/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <stdint.h> #include <math.h> #include <sys/types.h> #include <utils/SortedVector.h> #include <utils/KeyedVector.h> #include <utils/threads.h> #include <utils/Atomic.h> #include <utils/Errors.h> #include <utils/RefBase.h> #include <utils/Singleton.h> #include <utils/String16.h> #include <binder/BinderService.h> #include <binder/IServiceManager.h> #include <gui/ISensorServer.h> #include <gui/ISensorEventConnection.h> #include <hardware/sensors.h> #include "SensorService.h" #include "GravitySensor.h" #include "LinearAccelerationSensor.h" #include "RotationVectorSensor.h" namespace android { // --------------------------------------------------------------------------- SensorService::SensorService() : Thread(false), mDump("android.permission.DUMP"), mInitCheck(NO_INIT) { } void SensorService::onFirstRef() { LOGD("nuSensorService starting..."); SensorDevice& dev(SensorDevice::getInstance()); if (dev.initCheck() == NO_ERROR) { uint32_t virtualSensorsNeeds = (1<<SENSOR_TYPE_GRAVITY) | (1<<SENSOR_TYPE_LINEAR_ACCELERATION) | (1<<SENSOR_TYPE_ROTATION_VECTOR); sensor_t const* list; int count = dev.getSensorList(&list); mLastEventSeen.setCapacity(count); for (int i=0 ; i<count ; i++) { registerSensor( new HardwareSensor(list[i]) ); switch (list[i].type) { case SENSOR_TYPE_GRAVITY: case SENSOR_TYPE_LINEAR_ACCELERATION: case SENSOR_TYPE_ROTATION_VECTOR: virtualSensorsNeeds &= ~(1<<list[i].type); break; } } if (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) { registerVirtualSensor( new GravitySensor(list, count) ); } if (virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) { registerVirtualSensor( new LinearAccelerationSensor(list, count) ); } if (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) { registerVirtualSensor( new RotationVectorSensor(list, count) ); } run("SensorService", PRIORITY_URGENT_DISPLAY); mInitCheck = NO_ERROR; } } void SensorService::registerSensor(SensorInterface* s) { sensors_event_t event; memset(&event, 0, sizeof(event)); const Sensor sensor(s->getSensor()); // add to the sensor list (returned to clients) mSensorList.add(sensor); // add to our handle->SensorInterface mapping mSensorMap.add(sensor.getHandle(), s); // create an entry in the mLastEventSeen array mLastEventSeen.add(sensor.getHandle(), event); } void SensorService::registerVirtualSensor(SensorInterface* s) { registerSensor(s); mVirtualSensorList.add( s ); } SensorService::~SensorService() { for (size_t i=0 ; i<mSensorMap.size() ; i++) delete mSensorMap.valueAt(i); } status_t SensorService::dump(int fd, const Vector<String16>& args) { const size_t SIZE = 1024; char buffer[SIZE]; String8 result; if (!mDump.checkCalling()) { snprintf(buffer, SIZE, "Permission Denial: " "can't dump SurfaceFlinger from pid=%d, uid=%d\n", IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid()); result.append(buffer); } else { Mutex::Autolock _l(mLock); snprintf(buffer, SIZE, "Sensor List:\n"); result.append(buffer); for (size_t i=0 ; i<mSensorList.size() ; i++) { const Sensor& s(mSensorList[i]); const sensors_event_t& e(mLastEventSeen.valueFor(s.getHandle())); snprintf(buffer, SIZE, "%-48s| %-32s | 0x%08x | maxRate=%7.2fHz | last=<%5.1f,%5.1f,%5.1f>\n", s.getName().string(), s.getVendor().string(), s.getHandle(), s.getMinDelay() ? (1000000.0f / s.getMinDelay()) : 0.0f, e.data[0], e.data[1], e.data[2]); result.append(buffer); } SensorDevice::getInstance().dump(result, buffer, SIZE); snprintf(buffer, SIZE, "%d active connections\n", mActiveConnections.size()); result.append(buffer); snprintf(buffer, SIZE, "Active sensors:\n"); result.append(buffer); for (size_t i=0 ; i<mActiveSensors.size() ; i++) { int handle = mActiveSensors.keyAt(i); snprintf(buffer, SIZE, "%s (handle=0x%08x, connections=%d)\n", getSensorName(handle).string(), handle, mActiveSensors.valueAt(i)->getNumConnections()); result.append(buffer); } } write(fd, result.string(), result.size()); return NO_ERROR; } bool SensorService::threadLoop() { LOGD("nuSensorService thread starting..."); const size_t numEventMax = 16 * (1 + mVirtualSensorList.size()); sensors_event_t buffer[numEventMax]; sensors_event_t scratch[numEventMax]; SensorDevice& device(SensorDevice::getInstance()); const size_t vcount = mVirtualSensorList.size(); ssize_t count; do { count = device.poll(buffer, numEventMax); if (count<0) { LOGE("sensor poll failed (%s)", strerror(-count)); break; } recordLastValue(buffer, count); // handle virtual sensors if (count && vcount) { const DefaultKeyedVector<int, SensorInterface*> virtualSensors( getActiveVirtualSensors()); const size_t activeVirtualSensorCount = virtualSensors.size(); if (activeVirtualSensorCount) { size_t k = 0; for (size_t i=0 ; i<size_t(count) ; i++) { sensors_event_t const * const event = buffer; for (size_t j=0 ; j<activeVirtualSensorCount ; j++) { sensors_event_t out; if (virtualSensors.valueAt(j)->process(&out, event[i])) { buffer[count + k] = out; k++; } } } if (k) { // record the last synthesized values recordLastValue(&buffer[count], k); count += k; // sort the buffer by time-stamps sortEventBuffer(buffer, count); } } } // send our events to clients... const SortedVector< wp<SensorEventConnection> > activeConnections( getActiveConnections()); size_t numConnections = activeConnections.size(); for (size_t i=0 ; i<numConnections ; i++) { sp<SensorEventConnection> connection( activeConnections[i].promote()); if (connection != 0) { connection->sendEvents(buffer, count, scratch); } } } while (count >= 0 || Thread::exitPending()); LOGW("Exiting SensorService::threadLoop!"); return false; } void SensorService::recordLastValue( sensors_event_t const * buffer, size_t count) { Mutex::Autolock _l(mLock); // record the last event for each sensor int32_t prev = buffer[0].sensor; for (size_t i=1 ; i<count ; i++) { // record the last event of each sensor type in this buffer int32_t curr = buffer[i].sensor; if (curr != prev) { mLastEventSeen.editValueFor(prev) = buffer[i-1]; prev = curr; } } mLastEventSeen.editValueFor(prev) = buffer[count-1]; } void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count) { struct compar { static int cmp(void const* lhs, void const* rhs) { sensors_event_t const* l = static_cast<sensors_event_t const*>(lhs); sensors_event_t const* r = static_cast<sensors_event_t const*>(rhs); return r->timestamp - l->timestamp; } }; qsort(buffer, count, sizeof(sensors_event_t), compar::cmp); } SortedVector< wp<SensorService::SensorEventConnection> > SensorService::getActiveConnections() const { Mutex::Autolock _l(mLock); return mActiveConnections; } DefaultKeyedVector<int, SensorInterface*> SensorService::getActiveVirtualSensors() const { Mutex::Autolock _l(mLock); return mActiveVirtualSensors; } String8 SensorService::getSensorName(int handle) const { size_t count = mSensorList.size(); for (size_t i=0 ; i<count ; i++) { const Sensor& sensor(mSensorList[i]); if (sensor.getHandle() == handle) { return sensor.getName(); } } String8 result("unknown"); return result; } Vector<Sensor> SensorService::getSensorList() { return mSensorList; } sp<ISensorEventConnection> SensorService::createSensorEventConnection() { sp<SensorEventConnection> result(new SensorEventConnection(this)); return result; } void SensorService::cleanupConnection(const wp<SensorEventConnection>& connection) { Mutex::Autolock _l(mLock); size_t size = mActiveSensors.size(); for (size_t i=0 ; i<size ; ) { SensorRecord* rec = mActiveSensors.valueAt(i); if (rec && rec->removeConnection(connection)) { int handle = mActiveSensors.keyAt(i); SensorInterface* sensor = mSensorMap.valueFor( handle ); if (sensor) { sensor->activate(connection.unsafe_get(), false); } mActiveSensors.removeItemsAt(i, 1); mActiveVirtualSensors.removeItem(handle); delete rec; size--; } else { i++; } } mActiveConnections.remove(connection); } status_t SensorService::enable(const sp<SensorEventConnection>& connection, int handle) { if (mInitCheck != NO_ERROR) return mInitCheck; Mutex::Autolock _l(mLock); SensorInterface* sensor = mSensorMap.valueFor(handle); status_t err = sensor ? sensor->activate(connection.get(), true) : status_t(BAD_VALUE); if (err == NO_ERROR) { SensorRecord* rec = mActiveSensors.valueFor(handle); if (rec == 0) { rec = new SensorRecord(connection); mActiveSensors.add(handle, rec); if (sensor->isVirtual()) { mActiveVirtualSensors.add(handle, sensor); } } else { if (rec->addConnection(connection)) { // this sensor is already activated, but we are adding a // connection that uses it. Immediately send down the last // known value of the requested sensor. sensors_event_t scratch; sensors_event_t& event(mLastEventSeen.editValueFor(handle)); if (event.version == sizeof(sensors_event_t)) { connection->sendEvents(&event, 1); } } } if (err == NO_ERROR) { // connection now active if (connection->addSensor(handle)) { // the sensor was added (which means it wasn't already there) // so, see if this connection becomes active if (mActiveConnections.indexOf(connection) < 0) { mActiveConnections.add(connection); } } } } return err; } status_t SensorService::disable(const sp<SensorEventConnection>& connection, int handle) { if (mInitCheck != NO_ERROR) return mInitCheck; status_t err = NO_ERROR; Mutex::Autolock _l(mLock); SensorRecord* rec = mActiveSensors.valueFor(handle); if (rec) { // see if this connection becomes inactive connection->removeSensor(handle); if (connection->hasAnySensor() == false) { mActiveConnections.remove(connection); } // see if this sensor becomes inactive if (rec->removeConnection(connection)) { mActiveSensors.removeItem(handle); mActiveVirtualSensors.removeItem(handle); delete rec; } SensorInterface* sensor = mSensorMap.valueFor(handle); err = sensor ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE); } return err; } status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection, int handle, nsecs_t ns) { if (mInitCheck != NO_ERROR) return mInitCheck; if (ns < 0) return BAD_VALUE; if (ns < MINIMUM_EVENTS_PERIOD) ns = MINIMUM_EVENTS_PERIOD; SensorInterface* sensor = mSensorMap.valueFor(handle); if (!sensor) return BAD_VALUE; return sensor->setDelay(connection.get(), handle, ns); } // --------------------------------------------------------------------------- SensorService::SensorRecord::SensorRecord( const sp<SensorEventConnection>& connection) { mConnections.add(connection); } bool SensorService::SensorRecord::addConnection( const sp<SensorEventConnection>& connection) { if (mConnections.indexOf(connection) < 0) { mConnections.add(connection); return true; } return false; } bool SensorService::SensorRecord::removeConnection( const wp<SensorEventConnection>& connection) { ssize_t index = mConnections.indexOf(connection); if (index >= 0) { mConnections.removeItemsAt(index, 1); } return mConnections.size() ? false : true; } // --------------------------------------------------------------------------- SensorService::SensorEventConnection::SensorEventConnection( const sp<SensorService>& service) : mService(service), mChannel(new SensorChannel()) { } SensorService::SensorEventConnection::~SensorEventConnection() { mService->cleanupConnection(this); } void SensorService::SensorEventConnection::onFirstRef() { } bool SensorService::SensorEventConnection::addSensor(int32_t handle) { Mutex::Autolock _l(mConnectionLock); if (mSensorInfo.indexOf(handle) <= 0) { mSensorInfo.add(handle); return true; } return false; } bool SensorService::SensorEventConnection::removeSensor(int32_t handle) { Mutex::Autolock _l(mConnectionLock); if (mSensorInfo.remove(handle) >= 0) { return true; } return false; } bool SensorService::SensorEventConnection::hasSensor(int32_t handle) const { Mutex::Autolock _l(mConnectionLock); return mSensorInfo.indexOf(handle) >= 0; } bool SensorService::SensorEventConnection::hasAnySensor() const { Mutex::Autolock _l(mConnectionLock); return mSensorInfo.size() ? true : false; } status_t SensorService::SensorEventConnection::sendEvents( sensors_event_t const* buffer, size_t numEvents, sensors_event_t* scratch) { // filter out events not for this connection size_t count = 0; if (scratch) { Mutex::Autolock _l(mConnectionLock); size_t i=0; while (i<numEvents) { const int32_t curr = buffer[i].sensor; if (mSensorInfo.indexOf(curr) >= 0) { do { scratch[count++] = buffer[i++]; } while ((i<numEvents) && (buffer[i].sensor == curr)); } else { i++; } } } else { scratch = const_cast<sensors_event_t *>(buffer); count = numEvents; } if (count == 0) return 0; ssize_t size = mChannel->write(scratch, count*sizeof(sensors_event_t)); if (size == -EAGAIN) { // the destination doesn't accept events anymore, it's probably // full. For now, we just drop the events on the floor. LOGW("dropping %d events on the floor", count); return size; } LOGE_IF(size<0, "dropping %d events on the floor (%s)", count, strerror(-size)); return size < 0 ? status_t(size) : status_t(NO_ERROR); } sp<SensorChannel> SensorService::SensorEventConnection::getSensorChannel() const { return mChannel; } status_t SensorService::SensorEventConnection::enableDisable( int handle, bool enabled) { status_t err; if (enabled) { err = mService->enable(this, handle); } else { err = mService->disable(this, handle); } return err; } status_t SensorService::SensorEventConnection::setEventRate( int handle, nsecs_t ns) { return mService->setEventRate(this, handle, ns); } // --------------------------------------------------------------------------- }; // namespace android