/* //device/include/server/AudioFlinger/AudioMixer.cpp ** ** Copyright 2007, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #define LOG_TAG "AudioMixer" //#define LOG_NDEBUG 0 #include <stdint.h> #include <string.h> #include <stdlib.h> #include <sys/types.h> #include <utils/Errors.h> #include <utils/Log.h> #include "AudioMixer.h" namespace android { // ---------------------------------------------------------------------------- static inline int16_t clamp16(int32_t sample) { if ((sample>>15) ^ (sample>>31)) sample = 0x7FFF ^ (sample>>31); return sample; } // ---------------------------------------------------------------------------- AudioMixer::AudioMixer(size_t frameCount, uint32_t sampleRate) : mActiveTrack(0), mTrackNames(0), mSampleRate(sampleRate) { mState.enabledTracks= 0; mState.needsChanged = 0; mState.frameCount = frameCount; mState.outputTemp = 0; mState.resampleTemp = 0; mState.hook = process__nop; track_t* t = mState.tracks; for (int i=0 ; i<32 ; i++) { t->needs = 0; t->volume[0] = UNITY_GAIN; t->volume[1] = UNITY_GAIN; t->volumeInc[0] = 0; t->volumeInc[1] = 0; t->auxLevel = 0; t->auxInc = 0; t->channelCount = 2; t->enabled = 0; t->format = 16; t->buffer.raw = 0; t->bufferProvider = 0; t->hook = 0; t->resampler = 0; t->sampleRate = mSampleRate; t->in = 0; t->mainBuffer = NULL; t->auxBuffer = NULL; t++; } } AudioMixer::~AudioMixer() { track_t* t = mState.tracks; for (int i=0 ; i<32 ; i++) { delete t->resampler; t++; } delete [] mState.outputTemp; delete [] mState.resampleTemp; } int AudioMixer::getTrackName() { uint32_t names = mTrackNames; uint32_t mask = 1; int n = 0; while (names & mask) { mask <<= 1; n++; } if (mask) { LOGV("add track (%d)", n); mTrackNames |= mask; return TRACK0 + n; } return -1; } void AudioMixer::invalidateState(uint32_t mask) { if (mask) { mState.needsChanged |= mask; mState.hook = process__validate; } } void AudioMixer::deleteTrackName(int name) { name -= TRACK0; if (uint32_t(name) < MAX_NUM_TRACKS) { LOGV("deleteTrackName(%d)", name); track_t& track(mState.tracks[ name ]); if (track.enabled != 0) { track.enabled = 0; invalidateState(1<<name); } if (track.resampler) { // delete the resampler delete track.resampler; track.resampler = 0; track.sampleRate = mSampleRate; invalidateState(1<<name); } track.volumeInc[0] = 0; track.volumeInc[1] = 0; mTrackNames &= ~(1<<name); } } status_t AudioMixer::enable(int name) { switch (name) { case MIXING: { if (mState.tracks[ mActiveTrack ].enabled != 1) { mState.tracks[ mActiveTrack ].enabled = 1; LOGV("enable(%d)", mActiveTrack); invalidateState(1<<mActiveTrack); } } break; default: return NAME_NOT_FOUND; } return NO_ERROR; } status_t AudioMixer::disable(int name) { switch (name) { case MIXING: { if (mState.tracks[ mActiveTrack ].enabled != 0) { mState.tracks[ mActiveTrack ].enabled = 0; LOGV("disable(%d)", mActiveTrack); invalidateState(1<<mActiveTrack); } } break; default: return NAME_NOT_FOUND; } return NO_ERROR; } status_t AudioMixer::setActiveTrack(int track) { if (uint32_t(track-TRACK0) >= MAX_NUM_TRACKS) { return BAD_VALUE; } mActiveTrack = track - TRACK0; return NO_ERROR; } status_t AudioMixer::setParameter(int target, int name, void *value) { int valueInt = (int)value; int32_t *valueBuf = (int32_t *)value; switch (target) { case TRACK: if (name == CHANNEL_COUNT) { if ((uint32_t(valueInt) <= MAX_NUM_CHANNELS) && (valueInt)) { if (mState.tracks[ mActiveTrack ].channelCount != valueInt) { mState.tracks[ mActiveTrack ].channelCount = valueInt; LOGV("setParameter(TRACK, CHANNEL_COUNT, %d)", valueInt); invalidateState(1<<mActiveTrack); } return NO_ERROR; } } if (name == MAIN_BUFFER) { if (mState.tracks[ mActiveTrack ].mainBuffer != valueBuf) { mState.tracks[ mActiveTrack ].mainBuffer = valueBuf; LOGV("setParameter(TRACK, MAIN_BUFFER, %p)", valueBuf); invalidateState(1<<mActiveTrack); } return NO_ERROR; } if (name == AUX_BUFFER) { if (mState.tracks[ mActiveTrack ].auxBuffer != valueBuf) { mState.tracks[ mActiveTrack ].auxBuffer = valueBuf; LOGV("setParameter(TRACK, AUX_BUFFER, %p)", valueBuf); invalidateState(1<<mActiveTrack); } return NO_ERROR; } break; case RESAMPLE: if (name == SAMPLE_RATE) { if (valueInt > 0) { track_t& track = mState.tracks[ mActiveTrack ]; if (track.setResampler(uint32_t(valueInt), mSampleRate)) { LOGV("setParameter(RESAMPLE, SAMPLE_RATE, %u)", uint32_t(valueInt)); invalidateState(1<<mActiveTrack); } return NO_ERROR; } } break; case RAMP_VOLUME: case VOLUME: if ((uint32_t(name-VOLUME0) < MAX_NUM_CHANNELS)) { track_t& track = mState.tracks[ mActiveTrack ]; if (track.volume[name-VOLUME0] != valueInt) { LOGV("setParameter(VOLUME, VOLUME0/1: %04x)", valueInt); track.prevVolume[name-VOLUME0] = track.volume[name-VOLUME0] << 16; track.volume[name-VOLUME0] = valueInt; if (target == VOLUME) { track.prevVolume[name-VOLUME0] = valueInt << 16; track.volumeInc[name-VOLUME0] = 0; } else { int32_t d = (valueInt<<16) - track.prevVolume[name-VOLUME0]; int32_t volInc = d / int32_t(mState.frameCount); track.volumeInc[name-VOLUME0] = volInc; if (volInc == 0) { track.prevVolume[name-VOLUME0] = valueInt << 16; } } invalidateState(1<<mActiveTrack); } return NO_ERROR; } else if (name == AUXLEVEL) { track_t& track = mState.tracks[ mActiveTrack ]; if (track.auxLevel != valueInt) { LOGV("setParameter(VOLUME, AUXLEVEL: %04x)", valueInt); track.prevAuxLevel = track.auxLevel << 16; track.auxLevel = valueInt; if (target == VOLUME) { track.prevAuxLevel = valueInt << 16; track.auxInc = 0; } else { int32_t d = (valueInt<<16) - track.prevAuxLevel; int32_t volInc = d / int32_t(mState.frameCount); track.auxInc = volInc; if (volInc == 0) { track.prevAuxLevel = valueInt << 16; } } invalidateState(1<<mActiveTrack); } return NO_ERROR; } break; } return BAD_VALUE; } bool AudioMixer::track_t::setResampler(uint32_t value, uint32_t devSampleRate) { if (value!=devSampleRate || resampler) { if (sampleRate != value) { sampleRate = value; if (resampler == 0) { resampler = AudioResampler::create( format, channelCount, devSampleRate); } return true; } } return false; } bool AudioMixer::track_t::doesResample() const { return resampler != 0; } inline void AudioMixer::track_t::adjustVolumeRamp(bool aux) { for (int i=0 ; i<2 ; i++) { if (((volumeInc[i]>0) && (((prevVolume[i]+volumeInc[i])>>16) >= volume[i])) || ((volumeInc[i]<0) && (((prevVolume[i]+volumeInc[i])>>16) <= volume[i]))) { volumeInc[i] = 0; prevVolume[i] = volume[i]<<16; } } if (aux) { if (((auxInc>0) && (((prevAuxLevel+auxInc)>>16) >= auxLevel)) || ((auxInc<0) && (((prevAuxLevel+auxInc)>>16) <= auxLevel))) { auxInc = 0; prevAuxLevel = auxLevel<<16; } } } status_t AudioMixer::setBufferProvider(AudioBufferProvider* buffer) { mState.tracks[ mActiveTrack ].bufferProvider = buffer; return NO_ERROR; } void AudioMixer::process() { mState.hook(&mState); } void AudioMixer::process__validate(state_t* state) { LOGW_IF(!state->needsChanged, "in process__validate() but nothing's invalid"); uint32_t changed = state->needsChanged; state->needsChanged = 0; // clear the validation flag // recompute which tracks are enabled / disabled uint32_t enabled = 0; uint32_t disabled = 0; while (changed) { const int i = 31 - __builtin_clz(changed); const uint32_t mask = 1<<i; changed &= ~mask; track_t& t = state->tracks[i]; (t.enabled ? enabled : disabled) |= mask; } state->enabledTracks &= ~disabled; state->enabledTracks |= enabled; // compute everything we need... int countActiveTracks = 0; int all16BitsStereoNoResample = 1; int resampling = 0; int volumeRamp = 0; uint32_t en = state->enabledTracks; while (en) { const int i = 31 - __builtin_clz(en); en &= ~(1<<i); countActiveTracks++; track_t& t = state->tracks[i]; uint32_t n = 0; n |= NEEDS_CHANNEL_1 + t.channelCount - 1; n |= NEEDS_FORMAT_16; n |= t.doesResample() ? NEEDS_RESAMPLE_ENABLED : NEEDS_RESAMPLE_DISABLED; if (t.auxLevel != 0 && t.auxBuffer != NULL) { n |= NEEDS_AUX_ENABLED; } if (t.volumeInc[0]|t.volumeInc[1]) { volumeRamp = 1; } else if (!t.doesResample() && t.volumeRL == 0) { n |= NEEDS_MUTE_ENABLED; } t.needs = n; if ((n & NEEDS_MUTE__MASK) == NEEDS_MUTE_ENABLED) { t.hook = track__nop; } else { if ((n & NEEDS_AUX__MASK) == NEEDS_AUX_ENABLED) { all16BitsStereoNoResample = 0; } if ((n & NEEDS_RESAMPLE__MASK) == NEEDS_RESAMPLE_ENABLED) { all16BitsStereoNoResample = 0; resampling = 1; t.hook = track__genericResample; } else { if ((n & NEEDS_CHANNEL_COUNT__MASK) == NEEDS_CHANNEL_1){ t.hook = track__16BitsMono; all16BitsStereoNoResample = 0; } if ((n & NEEDS_CHANNEL_COUNT__MASK) == NEEDS_CHANNEL_2){ t.hook = track__16BitsStereo; } } } } // select the processing hooks state->hook = process__nop; if (countActiveTracks) { if (resampling) { if (!state->outputTemp) { state->outputTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount]; } if (!state->resampleTemp) { state->resampleTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount]; } state->hook = process__genericResampling; } else { if (state->outputTemp) { delete [] state->outputTemp; state->outputTemp = 0; } if (state->resampleTemp) { delete [] state->resampleTemp; state->resampleTemp = 0; } state->hook = process__genericNoResampling; if (all16BitsStereoNoResample && !volumeRamp) { if (countActiveTracks == 1) { state->hook = process__OneTrack16BitsStereoNoResampling; } } } } LOGV("mixer configuration change: %d activeTracks (%08x) " "all16BitsStereoNoResample=%d, resampling=%d, volumeRamp=%d", countActiveTracks, state->enabledTracks, all16BitsStereoNoResample, resampling, volumeRamp); state->hook(state); // Now that the volume ramp has been done, set optimal state and // track hooks for subsequent mixer process if (countActiveTracks) { int allMuted = 1; uint32_t en = state->enabledTracks; while (en) { const int i = 31 - __builtin_clz(en); en &= ~(1<<i); track_t& t = state->tracks[i]; if (!t.doesResample() && t.volumeRL == 0) { t.needs |= NEEDS_MUTE_ENABLED; t.hook = track__nop; } else { allMuted = 0; } } if (allMuted) { state->hook = process__nop; } else if (all16BitsStereoNoResample) { if (countActiveTracks == 1) { state->hook = process__OneTrack16BitsStereoNoResampling; } } } } static inline int32_t mulAdd(int16_t in, int16_t v, int32_t a) { #if defined(__arm__) && !defined(__thumb__) int32_t out; asm( "smlabb %[out], %[in], %[v], %[a] \n" : [out]"=r"(out) : [in]"%r"(in), [v]"r"(v), [a]"r"(a) : ); return out; #else return a + in * int32_t(v); #endif } static inline int32_t mul(int16_t in, int16_t v) { #if defined(__arm__) && !defined(__thumb__) int32_t out; asm( "smulbb %[out], %[in], %[v] \n" : [out]"=r"(out) : [in]"%r"(in), [v]"r"(v) : ); return out; #else return in * int32_t(v); #endif } static inline int32_t mulAddRL(int left, uint32_t inRL, uint32_t vRL, int32_t a) { #if defined(__arm__) && !defined(__thumb__) int32_t out; if (left) { asm( "smlabb %[out], %[inRL], %[vRL], %[a] \n" : [out]"=r"(out) : [inRL]"%r"(inRL), [vRL]"r"(vRL), [a]"r"(a) : ); } else { asm( "smlatt %[out], %[inRL], %[vRL], %[a] \n" : [out]"=r"(out) : [inRL]"%r"(inRL), [vRL]"r"(vRL), [a]"r"(a) : ); } return out; #else if (left) { return a + int16_t(inRL&0xFFFF) * int16_t(vRL&0xFFFF); } else { return a + int16_t(inRL>>16) * int16_t(vRL>>16); } #endif } static inline int32_t mulRL(int left, uint32_t inRL, uint32_t vRL) { #if defined(__arm__) && !defined(__thumb__) int32_t out; if (left) { asm( "smulbb %[out], %[inRL], %[vRL] \n" : [out]"=r"(out) : [inRL]"%r"(inRL), [vRL]"r"(vRL) : ); } else { asm( "smultt %[out], %[inRL], %[vRL] \n" : [out]"=r"(out) : [inRL]"%r"(inRL), [vRL]"r"(vRL) : ); } return out; #else if (left) { return int16_t(inRL&0xFFFF) * int16_t(vRL&0xFFFF); } else { return int16_t(inRL>>16) * int16_t(vRL>>16); } #endif } void AudioMixer::track__genericResample(track_t* t, int32_t* out, size_t outFrameCount, int32_t* temp, int32_t* aux) { t->resampler->setSampleRate(t->sampleRate); // ramp gain - resample to temp buffer and scale/mix in 2nd step if (aux != NULL) { // always resample with unity gain when sending to auxiliary buffer to be able // to apply send level after resampling // TODO: modify each resampler to support aux channel? t->resampler->setVolume(UNITY_GAIN, UNITY_GAIN); memset(temp, 0, outFrameCount * MAX_NUM_CHANNELS * sizeof(int32_t)); t->resampler->resample(temp, outFrameCount, t->bufferProvider); if UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc) { volumeRampStereo(t, out, outFrameCount, temp, aux); } else { volumeStereo(t, out, outFrameCount, temp, aux); } } else { if UNLIKELY(t->volumeInc[0]|t->volumeInc[1]) { t->resampler->setVolume(UNITY_GAIN, UNITY_GAIN); memset(temp, 0, outFrameCount * MAX_NUM_CHANNELS * sizeof(int32_t)); t->resampler->resample(temp, outFrameCount, t->bufferProvider); volumeRampStereo(t, out, outFrameCount, temp, aux); } // constant gain else { t->resampler->setVolume(t->volume[0], t->volume[1]); t->resampler->resample(out, outFrameCount, t->bufferProvider); } } } void AudioMixer::track__nop(track_t* t, int32_t* out, size_t outFrameCount, int32_t* temp, int32_t* aux) { } void AudioMixer::volumeRampStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp, int32_t* aux) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; //LOGD("[0] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); // ramp volume if UNLIKELY(aux != NULL) { int32_t va = t->prevAuxLevel; const int32_t vaInc = t->auxInc; int32_t l; int32_t r; do { l = (*temp++ >> 12); r = (*temp++ >> 12); *out++ += (vl >> 16) * l; *out++ += (vr >> 16) * r; *aux++ += (va >> 17) * (l + r); vl += vlInc; vr += vrInc; va += vaInc; } while (--frameCount); t->prevAuxLevel = va; } else { do { *out++ += (vl >> 16) * (*temp++ >> 12); *out++ += (vr >> 16) * (*temp++ >> 12); vl += vlInc; vr += vrInc; } while (--frameCount); } t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->adjustVolumeRamp((aux != NULL)); } void AudioMixer::volumeStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp, int32_t* aux) { const int16_t vl = t->volume[0]; const int16_t vr = t->volume[1]; if UNLIKELY(aux != NULL) { const int16_t va = (int16_t)t->auxLevel; do { int16_t l = (int16_t)(*temp++ >> 12); int16_t r = (int16_t)(*temp++ >> 12); out[0] = mulAdd(l, vl, out[0]); int16_t a = (int16_t)(((int32_t)l + r) >> 1); out[1] = mulAdd(r, vr, out[1]); out += 2; aux[0] = mulAdd(a, va, aux[0]); aux++; } while (--frameCount); } else { do { int16_t l = (int16_t)(*temp++ >> 12); int16_t r = (int16_t)(*temp++ >> 12); out[0] = mulAdd(l, vl, out[0]); out[1] = mulAdd(r, vr, out[1]); out += 2; } while (--frameCount); } } void AudioMixer::track__16BitsStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp, int32_t* aux) { int16_t const *in = static_cast<int16_t const *>(t->in); if UNLIKELY(aux != NULL) { int32_t l; int32_t r; // ramp gain if UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; int32_t va = t->prevAuxLevel; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; const int32_t vaInc = t->auxInc; // LOGD("[1] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); do { l = (int32_t)*in++; r = (int32_t)*in++; *out++ += (vl >> 16) * l; *out++ += (vr >> 16) * r; *aux++ += (va >> 17) * (l + r); vl += vlInc; vr += vrInc; va += vaInc; } while (--frameCount); t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->prevAuxLevel = va; t->adjustVolumeRamp(true); } // constant gain else { const uint32_t vrl = t->volumeRL; const int16_t va = (int16_t)t->auxLevel; do { uint32_t rl = *reinterpret_cast<uint32_t const *>(in); int16_t a = (int16_t)(((int32_t)in[0] + in[1]) >> 1); in += 2; out[0] = mulAddRL(1, rl, vrl, out[0]); out[1] = mulAddRL(0, rl, vrl, out[1]); out += 2; aux[0] = mulAdd(a, va, aux[0]); aux++; } while (--frameCount); } } else { // ramp gain if UNLIKELY(t->volumeInc[0]|t->volumeInc[1]) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; // LOGD("[1] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); do { *out++ += (vl >> 16) * (int32_t) *in++; *out++ += (vr >> 16) * (int32_t) *in++; vl += vlInc; vr += vrInc; } while (--frameCount); t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->adjustVolumeRamp(false); } // constant gain else { const uint32_t vrl = t->volumeRL; do { uint32_t rl = *reinterpret_cast<uint32_t const *>(in); in += 2; out[0] = mulAddRL(1, rl, vrl, out[0]); out[1] = mulAddRL(0, rl, vrl, out[1]); out += 2; } while (--frameCount); } } t->in = in; } void AudioMixer::track__16BitsMono(track_t* t, int32_t* out, size_t frameCount, int32_t* temp, int32_t* aux) { int16_t const *in = static_cast<int16_t const *>(t->in); if UNLIKELY(aux != NULL) { // ramp gain if UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; int32_t va = t->prevAuxLevel; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; const int32_t vaInc = t->auxInc; // LOGD("[2] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); do { int32_t l = *in++; *out++ += (vl >> 16) * l; *out++ += (vr >> 16) * l; *aux++ += (va >> 16) * l; vl += vlInc; vr += vrInc; va += vaInc; } while (--frameCount); t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->prevAuxLevel = va; t->adjustVolumeRamp(true); } // constant gain else { const int16_t vl = t->volume[0]; const int16_t vr = t->volume[1]; const int16_t va = (int16_t)t->auxLevel; do { int16_t l = *in++; out[0] = mulAdd(l, vl, out[0]); out[1] = mulAdd(l, vr, out[1]); out += 2; aux[0] = mulAdd(l, va, aux[0]); aux++; } while (--frameCount); } } else { // ramp gain if UNLIKELY(t->volumeInc[0]|t->volumeInc[1]) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; // LOGD("[2] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); do { int32_t l = *in++; *out++ += (vl >> 16) * l; *out++ += (vr >> 16) * l; vl += vlInc; vr += vrInc; } while (--frameCount); t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->adjustVolumeRamp(false); } // constant gain else { const int16_t vl = t->volume[0]; const int16_t vr = t->volume[1]; do { int16_t l = *in++; out[0] = mulAdd(l, vl, out[0]); out[1] = mulAdd(l, vr, out[1]); out += 2; } while (--frameCount); } } t->in = in; } void AudioMixer::ditherAndClamp(int32_t* out, int32_t const *sums, size_t c) { for (size_t i=0 ; i<c ; i++) { int32_t l = *sums++; int32_t r = *sums++; int32_t nl = l >> 12; int32_t nr = r >> 12; l = clamp16(nl); r = clamp16(nr); *out++ = (r<<16) | (l & 0xFFFF); } } // no-op case void AudioMixer::process__nop(state_t* state) { uint32_t e0 = state->enabledTracks; size_t bufSize = state->frameCount * sizeof(int16_t) * MAX_NUM_CHANNELS; while (e0) { // process by group of tracks with same output buffer to // avoid multiple memset() on same buffer uint32_t e1 = e0, e2 = e0; int i = 31 - __builtin_clz(e1); track_t& t1 = state->tracks[i]; e2 &= ~(1<<i); while (e2) { i = 31 - __builtin_clz(e2); e2 &= ~(1<<i); track_t& t2 = state->tracks[i]; if UNLIKELY(t2.mainBuffer != t1.mainBuffer) { e1 &= ~(1<<i); } } e0 &= ~(e1); memset(t1.mainBuffer, 0, bufSize); while (e1) { i = 31 - __builtin_clz(e1); e1 &= ~(1<<i); t1 = state->tracks[i]; size_t outFrames = state->frameCount; while (outFrames) { t1.buffer.frameCount = outFrames; t1.bufferProvider->getNextBuffer(&t1.buffer); if (!t1.buffer.raw) break; outFrames -= t1.buffer.frameCount; t1.bufferProvider->releaseBuffer(&t1.buffer); } } } } // generic code without resampling void AudioMixer::process__genericNoResampling(state_t* state) { int32_t outTemp[BLOCKSIZE * MAX_NUM_CHANNELS] __attribute__((aligned(32))); // acquire each track's buffer uint32_t enabledTracks = state->enabledTracks; uint32_t e0 = enabledTracks; while (e0) { const int i = 31 - __builtin_clz(e0); e0 &= ~(1<<i); track_t& t = state->tracks[i]; t.buffer.frameCount = state->frameCount; t.bufferProvider->getNextBuffer(&t.buffer); t.frameCount = t.buffer.frameCount; t.in = t.buffer.raw; // t.in == NULL can happen if the track was flushed just after having // been enabled for mixing. if (t.in == NULL) enabledTracks &= ~(1<<i); } e0 = enabledTracks; while (e0) { // process by group of tracks with same output buffer to // optimize cache use uint32_t e1 = e0, e2 = e0; int j = 31 - __builtin_clz(e1); track_t& t1 = state->tracks[j]; e2 &= ~(1<<j); while (e2) { j = 31 - __builtin_clz(e2); e2 &= ~(1<<j); track_t& t2 = state->tracks[j]; if UNLIKELY(t2.mainBuffer != t1.mainBuffer) { e1 &= ~(1<<j); } } e0 &= ~(e1); // this assumes output 16 bits stereo, no resampling int32_t *out = t1.mainBuffer; size_t numFrames = 0; do { memset(outTemp, 0, sizeof(outTemp)); e2 = e1; while (e2) { const int i = 31 - __builtin_clz(e2); e2 &= ~(1<<i); track_t& t = state->tracks[i]; size_t outFrames = BLOCKSIZE; int32_t *aux = NULL; if UNLIKELY((t.needs & NEEDS_AUX__MASK) == NEEDS_AUX_ENABLED) { aux = t.auxBuffer + numFrames; } while (outFrames) { size_t inFrames = (t.frameCount > outFrames)?outFrames:t.frameCount; if (inFrames) { (t.hook)(&t, outTemp + (BLOCKSIZE-outFrames)*MAX_NUM_CHANNELS, inFrames, state->resampleTemp, aux); t.frameCount -= inFrames; outFrames -= inFrames; if UNLIKELY(aux != NULL) { aux += inFrames; } } if (t.frameCount == 0 && outFrames) { t.bufferProvider->releaseBuffer(&t.buffer); t.buffer.frameCount = (state->frameCount - numFrames) - (BLOCKSIZE - outFrames); t.bufferProvider->getNextBuffer(&t.buffer); t.in = t.buffer.raw; if (t.in == NULL) { enabledTracks &= ~(1<<i); e1 &= ~(1<<i); break; } t.frameCount = t.buffer.frameCount; } } } ditherAndClamp(out, outTemp, BLOCKSIZE); out += BLOCKSIZE; numFrames += BLOCKSIZE; } while (numFrames < state->frameCount); } // release each track's buffer e0 = enabledTracks; while (e0) { const int i = 31 - __builtin_clz(e0); e0 &= ~(1<<i); track_t& t = state->tracks[i]; t.bufferProvider->releaseBuffer(&t.buffer); } } // generic code with resampling void AudioMixer::process__genericResampling(state_t* state) { int32_t* const outTemp = state->outputTemp; const size_t size = sizeof(int32_t) * MAX_NUM_CHANNELS * state->frameCount; memset(outTemp, 0, size); size_t numFrames = state->frameCount; uint32_t e0 = state->enabledTracks; while (e0) { // process by group of tracks with same output buffer // to optimize cache use uint32_t e1 = e0, e2 = e0; int j = 31 - __builtin_clz(e1); track_t& t1 = state->tracks[j]; e2 &= ~(1<<j); while (e2) { j = 31 - __builtin_clz(e2); e2 &= ~(1<<j); track_t& t2 = state->tracks[j]; if UNLIKELY(t2.mainBuffer != t1.mainBuffer) { e1 &= ~(1<<j); } } e0 &= ~(e1); int32_t *out = t1.mainBuffer; while (e1) { const int i = 31 - __builtin_clz(e1); e1 &= ~(1<<i); track_t& t = state->tracks[i]; int32_t *aux = NULL; if UNLIKELY((t.needs & NEEDS_AUX__MASK) == NEEDS_AUX_ENABLED) { aux = t.auxBuffer; } // this is a little goofy, on the resampling case we don't // acquire/release the buffers because it's done by // the resampler. if ((t.needs & NEEDS_RESAMPLE__MASK) == NEEDS_RESAMPLE_ENABLED) { (t.hook)(&t, outTemp, numFrames, state->resampleTemp, aux); } else { size_t outFrames = 0; while (outFrames < numFrames) { t.buffer.frameCount = numFrames - outFrames; t.bufferProvider->getNextBuffer(&t.buffer); t.in = t.buffer.raw; // t.in == NULL can happen if the track was flushed just after having // been enabled for mixing. if (t.in == NULL) break; if UNLIKELY(aux != NULL) { aux += outFrames; } (t.hook)(&t, outTemp + outFrames*MAX_NUM_CHANNELS, t.buffer.frameCount, state->resampleTemp, aux); outFrames += t.buffer.frameCount; t.bufferProvider->releaseBuffer(&t.buffer); } } } ditherAndClamp(out, outTemp, numFrames); } } // one track, 16 bits stereo without resampling is the most common case void AudioMixer::process__OneTrack16BitsStereoNoResampling(state_t* state) { const int i = 31 - __builtin_clz(state->enabledTracks); const track_t& t = state->tracks[i]; AudioBufferProvider::Buffer& b(t.buffer); int32_t* out = t.mainBuffer; size_t numFrames = state->frameCount; const int16_t vl = t.volume[0]; const int16_t vr = t.volume[1]; const uint32_t vrl = t.volumeRL; while (numFrames) { b.frameCount = numFrames; t.bufferProvider->getNextBuffer(&b); int16_t const *in = b.i16; // in == NULL can happen if the track was flushed just after having // been enabled for mixing. if (in == NULL || ((unsigned long)in & 3)) { memset(out, 0, numFrames*MAX_NUM_CHANNELS*sizeof(int16_t)); LOGE_IF(((unsigned long)in & 3), "process stereo track: input buffer alignment pb: buffer %p track %d, channels %d, needs %08x", in, i, t.channelCount, t.needs); return; } size_t outFrames = b.frameCount; if (UNLIKELY(uint32_t(vl) > UNITY_GAIN || uint32_t(vr) > UNITY_GAIN)) { // volume is boosted, so we might need to clamp even though // we process only one track. do { uint32_t rl = *reinterpret_cast<uint32_t const *>(in); in += 2; int32_t l = mulRL(1, rl, vrl) >> 12; int32_t r = mulRL(0, rl, vrl) >> 12; // clamping... l = clamp16(l); r = clamp16(r); *out++ = (r<<16) | (l & 0xFFFF); } while (--outFrames); } else { do { uint32_t rl = *reinterpret_cast<uint32_t const *>(in); in += 2; int32_t l = mulRL(1, rl, vrl) >> 12; int32_t r = mulRL(0, rl, vrl) >> 12; *out++ = (r<<16) | (l & 0xFFFF); } while (--outFrames); } numFrames -= b.frameCount; t.bufferProvider->releaseBuffer(&b); } } // 2 tracks is also a common case // NEVER used in current implementation of process__validate() // only use if the 2 tracks have the same output buffer void AudioMixer::process__TwoTracks16BitsStereoNoResampling(state_t* state) { int i; uint32_t en = state->enabledTracks; i = 31 - __builtin_clz(en); const track_t& t0 = state->tracks[i]; AudioBufferProvider::Buffer& b0(t0.buffer); en &= ~(1<<i); i = 31 - __builtin_clz(en); const track_t& t1 = state->tracks[i]; AudioBufferProvider::Buffer& b1(t1.buffer); int16_t const *in0; const int16_t vl0 = t0.volume[0]; const int16_t vr0 = t0.volume[1]; size_t frameCount0 = 0; int16_t const *in1; const int16_t vl1 = t1.volume[0]; const int16_t vr1 = t1.volume[1]; size_t frameCount1 = 0; //FIXME: only works if two tracks use same buffer int32_t* out = t0.mainBuffer; size_t numFrames = state->frameCount; int16_t const *buff = NULL; while (numFrames) { if (frameCount0 == 0) { b0.frameCount = numFrames; t0.bufferProvider->getNextBuffer(&b0); if (b0.i16 == NULL) { if (buff == NULL) { buff = new int16_t[MAX_NUM_CHANNELS * state->frameCount]; } in0 = buff; b0.frameCount = numFrames; } else { in0 = b0.i16; } frameCount0 = b0.frameCount; } if (frameCount1 == 0) { b1.frameCount = numFrames; t1.bufferProvider->getNextBuffer(&b1); if (b1.i16 == NULL) { if (buff == NULL) { buff = new int16_t[MAX_NUM_CHANNELS * state->frameCount]; } in1 = buff; b1.frameCount = numFrames; } else { in1 = b1.i16; } frameCount1 = b1.frameCount; } size_t outFrames = frameCount0 < frameCount1?frameCount0:frameCount1; numFrames -= outFrames; frameCount0 -= outFrames; frameCount1 -= outFrames; do { int32_t l0 = *in0++; int32_t r0 = *in0++; l0 = mul(l0, vl0); r0 = mul(r0, vr0); int32_t l = *in1++; int32_t r = *in1++; l = mulAdd(l, vl1, l0) >> 12; r = mulAdd(r, vr1, r0) >> 12; // clamping... l = clamp16(l); r = clamp16(r); *out++ = (r<<16) | (l & 0xFFFF); } while (--outFrames); if (frameCount0 == 0) { t0.bufferProvider->releaseBuffer(&b0); } if (frameCount1 == 0) { t1.bufferProvider->releaseBuffer(&b1); } } if (buff != NULL) { delete [] buff; } } // ---------------------------------------------------------------------------- }; // namespace android