 0; } virtual String8 getDeviceName(int32_t deviceId) const { Device* device = getDevice(deviceId); return device ? device->name : String8("unknown"); } virtual status_t getAbsoluteAxisInfo(int32_t deviceId, int axis, RawAbsoluteAxisInfo* outAxisInfo) const { Device* device = getDevice(deviceId); if (device) { ssize_t index = device->axes.indexOfKey(axis); if (index >= 0) { *outAxisInfo = device->axes.valueAt(index); return OK; } } return -1; } virtual status_t scancodeToKeycode(int32_t deviceId, int scancode, int32_t* outKeycode, uint32_t* outFlags) const { Device* device = getDevice(deviceId); if (device) { ssize_t index = device->keys.indexOfKey(scancode); if (index >= 0) { if (outKeycode) { *outKeycode = device->keys.valueAt(index).keyCode; } if (outFlags) { *outFlags = device->keys.valueAt(index).flags; } return OK; } } return NAME_NOT_FOUND; } virtual void addExcludedDevice(const char* deviceName) { mExcludedDevices.add(String8(deviceName)); } virtual bool getEvent(RawEvent* outEvent) { if (mEvents.empty()) { return false; } *outEvent = *mEvents.begin(); mEvents.erase(mEvents.begin()); return true; } virtual int32_t getScanCodeState(int32_t deviceId, int32_t scanCode) const { Device* device = getDevice(deviceId); if (device) { ssize_t index = device->scanCodeStates.indexOfKey(scanCode); if (index >= 0) { return device->scanCodeStates.valueAt(index); } } return AKEY_STATE_UNKNOWN; } virtual int32_t getKeyCodeState(int32_t deviceId, int32_t keyCode) const { Device* device = getDevice(deviceId); if (device) { ssize_t index = device->keyCodeStates.indexOfKey(keyCode); if (index >= 0) { return device->keyCodeStates.valueAt(index); } } return AKEY_STATE_UNKNOWN; } virtual int32_t getSwitchState(int32_t deviceId, int32_t sw) const { Device* device = getDevice(deviceId); if (device) { ssize_t index = device->switchStates.indexOfKey(sw); if (index >= 0) { return device->switchStates.valueAt(index); } } return AKEY_STATE_UNKNOWN; } virtual bool markSupportedKeyCodes(int32_t deviceId, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) const { bool result = false; Device* device = getDevice(deviceId); if (device) { for (size_t i = 0; i < numCodes; i++) { for (size_t j = 0; j < device->keys.size(); j++) { if (keyCodes[i] == device->keys.valueAt(j).keyCode) { outFlags[i] = 1; result = true; } } } } return result; } virtual void dump(String8& dump) { } }; // --- FakeInputReaderContext --- class FakeInputReaderContext : public InputReaderContext { sp<EventHubInterface> mEventHub; sp<InputReaderPolicyInterface> mPolicy; sp<InputDispatcherInterface> mDispatcher; int32_t mGlobalMetaState; bool mUpdateGlobalMetaStateWasCalled; public: FakeInputReaderContext(const sp<EventHubInterface>& eventHub, const sp<InputReaderPolicyInterface>& policy, const sp<InputDispatcherInterface>& dispatcher) : mEventHub(eventHub), mPolicy(policy), mDispatcher(dispatcher), mGlobalMetaState(0) { } virtual ~FakeInputReaderContext() { } void assertUpdateGlobalMetaStateWasCalled() { ASSERT_TRUE(mUpdateGlobalMetaStateWasCalled) << "Expected updateGlobalMetaState() to have been called."; mUpdateGlobalMetaStateWasCalled = false; } void setGlobalMetaState(int32_t state) { mGlobalMetaState = state; } private: virtual void updateGlobalMetaState() { mUpdateGlobalMetaStateWasCalled = true; } virtual int32_t getGlobalMetaState() { return mGlobalMetaState; } virtual EventHubInterface* getEventHub() { return mEventHub.get(); } virtual InputReaderPolicyInterface* getPolicy() { return mPolicy.get(); } virtual InputDispatcherInterface* getDispatcher() { return mDispatcher.get(); } }; // --- FakeInputMapper --- class FakeInputMapper : public InputMapper { uint32_t mSources; int32_t mKeyboardType; int32_t mMetaState; KeyedVector<int32_t, int32_t> mKeyCodeStates; KeyedVector<int32_t, int32_t> mScanCodeStates; KeyedVector<int32_t, int32_t> mSwitchStates; Vector<int32_t> mSupportedKeyCodes; RawEvent mLastEvent; bool mConfigureWasCalled; bool mResetWasCalled; bool mProcessWasCalled; public: FakeInputMapper(InputDevice* device, uint32_t sources) : InputMapper(device), mSources(sources), mKeyboardType(AINPUT_KEYBOARD_TYPE_NONE), mMetaState(0), mConfigureWasCalled(false), mResetWasCalled(false), mProcessWasCalled(false) { } virtual ~FakeInputMapper() { } void setKeyboardType(int32_t keyboardType) { mKeyboardType = keyboardType; } void setMetaState(int32_t metaState) { mMetaState = metaState; } void assertConfigureWasCalled() { ASSERT_TRUE(mConfigureWasCalled) << "Expected configure() to have been called."; mConfigureWasCalled = false; } void assertResetWasCalled() { ASSERT_TRUE(mResetWasCalled) << "Expected reset() to have been called."; mResetWasCalled = false; } void assertProcessWasCalled(RawEvent* outLastEvent = NULL) { ASSERT_TRUE(mProcessWasCalled) << "Expected process() to have been called."; if (outLastEvent) { *outLastEvent = mLastEvent; } mProcessWasCalled = false; } void setKeyCodeState(int32_t keyCode, int32_t state) { mKeyCodeStates.replaceValueFor(keyCode, state); } void setScanCodeState(int32_t scanCode, int32_t state) { mScanCodeStates.replaceValueFor(scanCode, state); } void setSwitchState(int32_t switchCode, int32_t state) { mSwitchStates.replaceValueFor(switchCode, state); } void addSupportedKeyCode(int32_t keyCode) { mSupportedKeyCodes.add(keyCode); } private: virtual uint32_t getSources() { return mSources; } virtual void populateDeviceInfo(InputDeviceInfo* deviceInfo) { InputMapper::populateDeviceInfo(deviceInfo); if (mKeyboardType != AINPUT_KEYBOARD_TYPE_NONE) { deviceInfo->setKeyboardType(mKeyboardType); } } virtual void configure() { mConfigureWasCalled = true; } virtual void reset() { mResetWasCalled = true; } virtual void process(const RawEvent* rawEvent) { mLastEvent = *rawEvent; mProcessWasCalled = true; } virtual int32_t getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { ssize_t index = mKeyCodeStates.indexOfKey(keyCode); return index >= 0 ? mKeyCodeStates.valueAt(index) : AKEY_STATE_UNKNOWN; } virtual int32_t getScanCodeState(uint32_t sourceMask, int32_t scanCode) { ssize_t index = mScanCodeStates.indexOfKey(scanCode); return index >= 0 ? mScanCodeStates.valueAt(index) : AKEY_STATE_UNKNOWN; } virtual int32_t getSwitchState(uint32_t sourceMask, int32_t switchCode) { ssize_t index = mSwitchStates.indexOfKey(switchCode); return index >= 0 ? mSwitchStates.valueAt(index) : AKEY_STATE_UNKNOWN; } virtual bool markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { bool result = false; for (size_t i = 0; i < numCodes; i++) { for (size_t j = 0; j < mSupportedKeyCodes.size(); j++) { if (keyCodes[i] == mSupportedKeyCodes[j]) { outFlags[i] = 1; result = true; } } } return result; } virtual int32_t getMetaState() { return mMetaState; } }; // --- InstrumentedInputReader --- class InstrumentedInputReader : public InputReader { InputDevice* mNextDevice; public: InstrumentedInputReader(const sp<EventHubInterface>& eventHub, const sp<InputReaderPolicyInterface>& policy, const sp<InputDispatcherInterface>& dispatcher) : InputReader(eventHub, policy, dispatcher) { } virtual ~InstrumentedInputReader() { if (mNextDevice) { delete mNextDevice; } } void setNextDevice(InputDevice* device) { mNextDevice = device; } protected: virtual InputDevice* createDevice(int32_t deviceId, const String8& name, uint32_t classes) { if (mNextDevice) { InputDevice* device = mNextDevice; mNextDevice = NULL; return device; } return InputReader::createDevice(deviceId, name, classes); } friend class InputReaderTest; }; // --- InputReaderTest --- class InputReaderTest : public testing::Test { protected: sp<FakeInputDispatcher> mFakeDispatcher; sp<FakeInputReaderPolicy> mFakePolicy; sp<FakeEventHub> mFakeEventHub; sp<InstrumentedInputReader> mReader; virtual void SetUp() { mFakeEventHub = new FakeEventHub(); mFakePolicy = new FakeInputReaderPolicy(); mFakeDispatcher = new FakeInputDispatcher(); mReader = new InstrumentedInputReader(mFakeEventHub, mFakePolicy, mFakeDispatcher); } virtual void TearDown() { mReader.clear(); mFakeDispatcher.clear(); mFakePolicy.clear(); mFakeEventHub.clear(); } void addDevice(int32_t deviceId, const String8& name, uint32_t classes) { mFakeEventHub->addDevice(deviceId, name, classes); mFakeEventHub->finishDeviceScan(); mReader->loopOnce(); mReader->loopOnce(); mFakeEventHub->assertQueueIsEmpty(); } FakeInputMapper* addDeviceWithFakeInputMapper(int32_t deviceId, const String8& name, uint32_t classes, uint32_t sources) { InputDevice* device = new InputDevice(mReader.get(), deviceId, name); FakeInputMapper* mapper = new FakeInputMapper(device, sources); device->addMapper(mapper); mReader->setNextDevice(device); addDevice(deviceId, name, classes); return mapper; } }; TEST_F(InputReaderTest, GetInputConfiguration_WhenNoDevices_ReturnsDefaults) { InputConfiguration config; mReader->getInputConfiguration(&config); ASSERT_EQ(InputConfiguration::KEYBOARD_NOKEYS, config.keyboard); ASSERT_EQ(InputConfiguration::NAVIGATION_NONAV, config.navigation); ASSERT_EQ(InputConfiguration::TOUCHSCREEN_NOTOUCH, config.touchScreen); } TEST_F(InputReaderTest, GetInputConfiguration_WhenAlphabeticKeyboardPresent_ReturnsQwertyKeyboard) { ASSERT_NO_FATAL_FAILURE(addDevice(0, String8("keyboard"), INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_ALPHAKEY)); InputConfiguration config; mReader->getInputConfiguration(&config); ASSERT_EQ(InputConfiguration::KEYBOARD_QWERTY, config.keyboard); ASSERT_EQ(InputConfiguration::NAVIGATION_NONAV, config.navigation); ASSERT_EQ(InputConfiguration::TOUCHSCREEN_NOTOUCH, config.touchScreen); } TEST_F(InputReaderTest, GetInputConfiguration_WhenTouchScreenPresent_ReturnsFingerTouchScreen) { ASSERT_NO_FATAL_FAILURE(addDevice(0, String8("touchscreen"), INPUT_DEVICE_CLASS_TOUCHSCREEN)); InputConfiguration config; mReader->getInputConfiguration(&config); ASSERT_EQ(InputConfiguration::KEYBOARD_NOKEYS, config.keyboard); ASSERT_EQ(InputConfiguration::NAVIGATION_NONAV, config.navigation); ASSERT_EQ(InputConfiguration::TOUCHSCREEN_FINGER, config.touchScreen); } TEST_F(InputReaderTest, GetInputConfiguration_WhenTrackballPresent_ReturnsTrackballNavigation) { ASSERT_NO_FATAL_FAILURE(addDevice(0, String8("trackball"), INPUT_DEVICE_CLASS_TRACKBALL)); InputConfiguration config; mReader->getInputConfiguration(&config); ASSERT_EQ(InputConfiguration::KEYBOARD_NOKEYS, config.keyboard); ASSERT_EQ(InputConfiguration::NAVIGATION_TRACKBALL, config.navigation); ASSERT_EQ(InputConfiguration::TOUCHSCREEN_NOTOUCH, config.touchScreen); } TEST_F(InputReaderTest, GetInputConfiguration_WhenDPadPresent_ReturnsDPadNavigation) { ASSERT_NO_FATAL_FAILURE(addDevice(0, String8("dpad"), INPUT_DEVICE_CLASS_DPAD)); InputConfiguration config; mReader->getInputConfiguration(&config); ASSERT_EQ(InputConfiguration::KEYBOARD_NOKEYS, config.keyboard); ASSERT_EQ(InputConfiguration::NAVIGATION_DPAD, config.navigation); ASSERT_EQ(InputConfiguration::TOUCHSCREEN_NOTOUCH, config.touchScreen); } TEST_F(InputReaderTest, GetInputDeviceInfo_WhenDeviceIdIsValid) { ASSERT_NO_FATAL_FAILURE(addDevice(1, String8("keyboard"), INPUT_DEVICE_CLASS_KEYBOARD)); InputDeviceInfo info; status_t result = mReader->getInputDeviceInfo(1, &info); ASSERT_EQ(OK, result); ASSERT_EQ(1, info.getId()); ASSERT_STREQ("keyboard", info.getName().string()); ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC, info.getKeyboardType()); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, info.getSources()); ASSERT_EQ(size_t(0), info.getMotionRanges().size()); } TEST_F(InputReaderTest, GetInputDeviceInfo_WhenDeviceIdIsInvalid) { InputDeviceInfo info; status_t result = mReader->getInputDeviceInfo(-1, &info); ASSERT_EQ(NAME_NOT_FOUND, result); } TEST_F(InputReaderTest, GetInputDeviceInfo_WhenDeviceIdIsIgnored) { addDevice(1, String8("ignored"), 0); // no classes so device will be ignored InputDeviceInfo info; status_t result = mReader->getInputDeviceInfo(1, &info); ASSERT_EQ(NAME_NOT_FOUND, result); } TEST_F(InputReaderTest, GetInputDeviceIds) { ASSERT_NO_FATAL_FAILURE(addDevice(1, String8("keyboard"), INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_ALPHAKEY)); ASSERT_NO_FATAL_FAILURE(addDevice(2, String8("trackball"), INPUT_DEVICE_CLASS_TRACKBALL)); Vector<int32_t> ids; mReader->getInputDeviceIds(ids); ASSERT_EQ(size_t(2), ids.size()); ASSERT_EQ(1, ids[0]); ASSERT_EQ(2, ids[1]); } TEST_F(InputReaderTest, GetKeyCodeState_ForwardsRequestsToMappers) { FakeInputMapper* mapper = NULL; ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"), INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD)); mapper->setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN); ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(0, AINPUT_SOURCE_ANY, AKEYCODE_A)) << "Should return unknown when the device id is >= 0 but unknown."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(1, AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) << "Should return unknown when the device id is valid but the sources are not supported by the device."; ASSERT_EQ(AKEY_STATE_DOWN, mReader->getKeyCodeState(1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) << "Should return value provided by mapper when device id is valid and the device supports some of the sources."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(-1, AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) << "Should return unknown when the device id is < 0 but the sources are not supported by any device."; ASSERT_EQ(AKEY_STATE_DOWN, mReader->getKeyCodeState(-1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) << "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources."; } TEST_F(InputReaderTest, GetScanCodeState_ForwardsRequestsToMappers) { FakeInputMapper* mapper = NULL; ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"), INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD)); mapper->setScanCodeState(KEY_A, AKEY_STATE_DOWN); ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(0, AINPUT_SOURCE_ANY, KEY_A)) << "Should return unknown when the device id is >= 0 but unknown."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(1, AINPUT_SOURCE_TRACKBALL, KEY_A)) << "Should return unknown when the device id is valid but the sources are not supported by the device."; ASSERT_EQ(AKEY_STATE_DOWN, mReader->getScanCodeState(1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, KEY_A)) << "Should return value provided by mapper when device id is valid and the device supports some of the sources."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(-1, AINPUT_SOURCE_TRACKBALL, KEY_A)) << "Should return unknown when the device id is < 0 but the sources are not supported by any device."; ASSERT_EQ(AKEY_STATE_DOWN, mReader->getScanCodeState(-1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, KEY_A)) << "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources."; } TEST_F(InputReaderTest, GetSwitchState_ForwardsRequestsToMappers) { FakeInputMapper* mapper = NULL; ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"), INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD)); mapper->setSwitchState(SW_LID, AKEY_STATE_DOWN); ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(0, AINPUT_SOURCE_ANY, SW_LID)) << "Should return unknown when the device id is >= 0 but unknown."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(1, AINPUT_SOURCE_TRACKBALL, SW_LID)) << "Should return unknown when the device id is valid but the sources are not supported by the device."; ASSERT_EQ(AKEY_STATE_DOWN, mReader->getSwitchState(1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, SW_LID)) << "Should return value provided by mapper when device id is valid and the device supports some of the sources."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(-1, AINPUT_SOURCE_TRACKBALL, SW_LID)) << "Should return unknown when the device id is < 0 but the sources are not supported by any device."; ASSERT_EQ(AKEY_STATE_DOWN, mReader->getSwitchState(-1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, SW_LID)) << "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources."; } TEST_F(InputReaderTest, MarkSupportedKeyCodes_ForwardsRequestsToMappers) { FakeInputMapper* mapper = NULL; ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"), INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD)); mapper->addSupportedKeyCode(AKEYCODE_A); mapper->addSupportedKeyCode(AKEYCODE_B); const int32_t keyCodes[4] = { AKEYCODE_A, AKEYCODE_B, AKEYCODE_1, AKEYCODE_2 }; uint8_t flags[4] = { 0, 0, 0, 1 }; ASSERT_FALSE(mReader->hasKeys(0, AINPUT_SOURCE_ANY, 4, keyCodes, flags)) << "Should return false when device id is >= 0 but unknown."; ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]); flags[3] = 1; ASSERT_FALSE(mReader->hasKeys(1, AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags)) << "Should return false when device id is valid but the sources are not supported by the device."; ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]); flags[3] = 1; ASSERT_TRUE(mReader->hasKeys(1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags)) << "Should return value provided by mapper when device id is valid and the device supports some of the sources."; ASSERT_TRUE(flags[0] && flags[1] && !flags[2] && !flags[3]); flags[3] = 1; ASSERT_FALSE(mReader->hasKeys(-1, AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags)) << "Should return false when the device id is < 0 but the sources are not supported by any device."; ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]); flags[3] = 1; ASSERT_TRUE(mReader->hasKeys(-1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags)) << "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources."; ASSERT_TRUE(flags[0] && flags[1] && !flags[2] && !flags[3]); } TEST_F(InputReaderTest, LoopOnce_WhenDeviceScanFinished_SendsConfigurationChanged) { addDevice(1, String8("ignored"), INPUT_DEVICE_CLASS_KEYBOARD); FakeInputDispatcher::NotifyConfigurationChangedArgs args; ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyConfigurationChangedWasCalled(&args)); ASSERT_EQ(ARBITRARY_TIME, args.eventTime); } TEST_F(InputReaderTest, LoopOnce_ForwardsRawEventsToMappers) { FakeInputMapper* mapper = NULL; ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"), INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD)); mFakeEventHub->enqueueEvent(0, 1, EV_KEY, KEY_A, AKEYCODE_A, 1, POLICY_FLAG_WAKE); mReader->loopOnce(); ASSERT_NO_FATAL_FAILURE(mFakeEventHub->assertQueueIsEmpty()); RawEvent event; ASSERT_NO_FATAL_FAILURE(mapper->assertProcessWasCalled(&event)); ASSERT_EQ(0, event.when); ASSERT_EQ(1, event.deviceId); ASSERT_EQ(EV_KEY, event.type); ASSERT_EQ(KEY_A, event.scanCode); ASSERT_EQ(AKEYCODE_A, event.keyCode); ASSERT_EQ(1, event.value); ASSERT_EQ(POLICY_FLAG_WAKE, event.flags); } // --- InputDeviceTest --- class InputDeviceTest : public testing::Test { protected: static const char* DEVICE_NAME; static const int32_t DEVICE_ID; sp<FakeEventHub> mFakeEventHub; sp<FakeInputReaderPolicy> mFakePolicy; sp<FakeInputDispatcher> mFakeDispatcher; FakeInputReaderContext* mFakeContext; InputDevice* mDevice; virtual void SetUp() { mFakeEventHub = new FakeEventHub(); mFakePolicy = new FakeInputReaderPolicy(); mFakeDispatcher = new FakeInputDispatcher(); mFakeContext = new FakeInputReaderContext(mFakeEventHub, mFakePolicy, mFakeDispatcher); mDevice = new InputDevice(mFakeContext, DEVICE_ID, String8(DEVICE_NAME)); } virtual void TearDown() { delete mDevice; delete mFakeContext; mFakeDispatcher.clear(); mFakePolicy.clear(); mFakeEventHub.clear(); } }; const char* InputDeviceTest::DEVICE_NAME = "device"; const int32_t InputDeviceTest::DEVICE_ID = 1; TEST_F(InputDeviceTest, ImmutableProperties) { ASSERT_EQ(DEVICE_ID, mDevice->getId()); ASSERT_STREQ(DEVICE_NAME, mDevice->getName()); } TEST_F(InputDeviceTest, WhenNoMappersAreRegistered_DeviceIsIgnored) { // Configuration. mDevice->configure(); // Metadata. ASSERT_TRUE(mDevice->isIgnored()); ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, mDevice->getSources()); InputDeviceInfo info; mDevice->getDeviceInfo(&info); ASSERT_EQ(DEVICE_ID, info.getId()); ASSERT_STREQ(DEVICE_NAME, info.getName().string()); ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NONE, info.getKeyboardType()); ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, info.getSources()); // State queries. ASSERT_EQ(0, mDevice->getMetaState()); ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_KEYBOARD, 0)) << "Ignored device should return unknown key code state."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getScanCodeState(AINPUT_SOURCE_KEYBOARD, 0)) << "Ignored device should return unknown scan code state."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getSwitchState(AINPUT_SOURCE_KEYBOARD, 0)) << "Ignored device should return unknown switch state."; const int32_t keyCodes[2] = { AKEYCODE_A, AKEYCODE_B }; uint8_t flags[2] = { 0, 1 }; ASSERT_FALSE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_KEYBOARD, 2, keyCodes, flags)) << "Ignored device should never mark any key codes."; ASSERT_EQ(0, flags[0]) << "Flag for unsupported key should be unchanged."; ASSERT_EQ(1, flags[1]) << "Flag for unsupported key should be unchanged."; // Reset. mDevice->reset(); } TEST_F(InputDeviceTest, WhenMappersAreRegistered_DeviceIsNotIgnoredAndForwardsRequestsToMappers) { // Configuration. InputDeviceCalibration calibration; calibration.addProperty(String8("key"), String8("value")); mFakePolicy->addInputDeviceCalibration(String8(DEVICE_NAME), calibration); FakeInputMapper* mapper1 = new FakeInputMapper(mDevice, AINPUT_SOURCE_KEYBOARD); mapper1->setKeyboardType(AINPUT_KEYBOARD_TYPE_ALPHABETIC); mapper1->setMetaState(AMETA_ALT_ON); mapper1->addSupportedKeyCode(AKEYCODE_A); mapper1->addSupportedKeyCode(AKEYCODE_B); mapper1->setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN); mapper1->setKeyCodeState(AKEYCODE_B, AKEY_STATE_UP); mapper1->setScanCodeState(2, AKEY_STATE_DOWN); mapper1->setScanCodeState(3, AKEY_STATE_UP); mapper1->setSwitchState(4, AKEY_STATE_DOWN); mDevice->addMapper(mapper1); FakeInputMapper* mapper2 = new FakeInputMapper(mDevice, AINPUT_SOURCE_TOUCHSCREEN); mapper2->setMetaState(AMETA_SHIFT_ON); mDevice->addMapper(mapper2); mDevice->configure(); String8 propertyValue; ASSERT_TRUE(mDevice->getCalibration().tryGetProperty(String8("key"), propertyValue)) << "Device should have read calibration during configuration phase."; ASSERT_STREQ("value", propertyValue.string()); ASSERT_NO_FATAL_FAILURE(mapper1->assertConfigureWasCalled()); ASSERT_NO_FATAL_FAILURE(mapper2->assertConfigureWasCalled()); // Metadata. ASSERT_FALSE(mDevice->isIgnored()); ASSERT_EQ(uint32_t(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TOUCHSCREEN), mDevice->getSources()); InputDeviceInfo info; mDevice->getDeviceInfo(&info); ASSERT_EQ(DEVICE_ID, info.getId()); ASSERT_STREQ(DEVICE_NAME, info.getName().string()); ASSERT_EQ(AINPUT_KEYBOARD_TYPE_ALPHABETIC, info.getKeyboardType()); ASSERT_EQ(uint32_t(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TOUCHSCREEN), info.getSources()); // State queries. ASSERT_EQ(AMETA_ALT_ON | AMETA_SHIFT_ON, mDevice->getMetaState()) << "Should query mappers and combine meta states."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) << "Should return unknown key code state when source not supported."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getScanCodeState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) << "Should return unknown scan code state when source not supported."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getSwitchState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) << "Should return unknown switch state when source not supported."; ASSERT_EQ(AKEY_STATE_DOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_KEYBOARD, AKEYCODE_A)) << "Should query mapper when source is supported."; ASSERT_EQ(AKEY_STATE_UP, mDevice->getScanCodeState(AINPUT_SOURCE_KEYBOARD, 3)) << "Should query mapper when source is supported."; ASSERT_EQ(AKEY_STATE_DOWN, mDevice->getSwitchState(AINPUT_SOURCE_KEYBOARD, 4)) << "Should query mapper when source is supported."; const int32_t keyCodes[4] = { AKEYCODE_A, AKEYCODE_B, AKEYCODE_1, AKEYCODE_2 }; uint8_t flags[4] = { 0, 0, 0, 1 }; ASSERT_FALSE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags)) << "Should do nothing when source is unsupported."; ASSERT_EQ(0, flags[0]) << "Flag should be unchanged when source is unsupported."; ASSERT_EQ(0, flags[1]) << "Flag should be unchanged when source is unsupported."; ASSERT_EQ(0, flags[2]) << "Flag should be unchanged when source is unsupported."; ASSERT_EQ(1, flags[3]) << "Flag should be unchanged when source is unsupported."; ASSERT_TRUE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_KEYBOARD, 4, keyCodes, flags)) << "Should query mapper when source is supported."; ASSERT_EQ(1, flags[0]) << "Flag for supported key should be set."; ASSERT_EQ(1, flags[1]) << "Flag for supported key should be set."; ASSERT_EQ(0, flags[2]) << "Flag for unsupported key should be unchanged."; ASSERT_EQ(1, flags[3]) << "Flag for unsupported key should be unchanged."; // Event handling. RawEvent event; mDevice->process(&event); ASSERT_NO_FATAL_FAILURE(mapper1->assertProcessWasCalled()); ASSERT_NO_FATAL_FAILURE(mapper2->assertProcessWasCalled()); // Reset. mDevice->reset(); ASSERT_NO_FATAL_FAILURE(mapper1->assertResetWasCalled()); ASSERT_NO_FATAL_FAILURE(mapper2->assertResetWasCalled()); } // --- InputMapperTest --- class InputMapperTest : public testing::Test { protected: static const char* DEVICE_NAME; static const int32_t DEVICE_ID; sp<FakeEventHub> mFakeEventHub; sp<FakeInputReaderPolicy> mFakePolicy; sp<FakeInputDispatcher> mFakeDispatcher; FakeInputReaderContext* mFakeContext; InputDevice* mDevice; virtual void SetUp() { mFakeEventHub = new FakeEventHub(); mFakePolicy = new FakeInputReaderPolicy(); mFakeDispatcher = new FakeInputDispatcher(); mFakeContext = new FakeInputReaderContext(mFakeEventHub, mFakePolicy, mFakeDispatcher); mDevice = new InputDevice(mFakeContext, DEVICE_ID, String8(DEVICE_NAME)); mFakeEventHub->addDevice(DEVICE_ID, String8(DEVICE_NAME), 0); } virtual void TearDown() { delete mDevice; delete mFakeContext; mFakeDispatcher.clear(); mFakePolicy.clear(); mFakeEventHub.clear(); } void prepareCalibration(const char* key, const char* value) { mFakePolicy->addInputDeviceCalibrationProperty(String8(DEVICE_NAME), String8(key), String8(value)); } void addMapperAndConfigure(InputMapper* mapper) { mDevice->addMapper(mapper); mDevice->configure(); } static void process(InputMapper* mapper, nsecs_t when, int32_t deviceId, int32_t type, int32_t scanCode, int32_t keyCode, int32_t value, uint32_t flags) { RawEvent event; event.when = when; event.deviceId = deviceId; event.type = type; event.scanCode = scanCode; event.keyCode = keyCode; event.value = value; event.flags = flags; mapper->process(&event); } static void assertMotionRange(const InputDeviceInfo& info, int32_t rangeType, float min, float max, float flat, float fuzz) { const InputDeviceInfo::MotionRange* range = info.getMotionRange(rangeType); ASSERT_TRUE(range != NULL) << "Range: " << rangeType; ASSERT_NEAR(min, range->min, EPSILON) << "Range: " << rangeType; ASSERT_NEAR(max, range->max, EPSILON) << "Range: " << rangeType; ASSERT_NEAR(flat, range->flat, EPSILON) << "Range: " << rangeType; ASSERT_NEAR(fuzz, range->fuzz, EPSILON) << "Range: " << rangeType; } static void assertPointerCoords(const PointerCoords& coords, float x, float y, float pressure, float size, float touchMajor, float touchMinor, float toolMajor, float toolMinor, float orientation) { ASSERT_NEAR(x, coords.x, 1); ASSERT_NEAR(y, coords.y, 1); ASSERT_NEAR(pressure, coords.pressure, EPSILON); ASSERT_NEAR(size, coords.size, EPSILON); ASSERT_NEAR(touchMajor, coords.touchMajor, 1); ASSERT_NEAR(touchMinor, coords.touchMinor, 1); ASSERT_NEAR(toolMajor, coords.toolMajor, 1); ASSERT_NEAR(toolMinor, coords.toolMinor, 1); ASSERT_NEAR(orientation, coords.orientation, EPSILON); } }; const char* InputMapperTest::DEVICE_NAME = "device"; const int32_t InputMapperTest::DEVICE_ID = 1; // --- SwitchInputMapperTest --- class SwitchInputMapperTest : public InputMapperTest { protected: }; TEST_F(SwitchInputMapperTest, GetSources) { SwitchInputMapper* mapper = new SwitchInputMapper(mDevice); addMapperAndConfigure(mapper); ASSERT_EQ(uint32_t(0), mapper->getSources()); } TEST_F(SwitchInputMapperTest, GetSwitchState) { SwitchInputMapper* mapper = new SwitchInputMapper(mDevice); addMapperAndConfigure(mapper); mFakeEventHub->setSwitchState(DEVICE_ID, SW_LID, 1); ASSERT_EQ(1, mapper->getSwitchState(AINPUT_SOURCE_ANY, SW_LID)); mFakeEventHub->setSwitchState(DEVICE_ID, SW_LID, 0); ASSERT_EQ(0, mapper->getSwitchState(AINPUT_SOURCE_ANY, SW_LID)); } TEST_F(SwitchInputMapperTest, Process) { SwitchInputMapper* mapper = new SwitchInputMapper(mDevice); addMapperAndConfigure(mapper); process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SW, SW_LID, 0, 1, 0); FakeInputDispatcher::NotifySwitchArgs args; ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifySwitchWasCalled(&args)); ASSERT_EQ(ARBITRARY_TIME, args.when); ASSERT_EQ(SW_LID, args.switchCode); ASSERT_EQ(1, args.switchValue); ASSERT_EQ(uint32_t(0), args.policyFlags); } // --- KeyboardInputMapperTest --- class KeyboardInputMapperTest : public InputMapperTest { protected: void testDPadKeyRotation(KeyboardInputMapper* mapper, int32_t originalScanCode, int32_t originalKeyCode, int32_t rotatedKeyCode); }; void KeyboardInputMapperTest::testDPadKeyRotation(KeyboardInputMapper* mapper, int32_t originalScanCode, int32_t originalKeyCode, int32_t rotatedKeyCode) { FakeInputDispatcher::NotifyKeyArgs args; process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, originalScanCode, originalKeyCode, 1, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); ASSERT_EQ(originalScanCode, args.scanCode); ASSERT_EQ(rotatedKeyCode, args.keyCode); process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, originalScanCode, originalKeyCode, 0, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); ASSERT_EQ(originalScanCode, args.scanCode); ASSERT_EQ(rotatedKeyCode, args.keyCode); } TEST_F(KeyboardInputMapperTest, GetSources) { KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1, AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); addMapperAndConfigure(mapper); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, mapper->getSources()); } TEST_F(KeyboardInputMapperTest, Process_SimpleKeyPress) { KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1, AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); addMapperAndConfigure(mapper); // Key down. process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, KEY_HOME, AKEYCODE_HOME, 1, POLICY_FLAG_WAKE); FakeInputDispatcher::NotifyKeyArgs args; ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); ASSERT_EQ(ARBITRARY_TIME, args.eventTime); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); ASSERT_EQ(AKEYCODE_HOME, args.keyCode); ASSERT_EQ(KEY_HOME, args.scanCode); ASSERT_EQ(AMETA_NONE, args.metaState); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags); ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); ASSERT_EQ(ARBITRARY_TIME, args.downTime); // Key up. process(mapper, ARBITRARY_TIME + 1, DEVICE_ID, EV_KEY, KEY_HOME, AKEYCODE_HOME, 0, POLICY_FLAG_WAKE); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime); ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); ASSERT_EQ(AKEYCODE_HOME, args.keyCode); ASSERT_EQ(KEY_HOME, args.scanCode); ASSERT_EQ(AMETA_NONE, args.metaState); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags); ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); ASSERT_EQ(ARBITRARY_TIME, args.downTime); } TEST_F(KeyboardInputMapperTest, Reset_WhenKeysAreNotDown_DoesNotSynthesizeKeyUp) { KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1, AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); addMapperAndConfigure(mapper); // Key down. process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, KEY_HOME, AKEYCODE_HOME, 1, POLICY_FLAG_WAKE); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled()); // Key up. process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, KEY_HOME, AKEYCODE_HOME, 0, POLICY_FLAG_WAKE); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled()); // Reset. Since no keys still down, should not synthesize any key ups. mapper->reset(); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled()); } TEST_F(KeyboardInputMapperTest, Reset_WhenKeysAreDown_SynthesizesKeyUps) { KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1, AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); addMapperAndConfigure(mapper); // Metakey down. process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, KEY_LEFTSHIFT, AKEYCODE_SHIFT_LEFT, 1, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled()); // Key down. process(mapper, ARBITRARY_TIME + 1, DEVICE_ID, EV_KEY, KEY_A, AKEYCODE_A, 1, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled()); // Reset. Since two keys are still down, should synthesize two key ups in reverse order. mapper->reset(); FakeInputDispatcher::NotifyKeyArgs args; ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); ASSERT_EQ(AKEYCODE_A, args.keyCode); ASSERT_EQ(KEY_A, args.scanCode); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags); ASSERT_EQ(uint32_t(0), args.policyFlags); ASSERT_EQ(ARBITRARY_TIME + 1, args.downTime); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); ASSERT_EQ(AKEYCODE_SHIFT_LEFT, args.keyCode); ASSERT_EQ(KEY_LEFTSHIFT, args.scanCode); ASSERT_EQ(AMETA_NONE, args.metaState); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags); ASSERT_EQ(uint32_t(0), args.policyFlags); ASSERT_EQ(ARBITRARY_TIME + 1, args.downTime); // And that's it. ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled()); } TEST_F(KeyboardInputMapperTest, Process_ShouldUpdateMetaState) { KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1, AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); addMapperAndConfigure(mapper); // Initial metastate. ASSERT_EQ(AMETA_NONE, mapper->getMetaState()); // Metakey down. process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, KEY_LEFTSHIFT, AKEYCODE_SHIFT_LEFT, 1, 0); FakeInputDispatcher::NotifyKeyArgs args; ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper->getMetaState()); ASSERT_NO_FATAL_FAILURE(mFakeContext->assertUpdateGlobalMetaStateWasCalled()); // Key down. process(mapper, ARBITRARY_TIME + 1, DEVICE_ID, EV_KEY, KEY_A, AKEYCODE_A, 1, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper->getMetaState()); // Key up. process(mapper, ARBITRARY_TIME + 2, DEVICE_ID, EV_KEY, KEY_A, AKEYCODE_A, 0, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper->getMetaState()); // Metakey up. process(mapper, ARBITRARY_TIME + 3, DEVICE_ID, EV_KEY, KEY_LEFTSHIFT, AKEYCODE_SHIFT_LEFT, 0, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(AMETA_NONE, args.metaState); ASSERT_EQ(AMETA_NONE, mapper->getMetaState()); ASSERT_NO_FATAL_FAILURE(mFakeContext->assertUpdateGlobalMetaStateWasCalled()); } TEST_F(KeyboardInputMapperTest, Process_WhenNotAttachedToDisplay_ShouldNotRotateDPad) { KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1, AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); addMapperAndConfigure(mapper); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_RIGHT)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_DOWN)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_LEFT)); } TEST_F(KeyboardInputMapperTest, Process_WhenAttachedToDisplay_ShouldRotateDPad) { KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, DISPLAY_ID, AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); addMapperAndConfigure(mapper); mFakePolicy->setDisplayInfo(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, InputReaderPolicyInterface::ROTATION_0); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_RIGHT)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_DOWN)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_LEFT)); mFakePolicy->setDisplayInfo(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, InputReaderPolicyInterface::ROTATION_90); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN)); mFakePolicy->setDisplayInfo(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, InputReaderPolicyInterface::ROTATION_180); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_DOWN)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_LEFT)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_UP)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_RIGHT)); mFakePolicy->setDisplayInfo(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, InputReaderPolicyInterface::ROTATION_270); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_RIGHT)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_DOWN)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_LEFT)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_UP)); // Special case: if orientation changes while key is down, we still emit the same keycode // in the key up as we did in the key down. FakeInputDispatcher::NotifyKeyArgs args; mFakePolicy->setDisplayInfo(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, InputReaderPolicyInterface::ROTATION_270); process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, KEY_UP, AKEYCODE_DPAD_UP, 1, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); ASSERT_EQ(KEY_UP, args.scanCode); ASSERT_EQ(AKEYCODE_DPAD_RIGHT, args.keyCode); mFakePolicy->setDisplayInfo(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, InputReaderPolicyInterface::ROTATION_180); process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, KEY_UP, AKEYCODE_DPAD_UP, 0, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); ASSERT_EQ(KEY_UP, args.scanCode); ASSERT_EQ(AKEYCODE_DPAD_RIGHT, args.keyCode); } TEST_F(KeyboardInputMapperTest, GetKeyCodeState) { KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1, AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); addMapperAndConfigure(mapper); mFakeEventHub->setKeyCodeState(DEVICE_ID, AKEYCODE_A, 1); ASSERT_EQ(1, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A)); mFakeEventHub->setKeyCodeState(DEVICE_ID, AKEYCODE_A, 0); ASSERT_EQ(0, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A)); } TEST_F(KeyboardInputMapperTest, GetScanCodeState) { KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1, AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); addMapperAndConfigure(mapper); mFakeEventHub->setScanCodeState(DEVICE_ID, KEY_A, 1); ASSERT_EQ(1, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_A)); mFakeEventHub->setScanCodeState(DEVICE_ID, KEY_A, 0); ASSERT_EQ(0, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_A)); } TEST_F(KeyboardInputMapperTest, MarkSupportedKeyCodes) { KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1, AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); addMapperAndConfigure(mapper); mFakeEventHub->addKey(DEVICE_ID, KEY_A, AKEYCODE_A, 0); const int32_t keyCodes[2] = { AKEYCODE_A, AKEYCODE_B }; uint8_t flags[2] = { 0, 0 }; ASSERT_TRUE(mapper->markSupportedKeyCodes(AINPUT_SOURCE_ANY, 1, keyCodes, flags)); ASSERT_TRUE(flags[0]); ASSERT_FALSE(flags[1]); } // --- TrackballInputMapperTest --- class TrackballInputMapperTest : public InputMapperTest { protected: static const int32_t TRACKBALL_MOVEMENT_THRESHOLD; void testMotionRotation(TrackballInputMapper* mapper, int32_t originalX, int32_t originalY, int32_t rotatedX, int32_t rotatedY); }; const int32_t TrackballInputMapperTest::TRACKBALL_MOVEMENT_THRESHOLD = 6; void TrackballInputMapperTest::testMotionRotation(TrackballInputMapper* mapper, int32_t originalX, int32_t originalY, int32_t rotatedX, int32_t rotatedY) { FakeInputDispatcher::NotifyMotionArgs args; process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_X, 0, originalX, 0); process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_Y, 0, originalY, 0); process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], float(rotatedX) / TRACKBALL_MOVEMENT_THRESHOLD, float(rotatedY) / TRACKBALL_MOVEMENT_THRESHOLD, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); } TEST_F(TrackballInputMapperTest, GetSources) { TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1); addMapperAndConfigure(mapper); ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, mapper->getSources()); } TEST_F(TrackballInputMapperTest, PopulateDeviceInfo) { TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1); addMapperAndConfigure(mapper); InputDeviceInfo info; mapper->populateDeviceInfo(&info); ASSERT_NO_FATAL_FAILURE(assertMotionRange(info, AINPUT_MOTION_RANGE_X, -1.0f, 1.0f, 0.0f, 1.0f / TRACKBALL_MOVEMENT_THRESHOLD)); ASSERT_NO_FATAL_FAILURE(assertMotionRange(info, AINPUT_MOTION_RANGE_Y, -1.0f, 1.0f, 0.0f, 1.0f / TRACKBALL_MOVEMENT_THRESHOLD)); } TEST_F(TrackballInputMapperTest, Process_ShouldSetAllFieldsAndIncludeGlobalMetaState) { TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1); addMapperAndConfigure(mapper); mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); FakeInputDispatcher::NotifyMotionArgs args; // Button press. // Mostly testing non x/y behavior here so we don't need to check again elsewhere. process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 1, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(ARBITRARY_TIME, args.eventTime); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, args.source); ASSERT_EQ(uint32_t(0), args.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); ASSERT_EQ(0, args.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(0, args.edgeFlags); ASSERT_EQ(uint32_t(1), args.pointerCount); ASSERT_EQ(0, args.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.xPrecision); ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.yPrecision); ASSERT_EQ(ARBITRARY_TIME, args.downTime); // Button release. Should have same down time. process(mapper, ARBITRARY_TIME + 1, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 0, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, args.source); ASSERT_EQ(uint32_t(0), args.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action); ASSERT_EQ(0, args.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(0, args.edgeFlags); ASSERT_EQ(uint32_t(1), args.pointerCount); ASSERT_EQ(0, args.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.xPrecision); ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.yPrecision); ASSERT_EQ(ARBITRARY_TIME, args.downTime); } TEST_F(TrackballInputMapperTest, Process_ShouldHandleIndependentXYUpdates) { TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1); addMapperAndConfigure(mapper); FakeInputDispatcher::NotifyMotionArgs args; // Motion in X but not Y. process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_X, 0, 1, 0); process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 1.0f / TRACKBALL_MOVEMENT_THRESHOLD, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); // Motion in Y but not X. process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_Y, 0, -2, 0); process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); ASSERT_NEAR(0.0f, args.pointerCoords[0].x, EPSILON); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, -2.0f / TRACKBALL_MOVEMENT_THRESHOLD, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); } TEST_F(TrackballInputMapperTest, Process_ShouldHandleIndependentButtonUpdates) { TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1); addMapperAndConfigure(mapper); FakeInputDispatcher::NotifyMotionArgs args; // Button press without following sync. process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 1, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); // Button release without following sync. process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 0, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); } TEST_F(TrackballInputMapperTest, Process_ShouldHandleCombinedXYAndButtonUpdates) { TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1); addMapperAndConfigure(mapper); FakeInputDispatcher::NotifyMotionArgs args; // Combined X, Y and Button. process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_X, 0, 1, 0); process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_Y, 0, -2, 0); process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 1, 0); process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 1.0f / TRACKBALL_MOVEMENT_THRESHOLD, -2.0f / TRACKBALL_MOVEMENT_THRESHOLD, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); // Move X, Y a bit while pressed. process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_X, 0, 2, 0); process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_Y, 0, 1, 0); process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 2.0f / TRACKBALL_MOVEMENT_THRESHOLD, 1.0f / TRACKBALL_MOVEMENT_THRESHOLD, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); // Release Button. process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 0, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); } TEST_F(TrackballInputMapperTest, Reset_WhenButtonIsNotDown_ShouldNotSynthesizeButtonUp) { TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1); addMapperAndConfigure(mapper); FakeInputDispatcher::NotifyMotionArgs args; // Button press. process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 1, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); // Button release. process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 0, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); // Reset. Should not synthesize button up since button is not pressed. mapper->reset(); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled()); } TEST_F(TrackballInputMapperTest, Reset_WhenButtonIsDown_ShouldSynthesizeButtonUp) { TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1); addMapperAndConfigure(mapper); FakeInputDispatcher::NotifyMotionArgs args; // Button press. process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 1, 0); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); // Reset. Should synthesize button up. mapper->reset(); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); } TEST_F(TrackballInputMapperTest, Process_WhenNotAttachedToDisplay_ShouldNotRotateMotions) { TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1); addMapperAndConfigure(mapper); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, -1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, 1)); } TEST_F(TrackballInputMapperTest, Process_WhenAttachedToDisplay_ShouldRotateMotions) { TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, DISPLAY_ID); addMapperAndConfigure(mapper); mFakePolicy->setDisplayInfo(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, InputReaderPolicyInterface::ROTATION_0); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, -1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, 1)); mFakePolicy->setDisplayInfo(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, InputReaderPolicyInterface::ROTATION_90); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 0, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, -1, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, -1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 0, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, 1, 1)); mFakePolicy->setDisplayInfo(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, InputReaderPolicyInterface::ROTATION_180); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, -1, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, -1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, -1, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, 1, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, 1, -1)); mFakePolicy->setDisplayInfo(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, InputReaderPolicyInterface::ROTATION_270); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, -1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, -1, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 0, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, 1, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 0, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, -1)); } // --- TouchInputMapperTest --- class TouchInputMapperTest : public InputMapperTest { protected: static const int32_t RAW_X_MIN; static const int32_t RAW_X_MAX; static const int32_t RAW_Y_MIN; static const int32_t RAW_Y_MAX; static const int32_t RAW_TOUCH_MIN; static const int32_t RAW_TOUCH_MAX; static const int32_t RAW_TOOL_MIN; static const int32_t RAW_TOOL_MAX; static const int32_t RAW_PRESSURE_MIN; static const int32_t RAW_PRESSURE_MAX; static const int32_t RAW_ORIENTATION_MIN; static const int32_t RAW_ORIENTATION_MAX; static const int32_t RAW_ID_MIN; static const int32_t RAW_ID_MAX; static const float X_PRECISION; static const float Y_PRECISION; static const VirtualKeyDefinition VIRTUAL_KEYS[2]; enum Axes { POSITION = 1 << 0, TOUCH = 1 << 1, TOOL = 1 << 2, PRESSURE = 1 << 3, ORIENTATION = 1 << 4, MINOR = 1 << 5, ID = 1 << 6, }; void prepareDisplay(int32_t orientation); void prepareVirtualKeys(); int32_t toRawX(float displayX); int32_t toRawY(float displayY); float toDisplayX(int32_t rawX); float toDisplayY(int32_t rawY); }; const int32_t TouchInputMapperTest::RAW_X_MIN = 25; const int32_t TouchInputMapperTest::RAW_X_MAX = 1020; const int32_t TouchInputMapperTest::RAW_Y_MIN = 30; const int32_t TouchInputMapperTest::RAW_Y_MAX = 1010; const int32_t TouchInputMapperTest::RAW_TOUCH_MIN = 0; const int32_t TouchInputMapperTest::RAW_TOUCH_MAX = 31; const int32_t TouchInputMapperTest::RAW_TOOL_MIN = 0; const int32_t TouchInputMapperTest::RAW_TOOL_MAX = 15; const int32_t TouchInputMapperTest::RAW_PRESSURE_MIN = RAW_TOUCH_MIN; const int32_t TouchInputMapperTest::RAW_PRESSURE_MAX = RAW_TOUCH_MAX; const int32_t TouchInputMapperTest::RAW_ORIENTATION_MIN = -7; const int32_t TouchInputMapperTest::RAW_ORIENTATION_MAX = 7; const int32_t TouchInputMapperTest::RAW_ID_MIN = 0; const int32_t TouchInputMapperTest::RAW_ID_MAX = 9; const float TouchInputMapperTest::X_PRECISION = float(RAW_X_MAX - RAW_X_MIN) / DISPLAY_WIDTH; const float TouchInputMapperTest::Y_PRECISION = float(RAW_Y_MAX - RAW_Y_MIN) / DISPLAY_HEIGHT; const VirtualKeyDefinition TouchInputMapperTest::VIRTUAL_KEYS[2] = { { KEY_HOME, 60, DISPLAY_HEIGHT + 15, 20, 20 }, { KEY_MENU, DISPLAY_HEIGHT - 60, DISPLAY_WIDTH + 15, 20, 20 }, }; void TouchInputMapperTest::prepareDisplay(int32_t orientation) { mFakePolicy->setDisplayInfo(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, orientation); } void TouchInputMapperTest::prepareVirtualKeys() { mFakePolicy->addVirtualKeyDefinition(String8(DEVICE_NAME), VIRTUAL_KEYS[0]); mFakePolicy->addVirtualKeyDefinition(String8(DEVICE_NAME), VIRTUAL_KEYS[1]); mFakeEventHub->addKey(DEVICE_ID, KEY_HOME, AKEYCODE_HOME, POLICY_FLAG_WAKE); mFakeEventHub->addKey(DEVICE_ID, KEY_MENU, AKEYCODE_MENU, POLICY_FLAG_WAKE); } int32_t TouchInputMapperTest::toRawX(float displayX) { return int32_t(displayX * (RAW_X_MAX - RAW_X_MIN) / DISPLAY_WIDTH + RAW_X_MIN); } int32_t TouchInputMapperTest::toRawY(float displayY) { return int32_t(displayY * (RAW_Y_MAX - RAW_Y_MIN) / DISPLAY_HEIGHT + RAW_Y_MIN); } float TouchInputMapperTest::toDisplayX(int32_t rawX) { return float(rawX - RAW_X_MIN) * DISPLAY_WIDTH / (RAW_X_MAX - RAW_X_MIN); } float TouchInputMapperTest::toDisplayY(int32_t rawY) { return float(rawY - RAW_Y_MIN) * DISPLAY_HEIGHT / (RAW_Y_MAX - RAW_Y_MIN); } // --- SingleTouchInputMapperTest --- class SingleTouchInputMapperTest : public TouchInputMapperTest { protected: void prepareAxes(int axes); void processDown(SingleTouchInputMapper* mapper, int32_t x, int32_t y); void processMove(SingleTouchInputMapper* mapper, int32_t x, int32_t y); void processUp(SingleTouchInputMapper* mappery); void processPressure(SingleTouchInputMapper* mapper, int32_t pressure); void processToolMajor(SingleTouchInputMapper* mapper, int32_t toolMajor); void processSync(SingleTouchInputMapper* mapper); }; void SingleTouchInputMapperTest::prepareAxes(int axes) { if (axes & POSITION) { mFakeEventHub->addAxis(DEVICE_ID, ABS_X, RAW_X_MIN, RAW_X_MAX, 0, 0); mFakeEventHub->addAxis(DEVICE_ID, ABS_Y, RAW_Y_MIN, RAW_Y_MAX, 0, 0); } if (axes & PRESSURE) { mFakeEventHub->addAxis(DEVICE_ID, ABS_PRESSURE, RAW_PRESSURE_MIN, RAW_PRESSURE_MAX, 0, 0); } if (axes & TOOL) { mFakeEventHub->addAxis(DEVICE_ID, ABS_TOOL_WIDTH, RAW_TOOL_MIN, RAW_TOOL_MAX, 0, 0); } } void SingleTouchInputMapperTest::processDown(SingleTouchInputMapper* mapper, int32_t x, int32_t y) { process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_TOUCH, 0, 1, 0); process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_X, 0, x, 0); process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_Y, 0, y, 0); } void SingleTouchInputMapperTest::processMove(SingleTouchInputMapper* mapper, int32_t x, int32_t y) { process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_X, 0, x, 0); process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_Y, 0, y, 0); } void SingleTouchInputMapperTest::processUp(SingleTouchInputMapper* mapper) { process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_TOUCH, 0, 0, 0); } void SingleTouchInputMapperTest::processPressure( SingleTouchInputMapper* mapper, int32_t pressure) { process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_PRESSURE, 0, pressure, 0); } void SingleTouchInputMapperTest::processToolMajor( SingleTouchInputMapper* mapper, int32_t toolMajor) { process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_TOOL_WIDTH, 0, toolMajor, 0); } void SingleTouchInputMapperTest::processSync(SingleTouchInputMapper* mapper) { process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0); } TEST_F(SingleTouchInputMapperTest, GetSources_WhenNotAttachedToADisplay_ReturnsTouchPad) { SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, -1); prepareAxes(POSITION); addMapperAndConfigure(mapper); ASSERT_EQ(AINPUT_SOURCE_TOUCHPAD, mapper->getSources()); } TEST_F(SingleTouchInputMapperTest, GetSources_WhenAttachedToADisplay_ReturnsTouchScreen) { SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID); prepareAxes(POSITION); addMapperAndConfigure(mapper); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, mapper->getSources()); } TEST_F(SingleTouchInputMapperTest, GetKeyCodeState) { SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID); prepareDisplay(InputReaderPolicyInterface::ROTATION_0); prepareAxes(POSITION); prepareVirtualKeys(); addMapperAndConfigure(mapper); // Unknown key. ASSERT_EQ(AKEY_STATE_UNKNOWN, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A)); // Virtual key is down. int32_t x = toRawX(VIRTUAL_KEYS[0].centerX); int32_t y = toRawY(VIRTUAL_KEYS[0].centerY); processDown(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled()); ASSERT_EQ(AKEY_STATE_VIRTUAL, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_HOME)); // Virtual key is up. processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled()); ASSERT_EQ(AKEY_STATE_UP, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_HOME)); } TEST_F(SingleTouchInputMapperTest, GetScanCodeState) { SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID); prepareDisplay(InputReaderPolicyInterface::ROTATION_0); prepareAxes(POSITION); prepareVirtualKeys(); addMapperAndConfigure(mapper); // Unknown key. ASSERT_EQ(AKEY_STATE_UNKNOWN, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_A)); // Virtual key is down. int32_t x = toRawX(VIRTUAL_KEYS[0].centerX); int32_t y = toRawY(VIRTUAL_KEYS[0].centerY); processDown(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled()); ASSERT_EQ(AKEY_STATE_VIRTUAL, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_HOME)); // Virtual key is up. processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled()); ASSERT_EQ(AKEY_STATE_UP, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_HOME)); } TEST_F(SingleTouchInputMapperTest, MarkSupportedKeyCodes) { SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID); prepareDisplay(InputReaderPolicyInterface::ROTATION_0); prepareAxes(POSITION); prepareVirtualKeys(); addMapperAndConfigure(mapper); const int32_t keys[2] = { AKEYCODE_HOME, AKEYCODE_A }; uint8_t flags[2] = { 0, 0 }; ASSERT_TRUE(mapper->markSupportedKeyCodes(AINPUT_SOURCE_ANY, 2, keys, flags)); ASSERT_TRUE(flags[0]); ASSERT_FALSE(flags[1]); } TEST_F(SingleTouchInputMapperTest, Reset_WhenVirtualKeysAreDown_SendsUp) { // Note: Ideally we should send cancels but the implementation is more straightforward // with up and this will only happen if a device is forcibly removed. SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID); prepareDisplay(InputReaderPolicyInterface::ROTATION_0); prepareAxes(POSITION); prepareVirtualKeys(); addMapperAndConfigure(mapper); mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); // Press virtual key. int32_t x = toRawX(VIRTUAL_KEYS[0].centerX); int32_t y = toRawY(VIRTUAL_KEYS[0].centerY); processDown(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled()); // Reset. Since key is down, synthesize key up. mapper->reset(); FakeInputDispatcher::NotifyKeyArgs args; ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args)); //ASSERT_EQ(ARBITRARY_TIME, args.eventTime); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags); ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags); ASSERT_EQ(AKEYCODE_HOME, args.keyCode); ASSERT_EQ(KEY_HOME, args.scanCode); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(ARBITRARY_TIME, args.downTime); } TEST_F(SingleTouchInputMapperTest, Reset_WhenNothingIsPressed_NothingMuchHappens) { SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID); prepareDisplay(InputReaderPolicyInterface::ROTATION_0); prepareAxes(POSITION); prepareVirtualKeys(); addMapperAndConfigure(mapper); // Press virtual key. int32_t x = toRawX(VIRTUAL_KEYS[0].centerX); int32_t y = toRawY(VIRTUAL_KEYS[0].centerY); processDown(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled()); // Release virtual key. processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled()); // Reset. Since no key is down, nothing happens. mapper->reset(); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled()); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled()); } TEST_F(SingleTouchInputMapperTest, Process_WhenVirtualKeyIsPressedAndReleasedNormally_SendsKeyDownAndKeyUp) { SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID); prepareDisplay(InputReaderPolicyInterface::ROTATION_0); prepareAxes(POSITION); prepareVirtualKeys(); addMapperAndConfigure(mapper); mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); FakeInputDispatcher::NotifyKeyArgs args; // Press virtual key. int32_t x = toRawX(VIRTUAL_KEYS[0].centerX); int32_t y = toRawY(VIRTUAL_KEYS[0].centerY); processDown(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(ARBITRARY_TIME, args.eventTime); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags); ASSERT_EQ(AKEYCODE_HOME, args.keyCode); ASSERT_EQ(KEY_HOME, args.scanCode); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(ARBITRARY_TIME, args.downTime); // Release virtual key. processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(ARBITRARY_TIME, args.eventTime); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags); ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags); ASSERT_EQ(AKEYCODE_HOME, args.keyCode); ASSERT_EQ(KEY_HOME, args.scanCode); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(ARBITRARY_TIME, args.downTime); // Should not have sent any motions. ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled()); } TEST_F(SingleTouchInputMapperTest, Process_WhenVirtualKeyIsPressedAndMovedOutOfBounds_SendsKeyDownAndKeyCancel) { SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID); prepareDisplay(InputReaderPolicyInterface::ROTATION_0); prepareAxes(POSITION); prepareVirtualKeys(); addMapperAndConfigure(mapper); mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); FakeInputDispatcher::NotifyKeyArgs keyArgs; // Press virtual key. int32_t x = toRawX(VIRTUAL_KEYS[0].centerX); int32_t y = toRawY(VIRTUAL_KEYS[0].centerY); processDown(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(ARBITRARY_TIME, keyArgs.eventTime); ASSERT_EQ(DEVICE_ID, keyArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, keyArgs.source); ASSERT_EQ(POLICY_FLAG_VIRTUAL, keyArgs.policyFlags); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, keyArgs.flags); ASSERT_EQ(AKEYCODE_HOME, keyArgs.keyCode); ASSERT_EQ(KEY_HOME, keyArgs.scanCode); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, keyArgs.metaState); ASSERT_EQ(ARBITRARY_TIME, keyArgs.downTime); // Move out of bounds. This should generate a cancel and a pointer down since we moved // into the display area. y -= 100; processMove(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(ARBITRARY_TIME, keyArgs.eventTime); ASSERT_EQ(DEVICE_ID, keyArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, keyArgs.source); ASSERT_EQ(POLICY_FLAG_VIRTUAL, keyArgs.policyFlags); ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY | AKEY_EVENT_FLAG_CANCELED, keyArgs.flags); ASSERT_EQ(AKEYCODE_HOME, keyArgs.keyCode); ASSERT_EQ(KEY_HOME, keyArgs.scanCode); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, keyArgs.metaState); ASSERT_EQ(ARBITRARY_TIME, keyArgs.downTime); FakeInputDispatcher::NotifyMotionArgs motionArgs; ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Keep moving out of bounds. Should generate a pointer move. y -= 50; processMove(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Release out of bounds. Should generate a pointer up. processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Should not have sent any more keys or motions. ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled()); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled()); } TEST_F(SingleTouchInputMapperTest, Process_WhenTouchStartsOutsideDisplayAndMovesIn_SendsDownAsTouchEntersDisplay) { SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID); prepareDisplay(InputReaderPolicyInterface::ROTATION_0); prepareAxes(POSITION); prepareVirtualKeys(); addMapperAndConfigure(mapper); mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); FakeInputDispatcher::NotifyMotionArgs motionArgs; // Initially go down out of bounds. int32_t x = -10; int32_t y = -10; processDown(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled()); // Move into the display area. Should generate a pointer down. x = 50; y = 75; processMove(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Release. Should generate a pointer up. processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Should not have sent any more keys or motions. ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled()); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled()); } TEST_F(SingleTouchInputMapperTest, Process_NormalSingleTouchGesture) { SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID); prepareDisplay(InputReaderPolicyInterface::ROTATION_0); prepareAxes(POSITION); prepareVirtualKeys(); addMapperAndConfigure(mapper); mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); FakeInputDispatcher::NotifyMotionArgs motionArgs; // Down. int32_t x = 100; int32_t y = 125; processDown(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Move. x += 50; y += 75; processMove(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Up. processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Should not have sent any more keys or motions. ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled()); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled()); } TEST_F(SingleTouchInputMapperTest, Process_Rotation) { SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID); prepareAxes(POSITION); addMapperAndConfigure(mapper); FakeInputDispatcher::NotifyMotionArgs args; // Rotation 0. prepareDisplay(InputReaderPolicyInterface::ROTATION_0); processDown(mapper, toRawX(50), toRawY(75)); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_NEAR(50, args.pointerCoords[0].x, 1); ASSERT_NEAR(75, args.pointerCoords[0].y, 1); processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled()); // Rotation 90. prepareDisplay(InputReaderPolicyInterface::ROTATION_90); processDown(mapper, toRawX(50), toRawY(75)); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_NEAR(75, args.pointerCoords[0].x, 1); ASSERT_NEAR(DISPLAY_WIDTH - 50, args.pointerCoords[0].y, 1); processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled()); // Rotation 180. prepareDisplay(InputReaderPolicyInterface::ROTATION_180); processDown(mapper, toRawX(50), toRawY(75)); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_NEAR(DISPLAY_WIDTH - 50, args.pointerCoords[0].x, 1); ASSERT_NEAR(DISPLAY_HEIGHT - 75, args.pointerCoords[0].y, 1); processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled()); // Rotation 270. prepareDisplay(InputReaderPolicyInterface::ROTATION_270); processDown(mapper, toRawX(50), toRawY(75)); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_NEAR(DISPLAY_HEIGHT - 75, args.pointerCoords[0].x, 1); ASSERT_NEAR(50, args.pointerCoords[0].y, 1); processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled()); } TEST_F(SingleTouchInputMapperTest, Process_AllAxes_DefaultCalibration) { SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID); prepareDisplay(InputReaderPolicyInterface::ROTATION_0); prepareAxes(POSITION | PRESSURE | TOOL); addMapperAndConfigure(mapper); // These calculations are based on the input device calibration documentation. int32_t rawX = 100; int32_t rawY = 200; int32_t rawPressure = 10; int32_t rawToolMajor = 12; float x = toDisplayX(rawX); float y = toDisplayY(rawY); float pressure = float(rawPressure) / RAW_PRESSURE_MAX; float size = float(rawToolMajor) / RAW_TOOL_MAX; float tool = min(DISPLAY_WIDTH, DISPLAY_HEIGHT) * size; float touch = min(tool * pressure, tool); processDown(mapper, rawX, rawY); processPressure(mapper, rawPressure); processToolMajor(mapper, rawToolMajor); processSync(mapper); FakeInputDispatcher::NotifyMotionArgs args; ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], x, y, pressure, size, touch, touch, tool, tool, 0)); } // --- MultiTouchInputMapperTest --- class MultiTouchInputMapperTest : public TouchInputMapperTest { protected: void prepareAxes(int axes); void processPosition(MultiTouchInputMapper* mapper, int32_t x, int32_t y); void processTouchMajor(MultiTouchInputMapper* mapper, int32_t touchMajor); void processTouchMinor(MultiTouchInputMapper* mapper, int32_t touchMinor); void processToolMajor(MultiTouchInputMapper* mapper, int32_t toolMajor); void processToolMinor(MultiTouchInputMapper* mapper, int32_t toolMinor); void processOrientation(MultiTouchInputMapper* mapper, int32_t orientation); void processPressure(MultiTouchInputMapper* mapper, int32_t pressure); void processId(MultiTouchInputMapper* mapper, int32_t id); void processMTSync(MultiTouchInputMapper* mapper); void processSync(MultiTouchInputMapper* mapper); }; void MultiTouchInputMapperTest::prepareAxes(int axes) { if (axes & POSITION) { mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX, 0, 0); mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX, 0, 0); } if (axes & TOUCH) { mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_TOUCH_MAJOR, RAW_TOUCH_MIN, RAW_TOUCH_MAX, 0, 0); if (axes & MINOR) { mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_TOUCH_MINOR, RAW_TOUCH_MIN, RAW_TOUCH_MAX, 0, 0); } } if (axes & TOOL) { mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_WIDTH_MAJOR, RAW_TOOL_MIN, RAW_TOOL_MAX, 0, 0); if (axes & MINOR) { mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_WIDTH_MINOR, RAW_TOOL_MAX, RAW_TOOL_MAX, 0, 0); } } if (axes & ORIENTATION) { mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_ORIENTATION, RAW_ORIENTATION_MIN, RAW_ORIENTATION_MAX, 0, 0); } if (axes & PRESSURE) { mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_PRESSURE, RAW_PRESSURE_MIN, RAW_PRESSURE_MAX, 0, 0); } if (axes & ID) { mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_TRACKING_ID, RAW_ID_MIN, RAW_ID_MAX, 0, 0); } } void MultiTouchInputMapperTest::processPosition( MultiTouchInputMapper* mapper, int32_t x, int32_t y) { process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_POSITION_X, 0, x, 0); process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_POSITION_Y, 0, y, 0); } void MultiTouchInputMapperTest::processTouchMajor( MultiTouchInputMapper* mapper, int32_t touchMajor) { process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_TOUCH_MAJOR, 0, touchMajor, 0); } void MultiTouchInputMapperTest::processTouchMinor( MultiTouchInputMapper* mapper, int32_t touchMinor) { process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_TOUCH_MINOR, 0, touchMinor, 0); } void MultiTouchInputMapperTest::processToolMajor( MultiTouchInputMapper* mapper, int32_t toolMajor) { process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_WIDTH_MAJOR, 0, toolMajor, 0); } void MultiTouchInputMapperTest::processToolMinor( MultiTouchInputMapper* mapper, int32_t toolMinor) { process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_WIDTH_MINOR, 0, toolMinor, 0); } void MultiTouchInputMapperTest::processOrientation( MultiTouchInputMapper* mapper, int32_t orientation) { process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_ORIENTATION, 0, orientation, 0); } void MultiTouchInputMapperTest::processPressure( MultiTouchInputMapper* mapper, int32_t pressure) { process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_PRESSURE, 0, pressure, 0); } void MultiTouchInputMapperTest::processId( MultiTouchInputMapper* mapper, int32_t id) { process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_TRACKING_ID, 0, id, 0); } void MultiTouchInputMapperTest::processMTSync(MultiTouchInputMapper* mapper) { process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_MT_REPORT, 0, 0, 0); } void MultiTouchInputMapperTest::processSync(MultiTouchInputMapper* mapper) { process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0); } TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithoutTrackingIds) { MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice, DISPLAY_ID); prepareDisplay(InputReaderPolicyInterface::ROTATION_0); prepareAxes(POSITION); prepareVirtualKeys(); addMapperAndConfigure(mapper); mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); FakeInputDispatcher::NotifyMotionArgs motionArgs; // Two fingers down at once. int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500; processPosition(mapper, x1, y1); processMTSync(mapper); processPosition(mapper, x2, y2); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerIds[0]); ASSERT_EQ(1, motionArgs.pointerIds[1]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Move. x1 += 10; y1 += 15; x2 += 5; y2 -= 10; processPosition(mapper, x1, y1); processMTSync(mapper); processPosition(mapper, x2, y2); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerIds[0]); ASSERT_EQ(1, motionArgs.pointerIds[1]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // First finger up. x2 += 15; y2 -= 20; processPosition(mapper, x2, y2); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerIds[0]); ASSERT_EQ(1, motionArgs.pointerIds[1]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(1, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Move. x2 += 20; y2 -= 25; processPosition(mapper, x2, y2); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(1, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // New finger down. int32_t x3 = 700, y3 = 300; processPosition(mapper, x2, y2); processMTSync(mapper); processPosition(mapper, x3, y3); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerIds[0]); ASSERT_EQ(1, motionArgs.pointerIds[1]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Second finger up. x3 += 30; y3 -= 20; processPosition(mapper, x3, y3); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerIds[0]); ASSERT_EQ(1, motionArgs.pointerIds[1]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Last finger up. processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Should not have sent any more keys or motions. ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled()); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled()); } TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithTrackingIds) { MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice, DISPLAY_ID); prepareDisplay(InputReaderPolicyInterface::ROTATION_0); prepareAxes(POSITION | ID); prepareVirtualKeys(); addMapperAndConfigure(mapper); mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); FakeInputDispatcher::NotifyMotionArgs motionArgs; // Two fingers down at once. int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500; processPosition(mapper, x1, y1); processId(mapper, 1); processMTSync(mapper); processPosition(mapper, x2, y2); processId(mapper, 2); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(1, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(1, motionArgs.pointerIds[0]); ASSERT_EQ(2, motionArgs.pointerIds[1]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0)); // Move. x1 += 10; y1 += 15; x2 += 5; y2 -= 10; processPosition(mapper, x1, y1); processId(mapper, 1); processMTSync(mapper); processPosition(mapper, x2, y2); processId(mapper, 2); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(1, motionArgs.pointerIds[0]); ASSERT_EQ(2, motionArgs.pointerIds[1]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0)); // First finger up. x2 += 15; y2 -= 20; processPosition(mapper, x2, y2); processId(mapper, 2); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(1, motionArgs.pointerIds[0]); ASSERT_EQ(2, motionArgs.pointerIds[1]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(2, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0)); // Move. x2 += 20; y2 -= 25; processPosition(mapper, x2, y2); processId(mapper, 2); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(2, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0)); // New finger down. int32_t x3 = 700, y3 = 300; processPosition(mapper, x2, y2); processId(mapper, 2); processMTSync(mapper); processPosition(mapper, x3, y3); processId(mapper, 3); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(2, motionArgs.pointerIds[0]); ASSERT_EQ(3, motionArgs.pointerIds[1]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0)); // Second finger up. x3 += 30; y3 -= 20; processPosition(mapper, x3, y3); processId(mapper, 3); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(2, motionArgs.pointerIds[0]); ASSERT_EQ(3, motionArgs.pointerIds[1]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(3, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0)); // Last finger up. processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(3, motionArgs.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0)); // Should not have sent any more keys or motions. ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled()); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled()); } TEST_F(MultiTouchInputMapperTest, Process_AllAxes_WithDefaultCalibration) { MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice, DISPLAY_ID); prepareDisplay(InputReaderPolicyInterface::ROTATION_0); prepareAxes(POSITION | TOUCH | TOOL | PRESSURE | ORIENTATION | ID | MINOR); addMapperAndConfigure(mapper); // These calculations are based on the input device calibration documentation. int32_t rawX = 100; int32_t rawY = 200; int32_t rawTouchMajor = 7; int32_t rawTouchMinor = 6; int32_t rawToolMajor = 9; int32_t rawToolMinor = 8; int32_t rawPressure = 11; int32_t rawOrientation = 3; int32_t id = 5; float x = toDisplayX(rawX); float y = toDisplayY(rawY); float pressure = float(rawPressure) / RAW_PRESSURE_MAX; float size = avg(rawToolMajor, rawToolMinor) / RAW_TOOL_MAX; float toolMajor = float(min(DISPLAY_WIDTH, DISPLAY_HEIGHT)) * rawToolMajor / RAW_TOOL_MAX; float toolMinor = float(min(DISPLAY_WIDTH, DISPLAY_HEIGHT)) * rawToolMinor / RAW_TOOL_MAX; float touchMajor = min(toolMajor * pressure, toolMajor); float touchMinor = min(toolMinor * pressure, toolMinor); float orientation = float(rawOrientation) / RAW_ORIENTATION_MAX * M_PI_2; processPosition(mapper, rawX, rawY); processTouchMajor(mapper, rawTouchMajor); processTouchMinor(mapper, rawTouchMinor); processToolMajor(mapper, rawToolMajor); processToolMinor(mapper, rawToolMinor); processPressure(mapper, rawPressure); processOrientation(mapper, rawOrientation); processId(mapper, id); processMTSync(mapper); processSync(mapper); FakeInputDispatcher::NotifyMotionArgs args; ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(id, args.pointerIds[0]); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], x, y, pressure, size, touchMajor, touchMinor, toolMajor, toolMinor, orientation)); } TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_GeometricCalibration) { MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice, DISPLAY_ID); prepareDisplay(InputReaderPolicyInterface::ROTATION_0); prepareAxes(POSITION | TOUCH | TOOL | MINOR); prepareCalibration("touch.touchSize.calibration", "geometric"); prepareCalibration("touch.toolSize.calibration", "geometric"); addMapperAndConfigure(mapper); // These calculations are based on the input device calibration documentation. int32_t rawX = 100; int32_t rawY = 200; int32_t rawTouchMajor = 140; int32_t rawTouchMinor = 120; int32_t rawToolMajor = 180; int32_t rawToolMinor = 160; float x = toDisplayX(rawX); float y = toDisplayY(rawY); float pressure = float(rawTouchMajor) / RAW_TOUCH_MAX; float size = avg(rawToolMajor, rawToolMinor) / RAW_TOOL_MAX; float scale = avg(float(DISPLAY_WIDTH) / (RAW_X_MAX - RAW_X_MIN), float(DISPLAY_HEIGHT) / (RAW_Y_MAX - RAW_Y_MIN)); float toolMajor = float(rawToolMajor) * scale; float toolMinor = float(rawToolMinor) * scale; float touchMajor = min(float(rawTouchMajor) * scale, toolMajor); float touchMinor = min(float(rawTouchMinor) * scale, toolMinor); processPosition(mapper, rawX, rawY); processTouchMajor(mapper, rawTouchMajor); processTouchMinor(mapper, rawTouchMinor); processToolMajor(mapper, rawToolMajor); processToolMinor(mapper, rawToolMinor); processMTSync(mapper); processSync(mapper); FakeInputDispatcher::NotifyMotionArgs args; ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], x, y, pressure, size, touchMajor, touchMinor, toolMajor, toolMinor, 0)); } TEST_F(MultiTouchInputMapperTest, Process_TouchToolPressureSizeAxes_SummedLinearCalibration) { MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice, DISPLAY_ID); prepareDisplay(InputReaderPolicyInterface::ROTATION_0); prepareAxes(POSITION | TOUCH | TOOL); prepareCalibration("touch.touchSize.calibration", "pressure"); prepareCalibration("touch.toolSize.calibration", "linear"); prepareCalibration("touch.toolSize.linearScale", "10"); prepareCalibration("touch.toolSize.linearBias", "160"); prepareCalibration("touch.toolSize.isSummed", "1"); prepareCalibration("touch.pressure.calibration", "amplitude"); prepareCalibration("touch.pressure.source", "touch"); prepareCalibration("touch.pressure.scale", "0.01"); addMapperAndConfigure(mapper); // These calculations are based on the input device calibration documentation. // Note: We only provide a single common touch/tool value because the device is assumed // not to emit separate values for each pointer (isSummed = 1). int32_t rawX = 100; int32_t rawY = 200; int32_t rawX2 = 150; int32_t rawY2 = 250; int32_t rawTouchMajor = 60; int32_t rawToolMajor = 5; float x = toDisplayX(rawX); float y = toDisplayY(rawY); float x2 = toDisplayX(rawX2); float y2 = toDisplayY(rawY2); float pressure = float(rawTouchMajor) * 0.01f; float size = float(rawToolMajor) / RAW_TOOL_MAX; float tool = (float(rawToolMajor) * 10.0f + 160.0f) / 2; float touch = min(tool * pressure, tool); processPosition(mapper, rawX, rawY); processTouchMajor(mapper, rawTouchMajor); processToolMajor(mapper, rawToolMajor); processMTSync(mapper); processPosition(mapper, rawX2, rawY2); processTouchMajor(mapper, rawTouchMajor); processToolMajor(mapper, rawToolMajor); processMTSync(mapper); processSync(mapper); FakeInputDispatcher::NotifyMotionArgs args; ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), args.action); ASSERT_EQ(size_t(2), args.pointerCount); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], x, y, pressure, size, touch, touch, tool, tool, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[1], x2, y2, pressure, size, touch, touch, tool, tool, 0)); } TEST_F(MultiTouchInputMapperTest, Process_TouchToolPressureSizeAxes_AreaCalibration) { MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice, DISPLAY_ID); prepareDisplay(InputReaderPolicyInterface::ROTATION_0); prepareAxes(POSITION | TOUCH | TOOL); prepareCalibration("touch.touchSize.calibration", "pressure"); prepareCalibration("touch.toolSize.calibration", "area"); prepareCalibration("touch.toolSize.areaScale", "22"); prepareCalibration("touch.toolSize.areaBias", "1"); prepareCalibration("touch.toolSize.linearScale", "9.2"); prepareCalibration("touch.toolSize.linearBias", "3"); prepareCalibration("touch.pressure.calibration", "amplitude"); prepareCalibration("touch.pressure.source", "touch"); prepareCalibration("touch.pressure.scale", "0.01"); addMapperAndConfigure(mapper); // These calculations are based on the input device calibration documentation. int32_t rawX = 100; int32_t rawY = 200; int32_t rawTouchMajor = 60; int32_t rawToolMajor = 5; float x = toDisplayX(rawX); float y = toDisplayY(rawY); float pressure = float(rawTouchMajor) * 0.01f; float size = float(rawToolMajor) / RAW_TOOL_MAX; float tool = sqrtf(float(rawToolMajor) * 22.0f + 1.0f) * 9.2f + 3.0f; float touch = min(tool * pressure, tool); processPosition(mapper, rawX, rawY); processTouchMajor(mapper, rawTouchMajor); processToolMajor(mapper, rawToolMajor); processMTSync(mapper); processSync(mapper); FakeInputDispatcher::NotifyMotionArgs args; ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], x, y, pressure, size, touch, touch, tool, tool, 0)); } } // namespace android